• 中国科技核心期刊
  • 《中国科学引用文数据库》来源期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于室内试验的四川峨眉—汉源高速廖山隧道碳酸盐岩溶蚀特征分析

李华明 蔡乐军 陈南南 黄平 李芳涛

李华明, 蔡乐军, 陈南南, 黄平, 李芳涛. 基于室内试验的四川峨眉—汉源高速廖山隧道碳酸盐岩溶蚀特征分析[J]. 中国地质灾害与防治学报, 2021, 32(4): 73-84. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-10
引用本文: 李华明, 蔡乐军, 陈南南, 黄平, 李芳涛. 基于室内试验的四川峨眉—汉源高速廖山隧道碳酸盐岩溶蚀特征分析[J]. 中国地质灾害与防治学报, 2021, 32(4): 73-84. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-10
Huaming LI, Lejun CAI, Nannan CHEN, Ping HUANG, Fangtao LI. Experimental analysis on dissolution characteristics of carbonate rocks in Liaoshan tunnel of Emei−Hanyuan expressway in Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 73-84. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-10
Citation: Huaming LI, Lejun CAI, Nannan CHEN, Ping HUANG, Fangtao LI. Experimental analysis on dissolution characteristics of carbonate rocks in Liaoshan tunnel of Emei−Hanyuan expressway in Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 73-84. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-10

基于室内试验的四川峨眉—汉源高速廖山隧道碳酸盐岩溶蚀特征分析

doi: 10.16031/j.cnki.issn.1003-8035.2021.04-10
基金项目: 峨眉至汉源高速公路工程科研项目(LH-HT-45)
详细信息
    作者简介:

    李华明(1977-),男,博士,高级工程师,主要从事地下工程与岩土工程相关领域的科研与生产工作。E-mail:hmli19770604@164.com

    通讯作者:

    陈南南(1993-),男,硕士,安徽阜南人,主要从事地下结构与岩土工程等方面的科研与生产工作。E-mail:18435169848@163.com

  • 中图分类号: P642.25

Experimental analysis on dissolution characteristics of carbonate rocks in Liaoshan tunnel of Emei−Hanyuan expressway in Sichuan Province

  • 摘要: 廖山隧道是峨汉高速的控制性工程之一,隧址区岩溶地质条件复杂,为了深入研究隧址区碳酸盐岩的溶蚀特征,文章以隧址区中生界三叠系中统雷口坡组典型白云质灰岩、灰岩及钙质泥岩试样为研究对象,开展静态溶蚀试验,定量分析了碳酸盐岩溶蚀速率特征及相关影响因素,最后定性探讨了扫描电镜下试样溶蚀过程的微观结构变化。结果表明:(1)试验条件下(20 ℃、1 atm、乙酸溶液、pH=5.30、静态溶蚀),隧址区雷口坡组灰岩溶蚀速率约3.48 mm/a,白云质灰岩溶蚀速率约1.57 mm/a,钙质泥岩溶蚀速率约0.90 mm/a;(2)碳酸盐岩的溶蚀受矿物组分及溶蚀环境控制,相同溶蚀环境下,溶蚀速率与方解石含量呈正相关,与白云石含量及溶蚀介质PH值呈负相关,总体上具有灰岩>白云质灰岩>钙质泥岩的特征;(3)有机酸与无机酸环境下灰岩溶蚀速率差异不大,总体趋势相同,而中性盐溶液与碱性环境则对灰岩溶蚀起到不同程度的抑制作用;(4)碳酸盐岩具有优先沿矿物成分、岩石微结构选择性溶蚀的特征,主要矿物含量的不同也使得碳酸盐岩的微观溶蚀过程存在一定差异。
  • 图  1  碳酸盐岩溶解反应综合模型[16]

    Figure  1.  Comprehensive model of carbonate rock dissolution reaction

    图  2  施工场地采集岩样

    Figure  2.  Rock samples collected at the construction site

    图  3  静态溶蚀试验装置

    Figure  3.  Static dissolution experiment device

    图  4  不同岩性条件下溶蚀速率特征

    Figure  4.  Characteristics of dissolution rate under different lithology conditions

    图  5  起始溶蚀速率与岩石矿物成分关系

    Figure  5.  Relationship between initial dissolution rate and rock mineral composition

    图  6  不同pH值条件下溶蚀速率特征

    Figure  6.  Characteristics of dissolution rate under different pH values

    图  7  不同溶蚀环境下灰岩溶蚀速率特征

    Figure  7.  Characteristics of limestone dissolution rate in different dissolution environments

    图  8  碳酸盐岩在去离子水环境中溶蚀速率特征

    Figure  8.  Characteristics of dissolution rate of carbonate rocks in deionized water environment

    图  9  不同试样比表面积条件下白云质灰岩溶蚀特征

    Figure  9.  Dissolution characteristics of dolomitic limestone under different specific surface areas of samples

    图  10  Quanta 650型环境扫描电子显微镜

    Figure  10.  Quanta 650 environmental scanning electron microscope

    图  11  镀膜后试样及其编号

    Figure  11.  Coated sample and its number

    图  12  白云质灰岩溶蚀过程SEM形态图

    a~f均放大10000倍;a—试样编号BH-8,溶蚀时间6 h,出现层状剥蚀现象,纹层状溶蚀特征明显;b—试样编号BH-5,溶蚀时间14 h,晶间空隙溶蚀扩大,晶体棱角趋于圆滑;c—试样编号BH-3,溶蚀时间72 h,方解石晶体沿解理面溶蚀破坏明显,发育“百叶窗状”及“刀砍状”溶痕,白云石晶体溶蚀孔洞发育,呈千疮百孔状;d—试样编号BH-6,溶蚀时间120 h,晶体表面溶蚀碎屑脱落,晶面逐步变得光滑平整,局部发育溶蚀残坑;e—试样编号BH-11,溶蚀时间192 h,局部溶蚀缝发育方解石“溶蚀晶锥”,白云石晶体表面溶蚀孔洞溶蚀扩大贯穿;f—试样编号BH-1,溶蚀时间312 h,方解石晶体被明显蚀低且颗粒边缘具有晶锥状残留痕迹,白云石表面发育溶蚀孔洞且局部发育有溶蚀坑。

    Figure  12.  SEM morpHhology of dolomitic limestone dissolution process

    图  13  灰岩溶蚀过程SEM形态图

    a~f均放大10000倍;其中,a—试样编号H-5,溶蚀时间6 h,矿物晶体棱边及晶格畸变处被溶蚀变得圆滑,晶体表面出现众多细小溶痕;b—试样编号H-11,溶蚀时间24 h,方解石晶体表面及解理处溶蚀形成相互平行的溶蚀裂隙,白云石表面出现溶蚀孔洞;c—试样编号H-9,溶蚀时间72 h,方解石表面呈沟槽状及阶梯状溶蚀,白云石晶体结构较为完整;d—试样编号H-2,溶蚀时间120 h,方解石颗粒不具完整晶体形态,白云石晶体则棱角清晰;e—试样编号H-1,溶蚀时间192 h,晶体周围及晶间接触面溶蚀作用强烈,可见明显溶蚀凹槽分布其间;f—试样编号H-7,溶蚀时间312 h,方解石晶体呈现出晶锥状、针状及柱状结构,白云石晶体表面溶蚀成蜂窝麻面,差异溶蚀现象明显。

    Figure  13.  SEM morpHhology of limestone dissolution process

    图  14  方解石溶蚀过程模式图[12]

    Figure  14.  Schema graph of the processes for calcite dissolution

    图  15  白云石溶蚀过程模式图[12]

    Figure  15.  Schema graph for dolomite dissolution processes

    图  16  碳酸盐岩微观溶蚀特征

    a~d均放大5000倍;其中,a—试样编号H-7,溶蚀时间312 h,沿矿物成分选择性溶蚀,方解石晶体溶蚀后呈现出“溶蚀晶锥”状结构、局部呈现“针状”或“柱状”结构,白云石晶体表面溶蚀成“蜂窝麻面”状,方解石与白云石晶体差异溶蚀现象明显;b—试样编号BH-5,溶蚀时间14 h,沿矿物晶体表面选择性溶蚀,晶体表面呈现出台阶状,表面溶蚀碎屑剥离脱落,局部溶蚀孔洞发育扩张;c—试样编号H-5,溶蚀时间6 h,沿矿物晶体边缘选择性溶蚀,沿矿物晶体棱边出现溶蚀,逐渐变得模糊,局部晶体颗粒晶型似圆球状;d—试样编号BH-1,溶蚀时间312 h,沿矿物晶体解理、裂隙等微结构选择性溶蚀,方解石晶体沿解理处溶蚀形成一组相互平行的溶蚀沟槽,矿物晶体裂隙部位溶蚀扩大呈缝状;Cc-方解石晶体,Do-白云石晶体。

    Figure  16.  Microcosmic dissolution characteristics of carbonate rocks

    表  1  隧址区典型碳酸盐岩矿物组成X射线衍射分析

    Table  1.   X-ray diffraction analysis of mineral composition of typical carbonate rocks in tunnel site

    试样编号取样桩号试样岩性矿物成分/%百分含量/%
    钾长石方解石白云石石英
    X191250001K31+917灰岩0.990.6 8.5100.0
    X191250002K32+033白云质灰岩1.157.041.40.5100.0
    X191250003K32+033钙质泥岩0.2 0.398.70.8100.0
      注:本次检测委托国土资源部西北矿产资源监督检测中心检测完成,“−”表示未检出或低于检出限。
    下载: 导出CSV

    表  2  溶蚀试验工况条件

    Table  2.   dissolution experiment conditions

    试验分组及编号试样岩性试样尺寸/mm溶蚀介质溶液pH值溶蚀时间
    组别编号预设实际
    第一组1-1白云质灰岩Φ42×40乙酸溶液3.503.70各试样分别累计溶蚀6, 14, 24 h
    1-2Φ42×40乙酸溶液4.504.50
    1-3Φ42×40乙酸溶液5.505.30
    第二组2-1白云质灰岩Φ42×40乙酸溶液5.505.30
    2-2Φ42×20乙酸溶液5.505.30
    2-3Φ42×10乙酸溶液5.505.30
    第三组3-1灰岩Φ42×40乙酸溶液5.505.30
    3-2Φ42×20乙酸溶液5.505.30
    3-3Φ42×10乙酸溶液5.505.30
    第四组4-1钙质泥岩Φ42×40乙酸溶液5.505.30
    4-2Φ42×20乙酸溶液5.505.30
    4-3Φ42×10乙酸溶液5.505.30
    第五组5-1灰岩Φ42×10氢氧化钠溶液9.009.00
    5-2Φ42×10乙酸钠溶液7.007.00
    5-3Φ42×10盐酸溶液5.505.30
    第六组6-1灰岩Φ42×10去离子水7.007.00
    6-2白云质灰岩Φ42×10去离子水7.007.00
    6-3钙质泥岩Φ42×10去离子水7.007.00
      注:溶液配制过程中存在乙酸电离平衡现象,溶液pH值难以精确控制,故实际pH值与预设pH值存在一定偏差。
    下载: 导出CSV

    表  3  不同工况条件下溶蚀试验成果汇总

    Table  3.   Summary of dissolution experiment results under different working conditions

    试样编号试样岩性试样规格/mm试样质量m/g溶液实际pH值溶蚀速率v/(10−3cm·d−1
    初始溶蚀6 h溶蚀14 h溶蚀24 h初始溶蚀6 h溶蚀14 h溶蚀24 h溶蚀6 h溶蚀14 h溶蚀24 h
    1-1白云质灰岩Φ42×40151.086151.032150.970150.9083.703.843.974.131.05240.96890.8673
    1-2Φ42×40154.035153.993153.962153.9284.504.754.915.160.81850.60970.5213
    1-3Φ42×40153.643153.605153.578153.5475.305.415.686.310.74060.54290.4677
    2-1白云质灰岩Φ42×40150.054150.027150.006149.9855.305.595.715.960.52620.40090.3362
    2-2Φ42×2076.419476.403576.392476.38365.305.825.865.920.46100.33550.2595
    2-3Φ42×1046.676346.656946.648746.64165.305.485.615.750.74400.45360.3327
    3-1灰岩Φ42×40153.422153.348153.336153.3305.305.665.986.401.45940.72690.4536
    3-2Φ42×2085.840885.814485.790085.78605.305.495.756.140.77460.63880.4020
    3-3Φ42×1042.672742.654542.644242.64065.305.335.345.570.70630.77160.3114
    4-1钙质泥岩Φ42×40149.246149.2274149.2198149.21255.305.425.896.330.37730.22780.1699
    4-2Φ42×2070.887270.872870.864770.86035.305.315.605.820.43460.29100.2029
    4-3Φ42×1041.959941.952341.947041.94285.305.285.525.790.30330.22070.1707
    5-1灰岩Φ42×1042.070542.072242.067242.06579.008.908.858.790.06600.05490.0466
    5-2Φ42×1037.426737.424637.422837.42047.007.027.047.020.08150.06490.0611
    5-3Φ42×1042.962642.942342.923942.91655.305.505.705.830.78820.64300.4475
    6-1灰岩Φ42×1042.065742.063142.059842.05557.007.007.007.000.10060.09760.0990
    6-2白云质灰岩Φ42×1045.530445.528745.527245.52597.007.007.007.000.05660.05800.0547
    6-3钙质泥岩Φ42×1036.678336.677136.675936.67397.007.007.007.000.04660.04070.0439
    下载: 导出CSV

    表  4  碳酸盐岩溶蚀程度对比

    Table  4.   Comparison of dissolution degree of carbonate rocks

    岩性 溶蚀介质 试样编号 溶蚀周期/h 试样质量/g 溶蚀量/g 溶蚀率/‰ 溶蚀程度排序
    白云质灰岩 PH=5.30 乙酸溶液 BH-1 312 1.0579 0.0104 9.8308 1
    BH-2 24 1.2795 0.0015 1.1723 15
    BH-3 72 1.4047 0.0032 2.2781 10
    BH-4 14 1.4055 0.0024 1.7076 11
    BH-5 14 1.5674 0.0014 0.8932 19
    BH-6 120 1.1915 0.0067 5.6232 7
    BH-7 24 1.3426 0.0013 0.9683 18
    BH-8 6 1.1627 0.0016 1.3761 12
    BH-9 312 1.4557 0.0123 8.4495 2
    BH-10 6 1.0568 0.0012 1.1355 16
    BH-11 192 1.0602 0.0073 6.8855 5
    灰岩 PH=5.30 乙酸溶液 H-1 192 0.9194 0.0051 5.5471 8
    H-2 120 1.5664 0.0057 3.6389 9
    H-3 312 0.9910 0.0067 6.7608 6
    H-4 6 1.3798 0.0008 0.5798 22
    H-5 6 0.9798 0.0008 0.8165 20
    H-6 14 1.2719 0.0008 0.6290 21
    H-7 312 1.2467 0.0086 6.8982 4
    H-8 312 0.9080 0.007 7.7092 3
    H-9 72 1.1071 0.0013 1.1742 14
    H-10 24 1.1787 0.0012 1.0181 17
    H-11 24 0.8731 0.0012 1.3744 13
    H-12 14 1.0593 0.0006 0.5664 23
    下载: 导出CSV
  • [1] 金新锋. 宜万铁路沿线岩溶发育规律及其对隧道工程的影响[D]. 中国地质科学院, 2007.

    JIN Xinfeng. Regularity of karst development along the Yichang-Wanzhou railway and its influence on tunnel construction[D]. Chinese Academy of Geological Sciences, 2007. (in Chinese with English abstract)
    [2] 罗平, 张静, 刘伟, 等. 中国海相碳酸盐岩油气储层基本特征[J]. 地学前缘,2008,15(1):36 − 50. [LUO Ping, ZHANG Jing, LIU Wei, et al. Characteristics of marine carbonate hydrocarbon reservoirs in China[J]. Earth Science Frontiers,2008,15(1):36 − 50. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2008.01.004
    [3] 佘敏, 寿建峰, 沈安江, 等. 从表生到深埋藏环境下有机酸对碳酸盐岩溶蚀的试验模拟[J]. 地球化学,2014,43(3):276 − 286. [SHE Min, SHOU Jianfeng, SHEN Anjiang et al. Experimental simulation of dissolution for carbonate rocks in organic acid under the conditions from epigensis to deep burial environments[J]. Geochimica,2014,43(3):276 − 286. (in Chinese with English abstract)
    [4] 张正红, 乔占峰, 潘文庆, 等. 碳酸盐岩礁滩储层的形成和发育规律—溶蚀模拟试验[J]. 海相油气地质,2017,22(3):57 − 66. [ZHANG Zhenghong, QIAO Zhanfeng, PAN Wenqing et al. Formation and development of reef-shoal reservoir: Extending knowledge from the dissolution experiment[J]. Marine Origin Petroleum Geology,2017,22(3):57 − 66. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-9854.2017.03.007
    [5] 李苍松, 吴丰收, 赵岩杰, 等. 基于溶蚀试验的微观岩溶形态分形特征和水化学动力学特征研究[J]. 现代隧道技术,2018,55(2):110 − 120. [LI Cangsong, WU Fengshou, ZHAO Yanjie, et al. Fractal and hydro-chemical characteristics of microscopic karst morphology based on dissolution experiments[J]. Modern Tunnelling Technology,2018,55(2):110 − 120. (in Chinese with English abstract)
    [6] 聂跃平. 黔南地区碳酸盐岩的溶蚀试验初探[J]. 中国岩溶,1984(1):41 − 47. [NIE Yueping. A preliminary study and test on the dissolution of carbonate rocks in south Guizhou Province[J]. Carsologica Sinica,1984(1):41 − 47. (in Chinese with English abstract)
    [7] 韩宝平. 雾迷山喀斯特微观机理的研究[J]. 中国矿业学院学报,1986(4):80 − 84. [HAN Baoping. Study on micro-corrosion mechanism of sinian system Wuminshan formation[J]. Journal of China University of Mining & Technology,1986(4):80 − 84. (in Chinese with English abstract)
    [8] 刘琦, 卢耀如, 张凤娥, 等. 动水压力作用下碳酸盐岩溶蚀作用模拟试验研究[J]. 岩土力学,2010,31(增刊1):96 − 101. [LIU Qi, LU Yaoru, ZHANG Fenge, et al. Study of simulation experiment for carbonate rocks dissolution under hydrodynamic pressure[J]. Rock and Soil Mechanics,2010,31(Sup1):96 − 101. (in Chinese with English abstract)
    [9] 张良喜, 赵其华, 胡相波, 等. 某地区白云岩室内溶蚀试验及微观溶蚀机理研究[J]. 工程地质学报,2012,20(4):576 − 584. [ZHANG Liangxi, ZHAO Qihua, HU Xiangbo, et al. Laboratory dissolution test on dolomite and its micro-dissolution mechanism[J]. Journal of Engineering Geology,2012,20(4):576 − 584. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2012.04.014
    [10] 佘敏, 寿建峰, 贺训云, 等. 碳酸盐岩溶蚀机制的试验探讨: 表面溶蚀与内部溶蚀对比[J]. 海相油气地质,2013,18(3):55 − 61. [SHE Min, SHOU Jianfeng, HE Xunyun, et al. Experiment of dissolution mechanism of carbonate rocks: surface dissolution and internal dissolution[J]. Marine Origin Petroleum Geology,2013,18(3):55 − 61. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-9854.2013.03.007
    [11] 佘敏, 寿建峰, 沈安江, 等. 埋藏有机酸性流体对白云岩储层溶蚀作用的模拟试验[J]. 中国石油大学学报(自然科学版),2014,38(3):10 − 17. [SHE Min, SHOU Jianfeng, SHEN Anjiang, et al. Experimental simulation of dissolution and alteration of buried organic acid fluid on dolomite reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science),2014,38(3):10 − 17. (in Chinese with English abstract)
    [12] 朱文慧, 曲希玉, 邱隆伟, 等. 盐酸及乙酸介质中的碳酸盐岩溶蚀表面特征及机理—以南堡凹陷为例[J]. 矿物岩石地球化学通报,2015,34(3):619 − 625. [ZHU Wenhui, QU Xiyu, QIU Longwei, et al. Characteristics and erosion mechanism of carbonate in acetic acid and hydrochloride solutions: An example from the Nanpu depression[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2015,34(3):619 − 625. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-2802.2015.03.018
    [13] 田雯. 桩海地区下古生界碳酸盐岩表生条件下溶蚀过程模拟试验[J]. 矿物学报,2019,39(1):108 − 116. [TIAN Wen. Experimental simulation of dissolution process of the Lower Paleozoic carbonate rocks in Zhuanghai Area under supergene conditions[J]. Acta Mineralogica Sinica,2019,39(1):108 − 116. (in Chinese with English abstract)
    [14] 翁金桃. 方解石和白云石的差异溶蚀作用[J]. 中国岩溶,1984,3(1):29 − 38. [WENG Jintao. The different corrosion of calcites and dolomites[J]. Carsologica Sinica,1984,3(1):29 − 38. (in Chinese with English abstract)
    [15] 杨俊杰, 黄思静, 张文正, 等. 表生和埋藏成岩作用的温压条件下不同组成碳酸盐岩溶蚀成岩过程的试验模拟[J]. 沉积学报,1995,13(4):49 − 54. [YANG Junjie, HUANG Sijing, ZHANG Wernzheng, et al. Experimental simulation of dissolution for carbonate with different composition under the conditions from epigenesist to burial diagenesis environment[J]. Acta Sedimentologica Sinica,1995,13(4):49 − 54. (in Chinese with English abstract)
    [16] 王炜, 黄康俊, 鲍征宇, 等. 不同类型鲕粒灰岩储集层溶解动力学特征[J]. 石油勘探与开发,2011,38(4):495 − 502. [WANG Wei, HUANG Kangjun, BAO Zhengyu, et al. Dissolution kinetics of different types of oolitic limestones in northeastern Sichuan Basin[J]. Petroleum Exploration and Development,2011,38(4):495 − 502. (in Chinese with English abstract)
    [17] 邹成杰. 水利水电岩溶工程地质[M]. 北京: 水利电力出版社, 1994.

    ZOU Chengjie. Karst engineering geology of water conservancy and hydropower[M]. Beijing: Water Resources and Electric Power Press, 1994. (in Chinese)
    [18] BAI Y E, LIU Q, GU Z F, et al. The dissolution mechanism and karst development of carbonate rocks in karst rocky desertification area of Zhenfeng Guanling Huajiang County, Guizhou, China[J]. Carbonates and Evaporites,2019,34(1):45 − 51. doi: 10.1007/s13146-017-0386-x
    [19] 韩宝平. 喀斯特微观溶蚀机理研究[J]. 中国岩溶,1993(2):4 − 9. [HAN Baoping. Extraction and analysis of generalized karst geological information in global changes[J]. Carsologica Sinica,1993(2):4 − 9. (in Chinese with English abstract)
    [20] 何婷, 张覃. 磷矿石中白云石晶体化学特性研究[J]. 矿冶工程,2012,32(5):41 − 43. [ZHANG Ting, ZHANG Tan. Study on crystal chemistry characteristics of dolomite in phosphate ores[J]. Mining and Metallurgical Engineering,2012,32(5):41 − 43. (in Chinese with English abstract)
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  18
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 修回日期:  2020-11-10
  • 网络出版日期:  2021-10-11
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回