• 中国科技核心期刊
  • 《中国科学引用文数据库》来源期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MSBAS技术的金沙江上游色拉滑坡形变分析

熊国华 杨成生 朱赛楠 董继红 张勤

熊国华, 杨成生, 朱赛楠, 董继红, 张勤. 基于MSBAS技术的金沙江上游色拉滑坡形变分析[J]. 中国地质灾害与防治学报, 2021, 32(5): 1-9. doi: 10.16031/j.cnki.issn.1003-8035.2021.05-01
引用本文: 熊国华, 杨成生, 朱赛楠, 董继红, 张勤. 基于MSBAS技术的金沙江上游色拉滑坡形变分析[J]. 中国地质灾害与防治学报, 2021, 32(5): 1-9. doi: 10.16031/j.cnki.issn.1003-8035.2021.05-01
Guohua XIONG, Chengsheng YANG, Sainan ZHU, Jihong DONG, Qin ZHANG. Deformation analysis of Sela landslide in the upper reaches of Jinsha River based on MSBAS technology[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 1-9. doi: 10.16031/j.cnki.issn.1003-8035.2021.05-01
Citation: Guohua XIONG, Chengsheng YANG, Sainan ZHU, Jihong DONG, Qin ZHANG. Deformation analysis of Sela landslide in the upper reaches of Jinsha River based on MSBAS technology[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 1-9. doi: 10.16031/j.cnki.issn.1003-8035.2021.05-01

基于MSBAS技术的金沙江上游色拉滑坡形变分析

doi: 10.16031/j.cnki.issn.1003-8035.2021.05-01
基金项目: 中国地质调查局地质调查项目(DD20190637);国家自然科学基金项目(41731066);国家重点研发计划项目(2018YFC1504805)
详细信息
    作者简介:

    熊国华(1996-),女,山西大同人,测绘科学与技术专业,硕士研究生,主要从事InSAR技术在地质灾害应用方面的研究。E-mail:1936685416@qq.com

    通讯作者:

    杨成生(1982-),男,河南新乡人,测绘科学与技术专业,博士,教授,主要从事InSAR技术理论及高精度地质灾害调查与监测方面的研究。E-mail:ycsgps@163.com

  • 中图分类号: P642.22

Deformation analysis of Sela landslide in the upper reaches of Jinsha River based on MSBAS technology

  • 摘要: 金沙江缝合带是滑坡灾害的高发区,且具有较大的堵江威胁。以堵江风险较高的色拉滑坡为研究对象,选取高时间分辨率的升降轨Sentinel-1A/B数据,利用MSBAS InSAR技术对该滑坡展开地表形变监测研究。文章在利用不同轨道的Sentinel-1A/B获取色拉滑坡2018—2020年间的二维动态形变时间序列的基础上,分析了典型特征点形变时间序列特征。结果表明,在2018年1月—2020年4月色拉滑坡东西向累积形变最高达到165 mm,垂直向累积形变达−102 mm,滑坡体形变加速的时间点被成功地捕获。最后,分析了该滑坡的形变趋势,通过现场调查结果验证了所获得滑坡监测结果的准确性。
  • 图  1  研究区数据覆盖范围示意图

    Figure  1.  Schematic image coverage of the study area

    图  2  MSBAS-2D处理流程(虚线框为可选步骤)

    Figure  2.  MSBAS-2D processing flow (dotted lines are optional steps)

    图  3  色拉滑坡2018年1月—2020年4月视线向形变速率图

    Figure  3.  Line of sight deformation rate map of Sela landslide from January 2018 to April 2020

    图  4  色拉滑坡2018年1月—2020年4月二维形变速率

    Figure  4.  Two dimensional deformation rate of Sela landslide from January 2018 to April 2020

    图  5  色拉滑坡特征点二维累积形变时间序列

    Figure  5.  Two dimensional cumulative deformation time series of characteristic points of Sela landslide

    图  6  P3点InSAR时序累计形变与降雨

    Figure  6.  InSAR deformation and rainfall sequence response

    图  7  2018年1月—2020年4月期间色拉滑坡东西向与垂直向变形体

    Figure  7.  East West and vertical deformations of Sela landslide from January 2018 to April 2020

    图  8  色拉滑坡现场照片

    Figure  8.  Scene photos of Sela landslide

    表  1  研究区SAR数据集主要参数

    Table  1.   Main parameters of the SAR data sets used in this study

    轨道方向升轨降轨
    轨道号9933
    入射角33.8°39.3°
    方位角−10.4°−170.0°
    成像模式IW宽幅模式IW宽幅模式
    极化方式VVVV
    影像数量6664
    影像时间间隔ΔT1212
    影像时间范围2018年1月—2020年4月2018年1月—2020年4月
    下载: 导出CSV

    表  2  形变参考区内的形变速率标准差

    Table  2.   Standard deviation of deformation rate in deformation reference area /(mm·a−1)

    SAR数据平均值标准差
    东西向−0.4892.115
    垂直向 1.4991.574
    下载: 导出CSV
  • [1] 柴贺军, 刘汉超, 张倬元. 中国滑坡堵江事件目录[J]. 地质灾害与环境保护,1995,6(4):1 − 9. [CHAI Hejun, LIU Hanchao, ZHANG Zhuoyuan. The catalog of Chinese landslide dam events[J]. Journal of Geological Hazards and Enveronment Preservation,1995,6(4):1 − 9. (in Chinese with English abstract)
    [2] 刘威, 何思明. 金沙江沃达潜在滑坡诱发灾害链成灾过程数值模拟[J]. 工程科学与技术,2020,52(2):38 − 46. [LIU Wei, HE Siming. Numerical simulation of the evolution process of disaster chain induced by potential landslide in woda of Jinsha River basin[J]. Advanced Engineering Sciences,2020,52(2):38 − 46. (in Chinese with English abstract)
    [3] 吴瑞安, 马海善, 张俊才, 等. 金沙江上游沃达滑坡发育特征与堵江危险性分析[J/OL]. 水文地质工程地质, 2021: 1-9[2021-09-09]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SWDG20210619005&uniplatform=NZKPT&v=7FH75KqLtHX01AvljoGHV%25mmd2Bq1GXUphpQf3yIGvTP0S10jYDe69KSjw7lnV4dlZsxC.

    WU Ruian, MA Haishan, ZHANG Juncai, et al. Developmental characteristics and damming river risk of Woda landslide in the upper reaches of the Jinsha River [J]. Hydrogeology & Engineering Geology, 2021: 1-9[2021-09-09]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SWDG20210619005&uniplatform=NZKPT&v=7FH75KqLtHX01AvljoGHV%25mmd2Bq1GXUphpQf3yIGvTP0S10jYDe69KSjw7lnV4dlZsxC (in Chinese with English abstract)
    [4] 柴贺军, 刘汉超, 张倬元. 中国堵江滑坡发育分布特征[J]. 山地学报,2000,18(增刊1):51 − 54. [CHAI Hejun, LIU Hanchao, ZHANG Zhuoyuan. The temporal-soatial distribution of damming landslides in China[J]. Journal of Mountain Research,2000,18(Sup1):51 − 54. (in Chinese with English abstract)
    [5] 许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报,2017,36(11):2612 − 2628. [XU Qiang, LI Weile, DONG Xiujun, et al. Preliminary study on characteristics and genetic mechanism of landslide in Xinmo Village, Diexi Town, Maoxian County, Sichuan Province[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(11):2612 − 2628. (in Chinese with English abstract)
    [6] 刘传正, 吕杰堂, 童立强, 等. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质,2019,46(2):219 − 234. [LIU Chuanzheng, LYU Jietang, TONG Liqiang, et al. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet[J]. Geology in China,2019,46(2):219 − 234. (in Chinese with English abstract)
    [7] 王群, 张蕴灵, 范景辉, 等. 基于PS-InSAR和offset tracking技术的金沙江白格滑坡形变监测[J]. 大地测量与地球动力学,2020,40(4):340 − 345. [WANG Qun, ZHANG Yunling, FAN Jinghui, et al. Deformation monitoring of the Baige landslide in the Jinsha River using PS-InSAR and offset tracking techniques[J]. Journal of Geodesy and Geodynamics,2020,40(4):340 − 345. (in Chinese with English abstract)
    [8] 朱赛楠, 殷跃平, 王猛, 等. 金沙江结合带高位远程滑坡失稳机理及减灾对策研究: 以金沙江色拉滑坡为例[J]. 岩土工程学报,2021,43(4):688 − 697. [ZHU Sainan, YIN Yueping, WANG Meng, et al. Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone: Case study of Sela landslide in Jinsha River, Tibet[J]. Chinese Journal of Geotechnical Engineering,2021,43(4):688 − 697. (in Chinese with English abstract)
    [9] 严容. 岷江上游崩滑堵江次生灾害及环境效应研究[D]. 成都: 四川大学, 2006.

    YAN Rong. Secondary disaster and environmental effect of landslided and collapsed dams in the upper reaches of Minjiang River[D]. Chengdu: Sichuan University, 2006. (in Chinese with English abstract)
    [10] NECULA N, NICULIȚĂ M, FLORIS M, et al. InSAR analysis of Sentinel-1 data for monitoring landslide displacement of the north-easternCopou hillslope, Iaşi city, Romania[C]//Proceedings of the 33rd Romanian Geomorphology Symposium. May 11-14, 2017. Iași, Romania. Iași: Alexandru Ioan Cuza University of Iași Press, 2017: 11-14.
    [11] KISELEVA Е, MIKHAILOV V, SMOLYANINOVA E, et al. PS-InSAR monitoring of landslide activity in the black sea coast of the caucasus[J]. Procedia Technology,2014,16:404 − 413. doi: 10.1016/j.protcy.2014.10.106
    [12] COLESANTI C, WASOWSKI J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry[J]. Engineering Geology,2006,88(3/4):173 − 199.
    [13] 赵富萌, 张毅, 孟兴民, 等. 基于小基线集雷达干涉测量的中巴公路盖孜河谷地质灾害早期识别[J]. 水文地质工程地质,2020,47(1):142 − 152. [ZHAO Fumeng, ZHANG Yi, MENG Xingmin, et al. Early identification of geological hazards in the Gaizi valley near the Karakoran highway based on SBAS-InSAR technology[J]. Hydrogeology & Engineering Geology,2020,47(1):142 − 152. (in Chinese with English abstract)
    [14] 李壮, 李滨, 高杨, 等. 雅鲁藏布江下游色东普沟高位地质灾害发育特征遥感解译[J]. 中国地质灾害与防治学报,2021,32(3):33 − 41. [LI Zhuang, LI Bin, GAO Yang, et al. Remote sensing interpretation of development characteristics of high-position geological hazards in Sedongpu gully, downstream of Yarlung Zangbo River[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):33 − 41. (in Chinese with English abstract)
    [15] 张成龙, 李振洪, 余琛, 等. 滑坡探测 : GACOS辅助下InSAR Stacking在金沙江流域的应用[J/OL].武汉大学学报(信息科学版): 1−16. https://doi.org/10.13203/j.whugis20200675.

    ZHANG Chenglong, LI Zhenhong, YU Chen, et al. Landslide detection: application of InSAR Stacking assisted by GACOS in Jinsha River Basin [J/OL]. Journal of Wuhan University (Information Science Edition): 1−16. https://doi.org/10.13203/j.whugis20200675. (in Chinese with English abstract)
    [16] 康亚. InSAR技术在西南山区滑坡探测与监测的应用[D]. 西安: 长安大学, 2016.

    KANG Ya. Landslide detection and monitoring over southwestern mountainous area with InSAR[D]. Xi'an: Chang'an University, 2016. (in Chinese with English abstract)
    [17] 高杨, 李滨, 高浩源, 等. 高位远程滑坡冲击铲刮效应研究进展及问题[J]. 地质力学学报,2020,26(4):510 − 519. [GAO Yang, LI Bin, GAO Haoyuan, et al. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslid[J]. Journal of Geomechanics,2020,26(4):510 − 519. (in Chinese with English abstract)
    [18] 李滨, 张青, 王文沛, 等. 金沙江乌东德水电站坝区高陡边坡地质灾害监测预警研究[J]. 地质力学学报,2020,26(4):556 − 564. [LI Bin, ZHANG Qing, WANG Wenpei, et al. Geohazard monitoring and risk management of high-steep slope in the Wudongde dam area[J]. Journal of Geomechanics,2020,26(4):556 − 564. (in Chinese with English abstract)
    [19] 张文馨. InSAR技术在南屯矿区地面形变监测中的应用研究[D]. 徐州: 中国矿业大学, 2018.

    ZHANG Wenxin. Application of InSAR technology in surface deformation monitoring in nantun mining area[D]. Xuzhou: China University of Mining and Technology, 2018. (in Chinese with English abstract)
    [20] 樊晓一, 张睿骁, 胡晓波. 沟谷地形参数对滑坡运动距离的影响研究[J]. 地质力学学报,2020,26(1):106 − 114. [FAN Xiaoyi, ZHANG Ruixiao, HU Xiaobo. Study on the influence of valley topographic parameter on the moving distance of landslide[J]. Journal of Geomechanics,2020,26(1):106 − 114. (in Chinese with English abstract)
    [21] 苏永华, 蹇宜霖, 张航. 基于滑带软化的滑坡渐进破坏机制分析[J]. 公路工程,2019,44(1):32 − 37. [SHU Yonghua, JIAN Yilin, ZHANG Hang. Analysis of landslide progressive failure mechanism based on sliding zone softening[J]. Highway Engineering,2019,44(1):32 − 37. (in Chinese with English abstract)
    [22] 张洋, 汪云甲, 闫世勇. 基于Stacking InSAR技术的沛北矿区沉降监测[J]. 煤炭技术,2016,35(7):102 − 105. [ZHANG Yang, WANG Yunjia, YAN Shiyong. Ground subsidence detection of Peibei mining area based on stacking InSAR technology[J]. Coal Technology,2016,35(7):102 − 105. (in Chinese with English abstract)
    [23] DAI K R, LIU G X, LI Z H, et al. Monitoring highway stability in permafrost regions with X-band temporary scatterers stacking InSAR[J]. Sensors,2018,18(6):1876. doi: 10.3390/s18061876
    [24] SAMSONOV S, D’OREYE N, SMETS B. Ground deformation associated with post-mining activity at the French-German border revealed by novel InSAR time series method[J]. International Journal of Applied Earth Observation and Geoinformation,2013,23:142 − 154. doi: 10.1016/j.jag.2012.12.008
    [25] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报,2018,26(6):1534 − 1551. [XU Qiang, ZHENG Guang, LI Weile, et al. Study on successive landslide damming events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology,2018,26(6):1534 − 1551. (in Chinese with English abstract)
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  4
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 修回日期:  2021-08-10
  • 网络出版日期:  2021-10-14
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回