• The key magazine of China technology
  • Chinese Science Citation Database
  • Caj-cd Standard Award winning journals
Wechat
Volume 32 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Wenjuan LI, Hai SHAO. 2021: Landslide susceptibility assessment based on multi-scale segmentation of remote sensing and geological factor evaluation. The Chinese Journal of Geological Hazard and Control, 32(2): 94-99. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.13
Citation: Wenjuan LI, Hai SHAO. 2021: Landslide susceptibility assessment based on multi-scale segmentation of remote sensing and geological factor evaluation. The Chinese Journal of Geological Hazard and Control, 32(2): 94-99. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.13

Landslide susceptibility assessment based on multi-scale segmentation of remote sensing and geological factor evaluation

doi: 10.16031/j.cnki.issn.1003-8035.2021.02.13
  • Received Date: 2020-05-04
  • Rev Recd Date: 2020-05-21
  • Publish Date: 2021-04-27
  • The prediction and prevention of landslide is an important issue, and the study of regional landslide susceptibility is one of the core of landslide spatial prediction. Based on the multi-scale segmentation and object-oriented classification theory, four parameters including entropy, energy, correlation and contrast of remote sensing image are selected as the texture factor to extract the susceptibility features. the four types of geological factors including the reservoir water impact rating, slope, slope structure and engineering rock group were adopted to analyze the geological background, finally the C5.0 decision tree model was constructed to predict the four types of landslide-prone units in the study area. The results show that the engineering rock group of the high-susceptibility unit usually develops into soft rock group and soft-hard interphase group, and the slope was mostly between 15° to 30° in these units. The average correct rate of training samples and test samples is 91.64%, the Kappa coefficients are 0.84 and 0.51, respectively. Therefore, this kind of landslide susceptibility classification based on image multi-scale segmentation and geological factor rating has certain applicability.
  • loading
  • NEMČOK A, PAŠEK J, RYBÁŘ J. Classification of landslides and other mass movements[J]. Rock Mechanics,1972,4(2):71 − 78. doi: 10.1007/BF01239137
    王树良, 王新洲, 曾旭平, 等. 滑坡监测数据挖掘视角[J]. 武汉大学学报(信息科学版),2004,29(7):608 − 610. [WANG Shuliang, WANG Xinzhou, ZENG Xuping, et al. View angle of landslide-monitoring data mining[J]. Geomatics and Information Science of Wuhan University,2004,29(7):608 − 610. (in Chinese with English abstract)
    牛瑞卿, 彭令, 叶润青, 等. 基于粗糙集的支持向量机滑坡易发性评价[J]. 吉林大学学报(地球科学版),2012,42(2):430 − 439. [NIU Ruiqing, PENG Ling, YE Runqing, et al. Landslide susceptibility assessment based on rough sets and support vector machine[J]. Journal of Jilin University (Earth Science Edition),2012,42(2):430 − 439. (in Chinese with English abstract)
    BALDO M, BICOCCHI C, CHIOCCHINI U, et al. LIDAR monitoring of mass wasting processes: The Radicofani landslide, Province of Siena, Central Italy[J]. Geomorphology,2009,105(3/4):193 − 201.
    DAI F C, LEE C F, NGAI Y Y. Landslide risk assessment and management: an overview[J]. Engineering Geology,2002,64(1):65 − 87. doi: 10.1016/S0013-7952(01)00093-X
    MANTOVANI F, SOETERS R, VAN WESTEN C J. Remote sensing techniques for landslide studies and hazard zonation in Europe[J]. Geomorphology,1996,15(3/4):213 − 225.
    GUZZETTI F, REICHENBACH P, ARDIZZONE F, et al. Estimating the quality of landslide susceptibility models[J]. Geomorphology,2006,81(1/2):166 − 184.
    EECKHAUT M, MARRE A, POESEN J. Comparison of two landslide susceptibility assessments in the Champagne–Ardenne region (France)[J]. Geomorphology,2010,115(1/2):141 − 155.
    NICHOL J E, SHAKER A, WONG M S. Application of high-resolution stereo satellite images to detailed landslide hazard assessment[J]. Geomorphology,2006,76(1/2):68 − 75.
    ZHOU G, ESAKI T, MITANI Y, et al. Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach[J]. Engineering Geology,2003,68(3/4):373 − 386.
    段功豪, 牛瑞卿, 彭令, 等. 诱发因素影响下的滑坡参数优化预测模型研究[J]. 武汉大学学报(信息科学版),2017,42(4):531 − 536. [DUAN Gonghao, NIU Ruiqing, PENG Ling, et al. A landslide displacement prediction research based on optimization-parameter ARIMA model under the inducing factors[J]. Geomatics and Information Science of Wuhan University,2017,42(4):531 − 536. (in Chinese with English abstract)
    FALL M, AZZAM R, NOUBACTEP C. A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping[J]. Engineering Geology,2006,82(4):241 − 263. doi: 10.1016/j.enggeo.2005.11.007
    李明威, 唐川, 陈明, 等. 汶川震区北川县泥石流流域崩滑体时空演变特征[J]. 水文地质工程地质,2020,47(3):182 − 190. [LI Mingwei, TANG Chuan, CHEN Ming, et al. Spatio-temporal evolution characteristics of landslides in debris flow catchment in Beichuan County in the Wenchuan earthquake zone[J]. Hydrogeology & Engineering Geology,2020,47(3):182 − 190. (in Chinese with English abstract)
    文广超, 张哲玮, 肖学军, 等. 基于遥感数据的灾后滑坡信息快速提取方法[J]. 中国地质灾害与防治学报,2020,31(2):80 − 86. [WEN Guangchao, ZHANG Zhewei, XIAO Xuejun, et al. Method for rapid extraction information for post-disaster landslide based on remote sensing images[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):80 − 86. (in Chinese with English abstract)
    丁辉, 张茂省, 朱卫红, 等. 黄土滑坡高分辨率遥感影像识别—以陕西省延安市地区为例[J]. 西北地质,2019,52(3):231 − 239. [DING Hui, ZHANG Maosheng, ZHU Weihong, et al. High resolution remote sensing for the identification of loess landslides: example from Yan'an City[J]. Northwestern Geology,2019,52(3):231 − 239. (in Chinese with English abstract)
    张森, 陈健飞, 龚建周. 面向对象分类的决策树方法探讨—以Landsat-8OLI为例[J]. 测绘科学,2016,41(6):117 − 121. [ZHANG Sen, CHEN Jianfei, GONG Jianzhou. Object-oriented classification based on C5.0 algorithm[J]. Science of Surveying and Mapping,2016,41(6):117 − 121. (in Chinese with English abstract)
    CARLEER A P, WOLFF E. Urban land cover multi-level region-based classification of VHR data by selecting relevant features[J]. International Journal of Remote Sensing,2006,27(6):1035 − 1051. doi: 10.1080/01431160500297956
    谭建民, 常宏, 韩会卿, 等. 清江流域滑坡发育地质环境特征的统计分析[J]. 华南地质与矿产,2018,34(4):315 − 322. [TAN Jianmin, CHANG Hong, HAN Huiqing, et al. Statistical analysis of the geological environment characteristics of landslide development in Qingjiang River Basin[J]. Geology and Mineral Resources of South China,2018,34(4):315 − 322. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-3701.2018.04.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (113) PDF downloads(143) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return