• 中国科技核心期刊
  • 《中国科学引用文数据库》来源期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遥感影像多尺度分割与地质因子评价的滑坡易发性区划

李文娟 邵海

李文娟, 邵海. 2021: 基于遥感影像多尺度分割与地质因子评价的滑坡易发性区划. 中国地质灾害与防治学报, 32(2): 94-99. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.13
引用本文: 李文娟, 邵海. 2021: 基于遥感影像多尺度分割与地质因子评价的滑坡易发性区划. 中国地质灾害与防治学报, 32(2): 94-99. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.13
Wenjuan LI, Hai SHAO. 2021: Landslide susceptibility assessment based on multi-scale segmentation of remote sensing and geological factor evaluation. The Chinese Journal of Geological Hazard and Control, 32(2): 94-99. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.13
Citation: Wenjuan LI, Hai SHAO. 2021: Landslide susceptibility assessment based on multi-scale segmentation of remote sensing and geological factor evaluation. The Chinese Journal of Geological Hazard and Control, 32(2): 94-99. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.13

基于遥感影像多尺度分割与地质因子评价的滑坡易发性区划

doi: 10.16031/j.cnki.issn.1003-8035.2021.02.13
基金项目: 国家级地质环境监测与预报(中地环项[2020] JC01)
详细信息
    作者简介:

    李文娟(1986-),女,河南周口人,硕士,工程师,主要从事遥感地质相关工作。E-mail:liwenjuan305@163.com

  • 中图分类号: P642.22

Landslide susceptibility assessment based on multi-scale segmentation of remote sensing and geological factor evaluation

  • 摘要: 区域滑坡易发性的研究是滑坡空间预测的核心内容之一。从影像多尺度分割和面向对象的分类理论出发,以研究区遥感影像的熵、能量、相关性、对比度共4个参数作为影像纹理因子提取易发性特征,利用滑坡所处区域的库水影响等级、坡度、斜坡结构、工程岩组4类地质因子分析地质背景,搭建C5.0决策树的易发性分类模型,实现了对研究区内4类滑坡易发性单元的预测。结果表明:高易发性单元的工程岩组通常发育为软岩岩组和软硬相间岩组,且坡度在15°~30°之间;模型显示该区域训练样本和测试样本平均正确率达91.64%,Kappa系数分别为0.84,0.51,因此这种基于影像多尺度分割与地质因子分级的滑坡易发性分类研究具有一定的适用性。
  • 图  1  图像多尺度分割原理示意图

    Figure  1.  Multi-scale image segmentation concept

    图  2  三峡库区秭归—巴东段地形地貌影像(三维地貌叠加Landsat-8影像)

    Figure  2.  Topographic image of Zigui-Badong area in Three Gorges Reservior

    图  3  秭归—巴东段面向对象多尺度分割结果

    Figure  3.  Multi-scale texture segmentation results of Zigui-Badong area

    图  4  研究区坡度分布图

    Figure  4.  Slope distribution map

    图  5  滑坡易发性预测区划图

    Figure  5.  Landslide susceptibility prediction mapping

    表  1  秭归—巴东工程岩组分类标准[18]

    Table  1.   The classification standard of engineering rock group (Zigui-Badong)

    大类组别岩性描述
    碳酸盐岩岩类坚硬中至厚层状强岩溶化碳酸盐岩岩组(Ⅰ)灰岩、白云岩、白云质灰岩、灰质白云岩组
    较坚硬中至厚层状强至中等岩溶化碳酸盐岩岩组(Ⅱ)灰岩、泥质灰岩、白云岩为主
    较坚硬薄至中厚层状弱岩溶化碳酸盐岩岩组(Ⅲ)灰岩、白云岩、白云质灰岩为主
    碎屑岩岩类坚硬较坚硬中至厚层状砂岩、泥质粉砂岩夹页岩煤层与泥岩页岩互层岩组(Ⅰ)砂岩、泥质粉砂岩为主,夹泥岩或互层发育
    较坚硬至软质薄层至中厚层状页岩砂岩泥岩岩组(Ⅱ)砂岩、砂质页岩为主
    软质薄层至中厚层状泥质粉砂岩页岩岩组(Ⅲ)泥岩、粉砂岩为主
    碳酸盐岩、碎屑岩互层岩类弱岩溶较坚硬层状泥灰岩、较软弱层状粉砂岩相间岩组灰岩、泥灰岩与粉砂岩、泥质粉砂岩相间
    下载: 导出CSV

    表  2  地质数据评级因子库

    Table  2.   Geological evaluation factors

    评价因子代号分级情况描述
    库水影响等级1弱影响>430 m
    2中级影响320~430 m
    3强影响175~320 m
    4主波动区145~175 m
    工程岩组1多硬质泥盆系、石炭系地层,灰岩为主
    2多软质侏罗系、志留系地层,泥页岩为主
    3软硬相间巴东组、二叠系地层、砂岩为主
    坡度类型1平缓坡<15°
    2缓倾坡15°~30°
    3中倾坡30°~45°
    4陡倾坡>45°
    斜坡结构(坡度θ
    坡向σ、地层倾向α
    倾角βY = |σα|)
    1飘倾坡0°<Y<30°或330°<Y<360°,
    β>10°且θ>β
    2层面坡0°<Y<30°或330°<Y<360°,
    β>10°且θ = β
    3伏倾坡0°<Y<30°或330°<Y<360°,
    β>10°且θ<β
    4顺斜坡30°<Y<60°或300°<Y<330°
    5横向坡60°<Y<120°或240°<Y<300°
    6逆斜坡120°<Y<150°或210°<Y<240°
    7逆向坡150°<Y<180°或180°<Y<210°
    8块状岩体αβ为空
    下载: 导出CSV

    表  3  训练集分类预测结果

    Table  3.   Result of training set classification

    精度评判实际结果与分类结果
    混淆矩阵
    Kappa系数
    正确 479 93.73% 0(非滑坡) 1(滑坡)
    错误 32 6.27% 0(非滑坡) 381 21 0.84
    总计 511 100.00% 1(滑坡) 11 98
    下载: 导出CSV

    表  4  测试集分类预测结果

    Table  4.   Result of testing set classification and prediction

    精度评判实际结果与分类结果
    混淆矩阵
    Kappa系数
    正确 190 86.76% 0(非滑坡) 1(滑坡)
    错误 29 13.24% 0(非滑坡) 128 20 0.51
    总计 219 100.00% 1(滑坡) 9 62
    下载: 导出CSV

    表  5  秭归—巴东段滑坡易发性分区总体结果

    Table  5.   Landslide susceptibility classification prediction (Zigui—Badong)

    预测值预测类别对象个数百分比%
    离散型0稳定区197786.75
    1危险区30213.25
    连续型[0,0.263)不易发区186581.83
    [0.263,0.420)低易发区713.12
    [0. 420,0.571)中易发区672.94
    [0.571,1]高易发区27612.11
    下载: 导出CSV
  • NEMČOK A, PAŠEK J, RYBÁŘ J. Classification of landslides and other mass movements[J]. Rock Mechanics,1972,4(2):71 − 78. doi: 10.1007/BF01239137
    王树良, 王新洲, 曾旭平, 等. 滑坡监测数据挖掘视角[J]. 武汉大学学报(信息科学版),2004,29(7):608 − 610. [WANG Shuliang, WANG Xinzhou, ZENG Xuping, et al. View angle of landslide-monitoring data mining[J]. Geomatics and Information Science of Wuhan University,2004,29(7):608 − 610. (in Chinese with English abstract)
    牛瑞卿, 彭令, 叶润青, 等. 基于粗糙集的支持向量机滑坡易发性评价[J]. 吉林大学学报(地球科学版),2012,42(2):430 − 439. [NIU Ruiqing, PENG Ling, YE Runqing, et al. Landslide susceptibility assessment based on rough sets and support vector machine[J]. Journal of Jilin University (Earth Science Edition),2012,42(2):430 − 439. (in Chinese with English abstract)
    BALDO M, BICOCCHI C, CHIOCCHINI U, et al. LIDAR monitoring of mass wasting processes: The Radicofani landslide, Province of Siena, Central Italy[J]. Geomorphology,2009,105(3/4):193 − 201.
    DAI F C, LEE C F, NGAI Y Y. Landslide risk assessment and management: an overview[J]. Engineering Geology,2002,64(1):65 − 87. doi: 10.1016/S0013-7952(01)00093-X
    MANTOVANI F, SOETERS R, VAN WESTEN C J. Remote sensing techniques for landslide studies and hazard zonation in Europe[J]. Geomorphology,1996,15(3/4):213 − 225.
    GUZZETTI F, REICHENBACH P, ARDIZZONE F, et al. Estimating the quality of landslide susceptibility models[J]. Geomorphology,2006,81(1/2):166 − 184.
    EECKHAUT M, MARRE A, POESEN J. Comparison of two landslide susceptibility assessments in the Champagne–Ardenne region (France)[J]. Geomorphology,2010,115(1/2):141 − 155.
    NICHOL J E, SHAKER A, WONG M S. Application of high-resolution stereo satellite images to detailed landslide hazard assessment[J]. Geomorphology,2006,76(1/2):68 − 75.
    ZHOU G, ESAKI T, MITANI Y, et al. Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach[J]. Engineering Geology,2003,68(3/4):373 − 386.
    段功豪, 牛瑞卿, 彭令, 等. 诱发因素影响下的滑坡参数优化预测模型研究[J]. 武汉大学学报(信息科学版),2017,42(4):531 − 536. [DUAN Gonghao, NIU Ruiqing, PENG Ling, et al. A landslide displacement prediction research based on optimization-parameter ARIMA model under the inducing factors[J]. Geomatics and Information Science of Wuhan University,2017,42(4):531 − 536. (in Chinese with English abstract)
    FALL M, AZZAM R, NOUBACTEP C. A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping[J]. Engineering Geology,2006,82(4):241 − 263. doi: 10.1016/j.enggeo.2005.11.007
    李明威, 唐川, 陈明, 等. 汶川震区北川县泥石流流域崩滑体时空演变特征[J]. 水文地质工程地质,2020,47(3):182 − 190. [LI Mingwei, TANG Chuan, CHEN Ming, et al. Spatio-temporal evolution characteristics of landslides in debris flow catchment in Beichuan County in the Wenchuan earthquake zone[J]. Hydrogeology & Engineering Geology,2020,47(3):182 − 190. (in Chinese with English abstract)
    文广超, 张哲玮, 肖学军, 等. 基于遥感数据的灾后滑坡信息快速提取方法[J]. 中国地质灾害与防治学报,2020,31(2):80 − 86. [WEN Guangchao, ZHANG Zhewei, XIAO Xuejun, et al. Method for rapid extraction information for post-disaster landslide based on remote sensing images[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):80 − 86. (in Chinese with English abstract)
    丁辉, 张茂省, 朱卫红, 等. 黄土滑坡高分辨率遥感影像识别—以陕西省延安市地区为例[J]. 西北地质,2019,52(3):231 − 239. [DING Hui, ZHANG Maosheng, ZHU Weihong, et al. High resolution remote sensing for the identification of loess landslides: example from Yan'an City[J]. Northwestern Geology,2019,52(3):231 − 239. (in Chinese with English abstract)
    张森, 陈健飞, 龚建周. 面向对象分类的决策树方法探讨—以Landsat-8OLI为例[J]. 测绘科学,2016,41(6):117 − 121. [ZHANG Sen, CHEN Jianfei, GONG Jianzhou. Object-oriented classification based on C5.0 algorithm[J]. Science of Surveying and Mapping,2016,41(6):117 − 121. (in Chinese with English abstract)
    CARLEER A P, WOLFF E. Urban land cover multi-level region-based classification of VHR data by selecting relevant features[J]. International Journal of Remote Sensing,2006,27(6):1035 − 1051. doi: 10.1080/01431160500297956
    谭建民, 常宏, 韩会卿, 等. 清江流域滑坡发育地质环境特征的统计分析[J]. 华南地质与矿产,2018,34(4):315 − 322. [TAN Jianmin, CHANG Hong, HAN Huiqing, et al. Statistical analysis of the geological environment characteristics of landslide development in Qingjiang River Basin[J]. Geology and Mineral Resources of South China,2018,34(4):315 − 322. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-3701.2018.04.006
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  63
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-04
  • 修回日期:  2020-05-21
  • 刊出日期:  2021-04-27

目录

    /

    返回文章
    返回