ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
FENG Wenkai, JIA Bangzhong, WU Yiying, et al. Characteristics and mechanism of landslide-debris flow chain disaster in low mountain and hilly terrain[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 35-44. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-05
Citation: FENG Wenkai, JIA Bangzhong, WU Yiying, et al. Characteristics and mechanism of landslide-debris flow chain disaster in low mountain and hilly terrain[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 35-44. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-05

Characteristics and mechanism of landslide-debris flow chain disaster in low mountain and hilly terrain

More Information
  • Received Date: November 21, 2021
  • Revised Date: January 25, 2022
  • Available Online: January 27, 2022
  • From June 10 to 13, 2019, continuous heavy rainfall occurred in Longchuan County, resulting in a large number of landslides and debris flows in the county. Mibei village is one of the three hardest hit areas. Taking the landslide debris flow chain disaster in Mibei village No.6 gully of Beiling town as the research object, this paper studies the characteristics and disaster mechanism of chain disaster on the basis of field fine investigation and measurement, combined with numerical simulation analysis and calculation. It is found that: ①there are 7 soil landslides in the No.6 gully. Only NO.3 landslide mass and part of NO.6 landslide mass are transformed into debris flow, which constitutes the main material source of debris flow, and the other landslides do not constitute a sustainable impact; ②With continuous rainfall infiltration, the slope body changes from unsaturated to saturated state, and a continuous saturated zone is formed on the slope surface. The increase of pore water pressure and the softening of pore water reduce the strength of soil. In addition, the increase of saturated weight of slope body leads to the instability and failure of shallow surface layer of slope; ③The continuous infiltration of rainfall and the surface catchment under the "funnel" terrain of the branch gully source rapidly increase the water content in the loose accumulation of the landslide, promote the change of its physical properties, start and move in a flow state under the gravitational potential energy, and transform it into debris flow. The rainfall structure affects the chain process of landslide debris flow. The landslide is caused by early rainfall and the debris flow is formed by later rainfall. The occurrence of landslide and debris flow shows phased characteristics. The research results are helpful to guide the local government to further carry out the disaster prevention and reduction of landslide debris flow chain disasters, and also provide theoretical support for the future regional early warning research in this area.
  • [1]
    刘艳辉, 温铭生, 苏永超, 等. 台风暴雨型地质灾害时空特征及预警效果分析[J]. 水文地质工程地质,2016,43(5):119 − 126. [LIU Yanhui, WEN Mingsheng, SU Yongchao, et al. Characteristics of geo-hazards induced by typhoon rainstorm and evaluation of geo-hazards early warning[J]. Hydrogeology & Engineering Geology,2016,43(5):119 − 126. (in Chinese with English abstract)
    [2]
    YANG H J, YANG T Q, ZHANG S J, et al. Rainfall-induced landslides and debris flows in Mengdong Town, Yunnan Province, China[J]. Landslides,2020,17(4):931 − 941. DOI: 10.1007/s10346-019-01336-y
    [3]
    BAI H L, FENG W K, YI X Y, et al. Group-occurring landslides and debris flows caused by the continuous heavy rainfall in June 2019 in Mibei Village, Longchuan County, Guangdong Province, China[J]. Natural Hazards,2021,108(3):3181 − 3201. DOI: 10.1007/s11069-021-04819-1
    [4]
    LIU W P, WAN S F, LUO X Y, et al. Experimental study of suffusion characteristics within granite residual soil controlling inflow velocity[J]. Arabian Journal of Geosciences,2020,13(22):1 − 8.
    [5]
    刘礼领, 殷坤龙. 暴雨型滑坡降水入渗机理分析[J]. 岩土力学,2008,29(4):1061 − 1066. [LIU Liling, YIN Kunlong. Analysis of rainfall infiltration mechanism of rainstorm landslide[J]. Rock and Soil Mechanics,2008,29(4):1061 − 1066. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2008.04.039
    [6]
    LIU W P, SONG X Q, HUANG F M, et al. Experimental study on the disintegration of granite residual soil under the combined influence of wetting-drying cycles and acid rain[J]. Geomatics, Natural Hazards and Risk,2019,10(1):1912 − 1927.
    [7]
    安然, 孔令伟, 黎澄生, 等. 炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律[J]. 岩石力学与工程学报,2020,39(9):1902 − 1911. [AN Ran, KONG Lingwei, LI Chengsheng, et al. Strength attenuation and microstructure damage of granite residual soils under hot and rainy weather[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(9):1902 − 1911. (in Chinese with English abstract)
    [8]
    闫金凯, 黄俊宝, 李海龙, 等. 台风暴雨型浅层滑坡失稳机理研究[J]. 地质力学学报,2020,26(4):481 − 491. [YAN Jinkai, HUANG Junbao, LI Hailong, et al. Study on instability mechanism of shallow landslide caused by typhoon and heavy rain[J]. Journal of Geomechanics,2020,26(4):481 − 491. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2020.26.04.041
    [9]
    胡华, 吴轩, 张越. 基于模拟试验的强降雨条件下花岗岩残积土斜坡滑塌破坏机理分析[J]. 中国地质灾害与防治学报,2021,32(5):92 − 97. [HU Hua, WU Xuan, ZHANG Yue. Experimental study on slope collapse characteristics of granite residual soil slope under heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):92 − 97. (in Chinese with English abstract)
    [10]
    龙艳梅, 宋章, 王玉峰, 等. 基于物理模型试验的碎屑流流态化运动特征分析[J]. 水文地质工程地质,2022,49(1):126 − 136. [LONG Yanmei, SONG Zhang, WANG Yufeng, et al. An analysis of flow-like motion of avalanches based on physical modeling experiments[J]. Hydrogeology & Engineering Geology,2022,49(1):126 − 136. (in Chinese with English abstract)
    [11]
    崔鹏, 郭剑. 沟谷灾害链演化模式与风险防控对策[J]. 工程科学与技术,2021,53(3):5 − 18. [CUI Peng, GUO Jian. Evolution models, risk prevention and control countermeasures of the valley disaster chain[J]. Advanced Engineering Sciences,2021,53(3):5 − 18. (in Chinese with English abstract)
    [12]
    简文彬, 黄聪惠, 罗阳华, 等. 降雨入渗下非饱和坡残积土湿润锋运移试验研究[J]. 岩土力学,2020,41(4):1123 − 1133. [JIAN Wenbin, HUANG Conghui, LUO Yanghua, et al. Experimental study on wetting front migration induced by rainfall infiltration in unsaturated eluvial and residual soil[J]. Rock and Soil Mechanics,2020,41(4):1123 − 1133. (in Chinese with English abstract)
    [13]
    郭智辉, 简文彬, 刘青灵, 等. 基于现场原型试验的斜坡降雨入渗分析及入渗模型研究[J]. 岩土力学,2021,42(6):1635 − 1647. [GUO Zhihui, JIAN Wenbin, LIU Qingling, et al. Rainfall infiltration analysis and infiltration model of slope based on in-situ tests[J]. Rock and Soil Mechanics,2021,42(6):1635 − 1647. (in Chinese with English abstract)
    [14]
    方雪晶, 王浩, 龚匡周, 等. 渗流作用下花岗岩类土质路堑边坡稳定性分析[J]. 福州大学学报(自然科学版),2012,40(4):515 − 520. [FANG Xuejing, WANG Hao, GONG Kuangzhou, et al. Analysis on the granitoid soil cut slopes stability under the action of seepage[J]. Journal of Fuzhou University (Natural Science Edition),2012,40(4):515 − 520. (in Chinese with English abstract)
    [15]
    丁少林. 福建省台风降雨型滑坡渗流场规律及流—固耦合分析[D]. 武汉: 中国地质大学, 2016

    DING Shaolin. Seepage characteristics and fluid-solid couple analysis of typhoon precipitation-induced land slide in Fujian Province[D]. Wuhan: China University of Geosciences, 2016. (in Chinese with English abstract)
  • Related Articles

    [1]Fengtao WU, Zhiquan YANG, Guisheng HU, Xiangzhen XIA. Disaster mechanism and evolutionary process of landslide-debris flow in Zhangjiaheba Gully, Jiuzhaigou County[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202408013
    [2]Guanglin HUANG, Xiewen HU, Chuanjie XI, Ruichen ZHOU, Kun HE. Mechanism of the “7•15” debris flow in Baiguoshu gully, Tianquan County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 90-97. DOI: 10.16031/j.cnki.issn.1003-8035.202303011
    [3]Xia LYU, Gang FAN, Darui LIU, Ziyu LIN. Analysis of slope erosion and failure mechanism under rainfall conditions based on field experiments: A case study of the residual slope of landslide and debris flow in Hexiluo gully, Ganluo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 82-89. DOI: 10.16031/j.cnki.issn.1003-8035.202306004
    [4]Zaicheng LAN, Xiewen HU, Xichao CAO, Guanglin HUANG, Jinzhao BAI, Xiao FENG. Disaster mechanism and its deposition area of the Xiaochang gully debris flow in Hanyuan County industrial park[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 61-69. DOI: 10.16031/j.cnki.issn.1003-8035.202303026
    [5]Qiang WEN, Xiewen HU, Bo LIU, Chuanjie XI, Kun HE. Analysis on the mechanism of debris flow in Meilong valley in Danba County on June 17,2020[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 23-30. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-03
    [6]Wei XU, Tao RAN, Kai TIAN. Developing law and disaster modes of geohazards in red bed region of southwestern China: A case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 127-133. DOI: 10.16031/j.cnki.issn.1003-8035.2021.06-15
    [7]Hua HU, Xuan WU, Yue ZHANG. Experimental study on slope collapse characteristics of granite residual soil slope under heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 92-97. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-11
    [8]Yueping YIN, Bin LI, Tiantian ZHANG, Meng WANG, Jiawei WAN, Xiaojie LIU, Yang GAO, Sainan ZHU. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli, India[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 1-8. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-01

Catalog

    Article views (498) PDF downloads (325) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return