ISSN 1003-8035 CN 11-2852/P
    Yueping YIN, Bin LI, Tiantian ZHANG, Meng WANG, Jiawei WAN, Xiaojie LIU, Yang GAO, Sainan ZHU. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli, India[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 1-8. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-01
    Citation: Yueping YIN, Bin LI, Tiantian ZHANG, Meng WANG, Jiawei WAN, Xiaojie LIU, Yang GAO, Sainan ZHU. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli, India[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 1-8. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-01

    The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli, India

    More Information
    • Received Date: May 13, 2021
    • Revised Date: May 27, 2021
    • Available Online: July 01, 2021
    • On 7 Feb 2021, a high-location glacier-rock avalanche and dammed the river, and late caused outburst flooding disaster on the Rich Ganges River in northern Chamoli, India, that destroyed hydropower stations and bridge facilities more than 20 kilometers downstream, and claimed nearly 200 deaths. This paper uses multi-period high-resolution remote sensing images to compare and analyze the characteristics of the landslide source area and accumulation area before and after the high-location ice rock landslide disaster in the Ganges River Basin of Chamoli, India, and preliminarily discuss the movement process of the landslide. The results show that before 2013, the creep displacement of the avalanche landslide was small, and the cracks in the ice and snow cover on the surface were not obvious. From 2013 to 2017, the creep displacement of avalanche landslides increased significantly, and as many as 62 ice cracks of various sizes were visible in the ice and snow cover, with the longest being 513 m. Satellite images on February 5, 2021 showed that these ice cracks had been connected and penetrated, with a maximum width of 15 m, and they were unstable and damaged on February 7. According to the post-sliding remote sensing image, the collapsed landslide was cut from 4 sets of large structural surfaces in different directions, with an area of about 0.32 km2, an average thickness of about 70 m, and a volume of about 23×106 m3. The collapsed landslide body loses stability and disintegrates and moves down the valley with a debris flow at high speed. Due to terrain blocking, some debris particles accumulate in the rapid terrain change zone and form a barrier dam. After the barrier dam body breaks, a mountain torrent disaster is formed.
    • [1]
      DESHMUKH A, OHE N, HASTAK M. Impact of flood damaged critical infrastructure on communities and industries[J]. Built Environment Project and Asset Management,2011,1(2):156 − 175. DOI: 10.1108/20441241111180415
      [2]
      GRUBER S, HAEBERLI W. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change[J]. Journal of Geophysical Research,2007,112:1 − 10.
      [3]
      CHAUHAN S, SHARMA M, ARORAM K. Landslide Susceptibility Zonation Of The Chamoli region, Garhwal Himalayas, using logistic regression model[J]. Landslide,2010,(7):411 − 423. DOI: 10.1007/s10346-010-0202-3
      [4]
      SARAF A K. Cover: IRS-1C-PAN depicts Chamoli earthquake induced landslides in Garhwal Himalayas, India[J]. International Journal of Remote Sensing,2000,21: 2345 − 2352.
      [5]
      SANGEETA B, MAHESHWARI K. Earthquake-Induced Landslide Hazard Assessment of Chamoli, District Uttarakhand Using Relative Frequency Ratio Method[J]. Indian Geotech Journal,2019,49(1):108 − 123. DOI: 10.1007/s40098-018-0334-2
      [6]
      SANGEETA B, MAHESHWARI K, KANUNGO P D. GIS-based pre-and post-earthquake landslie susceptibility zonation with reference to 1999 Chamoli earthquake[J]. J Earth Syst,2020,129(55):1 − 20.
      [7]
      殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质,2000,27(4):8 − 11. [YIN Yueping. Research on the characteristics and disaster mitigation of giant landslides on the Bomi-Yigong Expressway in Tibet[J]. Hydrogeology & Engineering Geology,2000,27(4):8 − 11. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2000.04.003
      [8]
      童立强, 涂杰楠, 裴丽鑫, 等. 雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨[J]. 工程地质学报,2018,26(6):1552 − 1561. [TONG Liqiang, TU Jienan, PEI Lixin, et al. Preliminary discussion on the frequent occurrence of detrital flow events in the Sedongpu watershed of the Karabai Peak of the Yarlung Zangbo River[J]. Journal of Engineering Geology,2018,26(6):1552 − 1561. (in Chinese with English abstract)
      [9]
      殷跃平, 王文沛, 张楠, 等. 强震区高位滑坡远程灾害特征研究—以四川茂县新磨滑坡为例[J]. 中国地质,2017,44(5):827 − 841. [YIN Yueping, WANG Wenpei, ZHANG Nan, et al. Study on the characteristics of remote disasters of high-location landslides in strong earthquake areas:Taking Xinmo landslide in Maoxian County, Sichuan Province as an example[J]. Chinese Geology,2017,44(5):827 − 841. (in Chinese with English abstract) DOI: 10.12029/gc20170501
      [10]
      HEIM A, GANSSER A. Central Himalayas-Geological obsevratons of the Swiss expedition[J]. Science Naturelles,1939,73:1 − 245.
      [11]
      崔军文, 朱红, 武长得, 等. 亚东-格尔木CGT, 青藏高原岩石圈变形及其动力学[M]. 北京: 地质出版社, 1992: 1−164.

      CUI Junwen, ZHU Hong, WU Changde, et al. Yadong-Golmud CGT, Lithospheric deformation and dynamics of the Qinghai-Tibet Plateau[M]. Beijing: Geological Publishing House, 1992: 1−164. (in Chinese)
      [12]
      高杨, 贺凯, 李壮, 等. 西南岩溶山区特大滑坡成灾类型及动力学分析[J]. 水文地质工程地质,2020,47(4):14 − 23. [GAO Yang, HE Kai, LI Zhuang, et al. An analysis of disaster types and dynamics of landslides in the southwest karst mountain areas[J]. Hydrogeology & Engineering Geology,2020,47(4):14 − 23. (in Chinese with English abstract)
      [13]
      李滨, 殷跃平, 高杨, 等. 西南岩溶山区大型崩滑灾害研究的关键问题[J]. 水文地质工程地质,2020,47(4):5 − 13. [LI Bin, YIN Yueping, GAO Yang, et al. Critical issues in rock avalanches in the karst mountain areas of southwest China[J]. Hydrogeology & Engineering Geology,2020,47(4):5 − 13. (in Chinese with English abstract)
      [14]
      许世民, 殷跃平, 邢爱国, 等. 基于地震信号的贵州纳雍崩塌-碎屑流运动特征分析[J]. 中国地质灾害与防治学报,2020,31(2):1 − 8. [XU Shimin, YIN Yueping, XING Aiguo, et al. Characteristic analysis of the Nayong rock avalanche’ skinematics based on seismic signals[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):1 − 8. (in Chinese with English abstract)
      [15]
      戴兴建, 殷跃平, 邢爱国. 易贡滑坡-碎屑流-堰塞坝溃坝链生灾害全过程模拟与动态特征分析[J]. 中国地质灾害与防治学报,2019,30(5):1 − 8. [DAI Xingjian, YIN Yueping, XING Aiguo. Simulation and dynamic analysis of Yigong rockslide debris avalanche dam breaking disaster chain[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):1 − 8. (in Chinese with English abstract)
    • Related Articles

      [1]Xiangli HE, Chong XU, Yuandong HUANG. Status and prospects of Beidou applications in geological disaster management[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202406004
      [2]Weimin HUANG, Quanming CHEN, Jixiang CHEN. Analysis of the “631” geological disaster early warning mode and case studies in Hunan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 74-80. DOI: 10.16031/j.cnki.issn.1003-8035.202312022
      [3]Yun NAN, Shuhua ZHAI, Yan LI, Ying CAO, Shoujing LUO, Yuntao WANG, Xuefei GUO. Analysis on the characteristics of geological disasters and effectiveness of early warning duiring heavy rainfall on “23•7” in Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 66-73. DOI: 10.16031/j.cnki.issn.1003-8035.202312023
      [4]Yueping YIN, Shaohua GAO. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 1-18. DOI: 10.16031/j.cnki.issn.1003-8035.202310006
      [5]Yifang ZHANG, Yang LIU, Pengcheng SU, Fangqiang WEI, Haitao HUANG, Qiao CHEN. Advances in the study of glacier avalanches in Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 132-145. DOI: 10.16031/j.cnki.issn.1003-8035.202110022
      [6]Xichao HUANG, Tianbin YU, Meng WANG, Sainan ZHU, Ban SONG, Wen LIU. Remote sensing dynamic analysis of chain characteristics of long range and high position landslide in Jinsha River junction zone: A case study of Baige landslide[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 40-51. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-05
      [7]Wen LIU, Meng WANG, Sainan ZHU, Tianbin YU, Xichao HUANG, Ban SONG, Yu JIANG, Yujiang SUN. An analysis on chain characteristics of highstand geological disasters in high mountains and extremely high mountains based on optical remote sensing technology:A case study of representative large landslides in upper reach of Jinsha River[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 29-39. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-04
      [8]Jun LI, Hongliang CHU, Bin LI, Yang GAO, Meng WANG, Chaoying ZHAO, Xiaojie LIU. Analysis of development characteristics of high-elevationchain geological hazard in Zelongnong, Nyingchi, Tibet based on high resolution image and InSAR interpretation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 42-50. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-06
      [9]Tiantian ZHANG, Yueping YIN, Bin LI, Kai HE, Meng WANG, Chaoying ZHAO, Xiaojie LIU. Types and development characteristics of high geological disasters in Chalonglongbaqu gully, Bomi , Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 9-16. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-02
      [10]ZHANG Yichen, LANG Qiuling, CHEN Yanan, ZHANG Jiquan, TIAN Shuwen. Provincial geological disaster risk zoning method based on natural disaster risk assessment framework: a case study in Jilin Province[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 104-110. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.13
    • Cited by

      Periodical cited type(4)

      1. 刘阳,王飞永,贺鸣,赵玺. 表水侵蚀地裂缝物理模型试验研究. 工程地质学报. 2024(01): 183-193 .
      2. 刘振华,何付兵,崔玉斌,刘晓勇,王凯,张悦泽,赵艳英. 平谷地裂缝基本特征与成因分析. 科学技术与工程. 2023(04): 1436-1446 .
      3. 孟振江,彭建兵,李超,乔建伟,王飞永,康尘云,赵俊彦,张凡. 耦合型地裂缝活动特征与成因机制模拟研究——以北京宋庄地裂缝为例. 水文地质工程地质. 2023(03): 138-148 .
      4. 王晗,邓亚虹,慕焕东,薛捷. 西安典型地裂缝场地地脉动测试及地震响应特征分析. 中国地质灾害与防治学报. 2022(04): 55-64 . 本站查看

      Other cited types(1)

    Catalog

      Article views (593) PDF downloads (488) Cited by(5)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return