ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
Hongkun HU, Zhushan SHAO. Research on function model of lime-improved high liquid limit soil strength characteristics[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 109-117. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-14
Citation: Hongkun HU, Zhushan SHAO. Research on function model of lime-improved high liquid limit soil strength characteristics[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 109-117. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-14

Research on function model of lime-improved high liquid limit soil strength characteristics

More Information
  • Received Date: June 03, 2020
  • Revised Date: July 29, 2020
  • Available Online: July 01, 2021
  • In view of the large number of high liquid limit soil abandonment problems along the roadbed of the Liyu Expressway in Guangxi, quick lime was used to improve the high-liquid limit soil. the high-liquid limit soil samples with different initial water content and different lime content from the spoil field were used to conduct lateral compression test and fast shear test, and the basic elementary mathematical function model was used to fit different saturation states and different initial water content. The effect of lower lime content on the compression characteristics and shear strength of the specimen is tested. The results show that: (1) The compression coefficient of high liquid limit soil decreases exponentially with the increase of lime content; (2) the cohesion and internal friction angle of the specimens in different saturated states change with the increase of lime content in the form of quadratic function; (3) High liquid limit soil has water sensitivity. The moisture content corresponding to the shear strength is 3%~6% higher than the moisture content corresponding to the maximum dry density of the compaction test; (4) When the initial moisture content is lower than 26.73%, it is recommended that the lime content is not less than 6%, otherwise the lime content of the modified high liquid limit soil is not less than 8%, which can be achieved under the premise of meeting economics and better improvement effect.
  • [1]
    曾庆建, 刘宝臣, 张炳晖, 等. 红黏土崩解特性试验研究[J]. 水文地质工程地质,2018,45(3):93 − 97. [ZENG Qingjian, LIU Baochen, ZHANG Binghui, et al. An experimental study of the disintegration characteristics of red clay[J]. Hydrogeology & Engineering Geology,2018,45(3):93 − 97. (in Chinese with English abstract)
    [2]
    孙德安, 李培, 高游, 等. 红黏土浸水变形特性试验研究[J]. 水文地质工程地质,2015,42(5):74 − 78. [SUN Dean, LI Pei, GAO You, et al. An experimental study of deformation characteristics of lateritic clay due to wetting[J]. Hydrogeology & Engineering Geology,2015,42(5):74 − 78. (in Chinese with English abstract)
    [3]
    李健, 孙德安, 陈波, 等. 浙西饱和红黏土的物理力学特性试验研究[J]. 水文地质工程地质,2017,44(6):51 − 57. [LI Jian, SUN Dean, CHEN Bo, et al. An experimental study of the physical and mechanical behavior of the saturated lateritic clay in western Zhejiang[J]. Hydrogeology & Engineering Geology,2017,44(6):51 − 57. (in Chinese with English abstract)
    [4]
    徐奋强, 洪宝宁, 孟云梅. 高液限土路基掺沙改良路用特性试验[J]. 水利水电科技进展,2014(6):76 − 81. [XU Fenqiang, HONG Baoning, MENG Yunmei. Experimental study on road properties of high liquid limit soil improvement by mixing sand[J]. Advances in Science and Technology of Water Resources,2014(6):76 − 81. (in Chinese with English abstract) DOI: 10.3880/j.issn.1006-7647.2014.06.016
    [5]
    吴帅峰, 蔡红, 魏迎奇, 等. 土石混合料剪切机理及抗剪强度分量特性研究[J]. 岩土工程学报,2019,41(z2):230 − 234. [WU Shuaifeng, CAI Hong, WEI Yingqi, et al. Shear mechanism and shear strength component characteristics of soil-stone mixtures[J]. Chinese Journal of Geotechnical Engineering,2019,41(z2):230 − 234. (in Chinese with English abstract)
    [6]
    阮波, 彭学先, 米娟娟, 等. 聚丙烯纤维加筋红黏土抗剪强度特性试验研究[J]. 铁道科学与工程学报,2017,14(4):705 − 710. [RUAN Bo, PENG Xuexian, MI Juanjuan, et al. Experimental study on shear strength of polypropylene fiber reinforced red clay[J]. Journal of Railway Science and Engineering,2017,14(4):705 − 710. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-7029.2017.04.006
    [7]
    El SHINAWI A. Instability improvement of the subgrade soils by lime addition at Borg El-Arab, Alexandria, Egypt[J]. Journal of African Earth Sciences,2017,130:195 − 201.
    [8]
    AL-RAWAS A A, HAGO A W, AL-SARMI H. Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman[J]. Building & Environment,2005,40(5):681 − 687.
    [9]
    郭爱国, 孔令伟, 胡明鉴, 等. 石灰改性膨胀土施工最佳含水率确定方法探讨[J]. 岩土力学,2007,28(3):517 − 521. [GUO Aiguo, KONG Lingwei, HU Mingjian, et al. On determination of optimum water content of lime-treated expansive soil[J]. Rock and Soil Mechanics,2007,28(3):517 − 521. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2007.03.016
    [10]
    刘顺青, 洪宝宁, 方庆军, 等. 高液限土和红黏土的水敏感性研究[J]. 深圳大学学报(理工版),2013,30(1):78 − 83. [LIU Shunqing, HONG Baoning, FANG Qingjun, et al. Study on the water sensitivity of high liquid limit soil and red clay[J]. Journal of Shenzhen University (Science & Engineering),2013,30(1):78 − 83. (in Chinese with English abstract)
    [11]
    梁伟, 欧孝夺. 南宁高液限土路基石灰改良试验研究[J]. 建筑科学,2008,24(7):57 − 60. [LIANG Wei, OU Xiaoduo. Experimental study on high liquid limit soil roadbed improved with lime in Nanning[J]. Building Science,2008,24(7):57 − 60. (in Chinese with English abstract) DOI: 10.3969/j.issn.1002-8528.2008.07.014
    [12]
    BELL F G. Lime stabilization of clay minerals and soils[J]. Engineering Geology,1996,42(4):223 − 237. DOI: 10.1016/0013-7952(96)00028-2
    [13]
    KHEMISSA M, MAHAMEDI A. Cement and lime mixture stabilization of an expansive overconsolidated clay[J]. Applied Clay Science,2014,95:104 − 110.
    [14]
    SHARMA L K, SIRDESAI N N, SHARMA K M, et al. Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study[J]. Applied Clay Science,2018,152:183 − 195.
    [15]
    PAULA F A, ANDRY R, HARIFIDY R, et al. Shear strength performance of marine sediments stabilized using cement, lime and fly ash[J]. Construction and Building Materials,2018,184:454 − 463. DOI: 10.1016/j.conbuildmat.2018.06.231
    [16]
    刘鑫, 洪宝宁. 高液限土工程特性与路堤填筑方案[J]. 河海大学学报(自然科学版),2011,39(4):436 − 443. [LIU Xin, HONG Baoning. Engineering characteristics and construction schemes of high liquid limit soil in embankment filling[J]. Journal of Hohai University (Natural Sciences),2011,39(4):436 − 443. (in Chinese with English abstract)
    [17]
    何群, 冷伍明, 魏丽敏. 软土抗剪强度与固结度关系的试验研究[J]. 铁道科学与工程学报,2005,2(2):51 − 55. [HE Qun, LENG Wuming, WEI Limin. Experimental study on relationship between soft soil’s shear strength and degree of consolidation[J]. Journal of Railway Science and Engineering,2005,2(2):51 − 55. (in Chinese with English abstract)
    [18]
    闫小庆, 周翠英, 房营光, 等. 荷载作用下软土压缩模量与孔隙结构关系研究[J]. 中山大学学报(自然科学版),2018,57(5):57 − 63. [YAN Xiaoqing, ZHOU Cuiying, FANG Yingguang, et al. Research on relationship between compression modulus of soft soil under loading and its pore structure[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2018,57(5):57 − 63. (in Chinese with English abstract)
    [19]
    谢里阳, 刘建中. 样本信息聚集原理与P-S-N曲线拟合方法[J]. 机械工程学报,2013,49(15):96 − 104. [XIE Liyang, LIU Jianzhong. Principle of sample polymerization and method of P-S-N curve fitting[J]. Journal of Mechanical Engineering,2013,49(15):96 − 104. (in Chinese with English abstract) DOI: 10.3901/JME.2013.15.096
    [20]
    陈开圣. 干湿循环下红黏土裂隙演化规律及对抗剪强度影响[J]. 水文地质工程地质,2018,45(1):89 − 95. [CHEN Kaisheng. Fracture evolution and shear strength of red clay under dry wet cycles[J]. Hydrogeology & Engineering Geology,2018,45(1):89 − 95. (in Chinese with English abstract)
    [21]
    张祖莲, 梁谏杰, 黄英, 等. 干湿循环作用下红土抗剪强度与微结构关系研究[J]. 水文地质工程地质,2018,45(3):78 − 85. [ZHANG Zulian, LIANG Jianjie, HUANG Ying, et al. A study of the relationship between shear strength and microstructure of laterite under drying and wetting cycles[J]. Hydrogeology & Engineering Geology,2018,45(3):78 − 85. (in Chinese with English abstract)
    [22]
    王林峰, 田耘, 曾表, 等. 高液限红黏土的压实特性与路基填筑方案[J]. 材料导报,2019,33(10):1666 − 1670. [WANG Linfeng, TIAN Yun, ZENG Biao, et al. Compaction characteristics of high liquid limit red clay and subgrade filling scheme[J]. Materials Review,2019,33(10):1666 − 1670. (in Chinese with English abstract) DOI: 10.11896/cldb.19020036
    [23]
    张燕清, 吴立坚, 宋常军. 高液限土的最大CBR强度与试验方法[J]. 公路交通科技,2016,33(10):53 − 59. [ZHANG Yanqing, WU Lijian, SONG Changjun. Maximum CBR strength of high liquid limit soil and test method[J]. Journal of Highway and Transportation Research and Development,2016,33(10):53 − 59. (in Chinese with English abstract) DOI: 10.3969/j.issn.1002-0268.2016.10.009
  • Related Articles

    [1]Wuwei MAO, Long PAN, Chenrui FENG, Xu MOU, Yinbing CUI, Zhen GUO, Yu HUANG. Experimental study on long-distance shear characteristics of fully weathered granite residual soil[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(2): 96-106. DOI: 10.16031/j.cnki.issn.1003-8035.202412048
    [2]Weixiong ZHANG, Xiaohui YANG, Baoyan DING, Wenjie ZHU, Yongzhong REN. Analysis of shear characteristics and strength parameters in Jiangdingya landslide, Zhouqu County[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(1): 65-72. DOI: 10.16031/j.cnki.issn.1003-8035.202305040
    [3]Jiahao YANG, Shiguo XIAO, Yuan XUE, Zhengdao FU. Model tests on movement characteristics of debris flows on slope faces[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202410011
    [4]Haotian ZHANG, Xingang WANG, Li LUO, Youlin WANG, Qianyi GUO, Chen XUE. Changing law of shear strength of typical gravel soil in Qinba Mountain area and its application in the analysis of landslide mechanism in accumulation layers[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(5): 50-58. DOI: 10.16031/j.cnki.issn.1003-8035.202306038
    [5]Taorui ZENG, Linfeng WANG, Yu ZHANG, Ping CHENG, Fan WU. Landslide susceptibility modeling and interpretability based on CatBoost-SHAP model[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 37-50. DOI: 10.16031/j.cnki.issn.1003-8035.202309035
    [6]Jinpeng LI, Lei WANG, Jun WANG, Yang CHEN, Yongfu XU. Stability analysis of expansive soil slopes considering shear strength decay characteristics[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 29-36. DOI: 10.16031/j.cnki.issn.1003-8035.202109028
    [7]Bin SUN, Chuanbing ZHU, Xiaobo KANG, Lei YE, Yi LIU. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 119-127. DOI: 10.16031/j.cnki.issn.1003-8035.202204003
    [8]Youyi ZHANG, Yunjun WANG, Yadong YUAN. Dynamic reserves of evaluation model for materials source in the channel based on fractal theory and model test[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 40-49. DOI: 10.16031/j.cnki.issn.1003-8035.202202006
    [9]Xiaohui XIONG, Changlin WANG, Yongjian BAI, Yongbo TIE, Yanchao GAO, Guanghui LI. Comparison of landslide susceptibility assessment based on multiple hybrid models at county level: A case study for Puge County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 114-124. DOI: 10.16031/j.cnki.issn.1003-8035.202202052
    [10]HE Xiaohei. An improved Pearl model for landslide forecast and its application[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 91-95. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.11
  • Cited by

    Periodical cited type(4)

    1. 王刚. 基于石灰改良高液限土作路基填料的试验分析. 交通世界. 2024(07): 22-24 .
    2. 崔光耀,韩驰,王明胜,徐志刚. 老路扩建高液限土路基改良方案优选. 太原学院学报(自然科学版). 2024(02): 1-5 .
    3. 李浩然,邓韬,许建凯,邹永辉,宋常军. 重塑高液限土的水敏感性研究. 大连交通大学学报. 2023(02): 82-85 .
    4. 赵玉冕. 高液限土性能改良及路基分层填筑施工技术. 交通世界. 2022(34): 92-94 .

    Other cited types(4)

Catalog

    Article views (243) PDF downloads (631) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return