ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
Fuzhen LIU, Ling WANG, Dongsheng XIAO. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 98-106. DOI: 10.16031/j.cnki.issn.1003-8035.2021.06-12
Citation: Fuzhen LIU, Ling WANG, Dongsheng XIAO. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 98-106. DOI: 10.16031/j.cnki.issn.1003-8035.2021.06-12

Application of machine learning model in landslide susceptibility evaluation

More Information
  • Received Date: November 02, 2020
  • Revised Date: May 17, 2021
  • Available Online: December 19, 2021
  • Machine learning faces two difficulties in the evaluation of landslide susceptibility. One is the objective quantification of evaluation index, and the other is the selection of training sample-0.5pts. For that reason, the frequency ratio method is used to achieve the objective quantification of evaluation index, and the k-means clustering algorithm is used to achieve the selection of non-landslide sample data. The results show that based on the premise that the k-means clustering algorithm selects non-landslides, the training accuracy of the neural network has increased from 73% to 97%, and the training accuracy of the support vector machine has increased from 75% to 96%. Based on the GIS platform, the susceptibility index calculated by the neural network and support vector machine model is divided into five regions according to the natural break point method. The statistical results of the overlay analysis of the zoning map and the historical disaster points show that the evaluation result of the neural network is better than the support vector machine model in the global scope, and the global accuracy is 76% and 74%, respectively. The research results can provide reference for disaster prevention and mitigation in Nanjiang County of China.
  • [1]
    邱海军. 区域滑坡崩塌地质灾害特征分析及其易发性和危险性评价研究: 以宁强县为例[D]. 西安: 西北大学, 2012.

    QIU Haijun. Study on the regional landslide characteristic analysis and hazard assessment: A case study of Ningqiang County[D]. Xi'an: Northwest University, 2012. (in Chinese with English abstract)
    [2]
    唐亚明, 张茂省, 李林, 等. 滑坡易发性危险性风险评价例析[J]. 水文地质工程地质,2011,38(2):125 − 129. [TANG Yaming, ZHANG Maosheng, LI Lin, et al. Discrimination to the landslide susceptibility, hazard and risk assessment[J]. Hydrogeology & Engineering Geology,2011,38(2):125 − 129. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2011.02.022
    [3]
    杨秀梅. 基于GIS的地质灾害危险性评价[D]. 兰州: 兰州大学, 2008.

    YANG Xiumei. Geological hazard risk assessment based on GIS[D]. Lanzhou: Lanzhou University, 2008. (in Chinese with English abstract)
    [4]
    胡芹龙, 王运生. 基于GIS的川西地貌过渡带滑坡灾害易发性评价[J]. 成都理工大学学报(自然科学版),2018,45(6):746 − 753. [HU Qinlong, WANG Yunsheng. The susceptibility assessment of geological disasters in geomorphic transition zone based on GIS, western Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2018,45(6):746 − 753. (in Chinese with English abstract)
    [5]
    郭长宝, 唐杰, 吴瑞安, 等. 基于证据权模型的川藏铁路加查: 朗县段滑坡易发性评价[J]. 山地学报,2019,37(2):240 − 251. [GUO Changbao, TANG Jie, WU Ruian, et al. Landslide susceptibility assessment based on WOE model along Jiacha—Langxian County section of Sichuan—Tibet railway, China[J]. Mountain Research,2019,37(2):240 − 251. (in Chinese with English abstract)
    [6]
    兰恒星, 伍法权, 王思敬. 基于GIS的滑坡CF多元回归模型及其应用[J]. 山地学报,2002,20(6):732 − 737. [LAN Hengxing, WU Faquan, WANG Sijing. GIS based landslide CF multi-variable regression model and its application[J]. Journal of Mountain Research,2002,20(6):732 − 737. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2002.06.015
    [7]
    郭子正, 殷坤龙, 黄发明, 等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报,2019,38(2):287 − 300. [GUO Zizheng, YIN Kunlong, HUANG Faming, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(2):287 − 300. (in Chinese with English abstract)
    [8]
    许冲, 戴福初, 姚鑫, 等. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报,2009,28(增刊 2):3978 − 3985. [XU Chong, DAI Fuchu, YAO Xin, et al. Gis-based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(Sup 2):3978 − 3985. (in Chinese with English abstract)
    [9]
    苏强. 基于DEM的黄土滑坡危险性评价研究[D]. 北京: 中国地质大学(北京), 2006.

    SU Qiang. Research on loess landslide hazard zonation based on DEM[D]. Beijing: China University of Geosciences, 2006. (in Chinese with English abstract)
    [10]
    李嘉良, 马东辉, 王威. 基于证据理论和熵权灰色关联的潜在地震滑坡危险性评价[J]. 中南大学学报(自然科学版),2016,47(5):1730 − 1736. [LI Jialiang, MA Donghui, WANG Wei. Assessment of potential seismic landslide hazard based on evidence theory and entropy weight grey incidence[J]. Journal of Central South University (Science and Technology),2016,47(5):1730 − 1736. (in Chinese with English abstract) DOI: 10.11817/j.issn.1672-7207.2016.05.036
    [11]
    牛瑞卿, 彭令, 叶润青, 等. 基于粗糙集的支持向量机滑坡易发性评价[J]. 吉林大学学报(地球科学版),2012,42(2):430 − 439. [NIU Ruiqing, PENG Ling, YE Runqing, et al. Landslide susceptibility assessment based on rough sets and support vector machine[J]. Journal of Jilin University (Earth Science Edition),2012,42(2):430 − 439. (in Chinese with English abstract)
    [12]
    王森, 许强, 罗博宇, 等. 基于分形理论的南江县滑坡敏感性分析与易发性评价[J]. 水文地质工程地质,2017,44(3):119 − 126. [WANG Sen, XU Qiang, LUO Boyu, et al. Vulnerability analysis and susceptibility evaluation of landslides based on fractal theory in Nanjiang County[J]. Hydrogeology & Engineering Geology,2017,44(3):119 − 126. (in Chinese with English abstract)
    [13]
    何静. 基于机器学习的滑坡灾害空间预测及风险评估[D]. 成都: 电子科技大学, 2019.

    HE Jing. Spatial prediction and risk assessment of landslides based on machine learning[D]. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese with English abstract)
    [14]
    黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):156 − 167. [HUANG Faming, YIN Kunlong, JIANG Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):156 − 167. (in Chinese with English abstract)
    [15]
    王敞, 陈增强, 袁著祉. 基于遗传算法的K均值聚类分析[J]. 计算机科学,2003,30(2):163 − 164. [WANG Chang, CHEN Zengqiang, YUAN Zhuzhi. K-means clustering based on genetic algorithm[J]. Computer Science,2003,30(2):163 − 164. (in Chinese with English abstract) DOI: 10.3969/j.issn.1002-137X.2003.02.044
    [16]
    陈玉萍, 袁志强, 周博, 等. 遗传算法优化BP网络在滑坡灾害预测中的应用研究[J]. 水文地质工程地质,2012,39(1):114 − 119. [CHEN Yuping, YUAN Zhiqiang, ZHOU Bo, et al. Application of back propagation neural networks with optimization of genetic algorithms to landslide hazard prediction[J]. Hydrogeology & Engineering Geology,2012,39(1):114 − 119. (in Chinese with English abstract)
    [17]
    武雪玲, 沈少青, 牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报(信息科学版),2016,41(5):665 − 671. [WU Xueling, SHEN Shaoqing, NIU Ruiqing. Landslide susceptibility prediction using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University,2016,41(5):665 − 671. (in Chinese with English abstract)
    [18]
    张俊, 殷坤龙, 王佳佳, 等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报,2016,35(2):284 − 296. [ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):284 − 296. (in Chinese with English abstract)
  • Cited by

    Periodical cited type(26)

    1. 胡祥祥,石亚亚,胡良柏,吴涛,庞栋栋,刘帅令,宋宝. 融合InSAR与信息量–机器学习耦合模型的黄土滑坡易发性评价. 西北地质. 2025(02): 159-171 .
    2. 董力豪,刘艳辉,黄俊宝,刘海宁. 基于卷积神经网络的福建省区域滑坡灾害预警模型. 水文地质工程地质. 2024(01): 145-153 .
    3. 陈宾,李颖懿,张联志,屈添强,魏娜,刘宁,黄春林. 地质灾害易发性评价因子分级的AIFFC算法优化. 中国地质灾害与防治学报. 2024(01): 72-81 . 本站查看
    4. 程秋连,刘杰,杨治纬,张天意,王斌. 独库高速公路克扎依—巩乃斯段雪崩易发性评价. 中国地质灾害与防治学报. 2024(01): 60-71 . 本站查看
    5. 刘佩瑶. 基于主成分分析和优化支持向量机的砂土地震液化预测. 华北地震科学. 2024(03): 35-41+49 .
    6. 张清,何毅,陈学业,高秉海,张立峰,赵占骜,路建刚,张雅蕾. 基于多尺度卷积神经网络的深圳市滑坡易发性评价. 中国地质灾害与防治学报. 2024(04): 146-162 . 本站查看
    7. 陈航,刘惠军,王韬,孙悦. 基于频率比-深度神经网络耦合模型的滑坡易发性评价——以盐源县为例. 水文地质工程地质. 2024(05): 161-171 .
    8. 常志璐,黄发明,蒋水华,张崟琅,周创兵,黄劲松. 基于多尺度分割方法的斜坡单元划分及滑坡易发性预测. 工程科学与技术. 2023(01): 184-195 .
    9. 张蕊,郭荣昌,贺攀,余岭燕. 基于改进突变理论的滑坡危险性评价. 中国地质灾害与防治学报. 2023(01): 121-128 . 本站查看
    10. 董张玉,张晋,彭鹏,王燕,杨智,安森. 基于GBDT-LR和信息量模型耦合的滑坡易发性评价. 水土保持通报. 2023(01): 149-157+166 .
    11. 孙剑锋,马超,胡金树,闫铁生,杲加俊,徐辉. 基于灰色关联度与层次分析法耦合的地质灾害易发性评价——以浙江省云和县崇头镇为例. 工程地质学报. 2023(02): 538-551 .
    12. 贾雨霏,魏文豪,陈稳,杨清卓,盛逸凡,徐光黎. 基于SOM-I-SVM耦合模型的滑坡易发性评价. 水文地质工程地质. 2023(03): 125-137 .
    13. 陈康迪,刘鸿扬,谭晓玲. 基于半监督随机森林滑坡易发性分区研究. 信息技术与信息化. 2023(05): 140-143 .
    14. 赵晓东,刘福,杨华,张泰丽. 改进的学习向量量化滑坡易发性评价模型研究. 测绘科学. 2023(05): 239-246 .
    15. 牟家琦,庄建琦,王世宝,孔嘉旭,杜晨辉. 基于深度神经网络模型的雅安市滑坡易发性评价. 中国地质灾害与防治学报. 2023(03): 157-168 . 本站查看
    16. 李光辉,铁永波. 基于信息量模型的综合地质灾害易发性建模方法对比研究. 灾害学. 2023(03): 212-221 .
    17. 宋昭富,张勇,佘涛,孙金辉,韩新强,陶昶旭. 基于易发性分区的区域滑坡降雨预警阈值确定——以云南龙陵县为例. 中国地质灾害与防治学报. 2023(04): 22-29 . 本站查看
    18. 周苏华,付宇航,邢静康,彭爱泉,蒋明奕. 基于不同统计模型的肯尼亚滑坡危险性评价. 中国地质灾害与防治学报. 2023(04): 114-124 . 本站查看
    19. 王俊德,杜晓阳,黄天浩,周晓鹏,孙乐飞,韩新志,董培培. 河南省嵩县地质灾害风险评价. 中国地质灾害与防治学报. 2023(04): 86-96 . 本站查看
    20. 舒晓燕,巫锡勇,文洪,凌斯祥,宋殿君. 新疆天山伊阿铁路区域雪崩易发性与潜在释放区识别对比研究. 工程地质学报. 2023(04): 1200-1212 .
    21. 张潇远,苏巧梅,赵财胜,朱月琴,李凯新,范锦龙,白东升. 一种利用贝叶斯算法优化XGBoost的滑坡易发性评价方法. 测绘科学. 2023(06): 140-150 .
    22. 周雨,肖雯,李三角,谢克勇. 低山丘陵区公路地质灾害气象预报模型对比及应用——以江西山区公路为例. 中国地质灾害与防治学报. 2023(06): 77-85 . 本站查看
    23. 李大猛,孙东,余辉,李松,张正鹏. 绿色矿山建设与矿山生态修复关联探析. 世界有色金属. 2023(22): 162-165 .
    24. 王伟中,李树兴,尚彦军,宋飞,曹小红,许涛,李巧学,马敬涛. 基于斜坡单元划分和逻辑回归模型的滑坡易发性评价——以山阳县高坝店镇为例. 新疆地质. 2023(03): 424-430 .
    25. 冯凡,唐亚明,潘学树,王小浩,赵宇宣,白轩. 不同尺度下地质灾害风险评价方法探讨——以陕西吴堡县为例. 中国地质灾害与防治学报. 2022(02): 115-124 . 本站查看
    26. 李光辉,铁永波,白永建,熊晓辉. 则木河断裂带(普格段)地质灾害发育规律及易发性评价. 中国地质灾害与防治学报. 2022(03): 123-133 . 本站查看

    Other cited types(20)

Catalog

    Article views (731) PDF downloads (245) Cited by(46)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return