ISSN 1003-8035 CN 11-2852/P
    QIAN Faqiao, DENG Yahong, MU Huandong, et al. Distributive characteristics of physical and mechaniscal parameters of the loess soils in Lüliang mountainous area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 61-70. DOI: 10.16031/j.cnki.issn.1003-8035.2022.02-08
    Citation: QIAN Faqiao, DENG Yahong, MU Huandong, et al. Distributive characteristics of physical and mechaniscal parameters of the loess soils in Lüliang mountainous area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 61-70. DOI: 10.16031/j.cnki.issn.1003-8035.2022.02-08

    Distributive characteristics of physical and mechaniscal parameters of the loess soils in Lüliang mountainous area

    More Information
    • Received Date: February 21, 2022
    • Revised Date: March 21, 2022
    • Accepted Date: March 21, 2022
    • Available Online: March 31, 2022
    • Loess is prone to geological hazards such as landslide, spalling and mud flow due to its special physical and mechanical properties and engineering characteristics. Therefore, it is of great significance to study regional distributive characteristics of loess parameters for geological hazard prevention and mitigation. The L1 loess stratum in Lüliang Mountains is taken as the research object. Based on field investigation and sampling at representative points, the soil properties of 340 groups of loess samples from 133 sites in the study area were tested in laboratory. Based on the obtained data, the distributive characteristics rules of soil properties of L1 loess strata in the study area were analyzed by statistical analysis and ArcGIS software platform. The results show that the distribution of clay content, natural water content, pore ratio, cohesion and internal friction angle have good regularity in north-south direction, but the regularities are slightly different between the eastern and western of the mountains. In addition, the regional distributive characteristics law of clay content, natural water content, cohesion and collapsibility coefficient is obvious. However, the internal friction angle is relatively discrete in regional distribution. The research results provide basic data for the evaluation of geological hazard susceptibility from the perspective of soil characteristics.
    • [1]
      刘东生. 黄土与环境[J]. 西安交通大学学报(社会科学版),2002,22(4):7 − 12. [LIU Dongsheng. Loess and environment[J]. Journal of Xi’an Jiaotong University (Social Sciences Edition),2002,22(4):7 − 12. (in Chinese with English abstract)
      [2]
      高国瑞. 兰州黄土显微结构和湿陷机理的探讨[J]. 兰州大学学报,1979,15(2):123 − 134. [GAO Guorui. Study of the microstructures and the collapse mechanism in loess soil from Lanzhou[J]. Journal of Lanzhou University,1979,15(2):123 − 134. (in Chinese with English abstract)
      [3]
      高国瑞. 黄土显微结构分类与湿陷性[J]. 中国科学,1980,10(12):1203 − 1208. [GAO Guorui. Classification and collapsibility of loess[J]. Scientia Sinica,1980,10(12):1203 − 1208. (in Chinese with English abstract)
      [4]
      雷祥义. 黄土的显微结构与古气候的关系[J]. 地质论评,1989,35(4):333 − 341. [LEI Xiangyi. The relations between microfabrics of loess and paleoclimate in China[J]. Geological Review,1989,35(4):333 − 341. (in Chinese with English abstract) DOI: 10.3321/j.issn:0371-5736.1989.04.006
      [5]
      丁仲礼, 孙继敏, 刘东生. 联系沙漠-黄土演变过程中耦合关系的沉积学指标[J]. 中国科学(D辑: 地球科学),1999,29(1):82 − 87. [DING Zhongli, SUN Jimin, LIU Dongsheng. A sedimentological proxy indicator linking changes in loess and desert in the quaternary[J]. Science in China (Series in D),1999,29(1):82 − 87. (in Chinese with English abstract)
      [6]
      李同录, 张辉, 李萍, 等. 不同沉积环境下马兰黄土孔隙分布与土水特征的模式分析[J]. 水文地质工程地质,2020,47(3):107 − 114. [LI Tonglu, ZHANG Hui, LI Ping, et al. Mode analysis of pore distribution and soil-water characteristic curve of Malan loess under different depositional environments[J]. Hydrogeology & Engineering Geology,2020,47(3):107 − 114. (in Chinese with English abstract)
      [7]
      李萍, 李同录. 黄土物理性质与湿陷性的关系及其工程意义[J]. 工程地质学报,2007,15(4):506 − 512. [LI Ping, LI Tonglu. Relation between loess collapsibility and physical properties and its engineering significance[J]. Journal of Engineering Geology,2007,15(4):506 − 512. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2007.04.013
      [8]
      WEN B P, YAN Y J. Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China[J]. Engineering Geology,2014,168:46 − 58. DOI: 10.1016/j.enggeo.2013.10.023
      [9]
      慕焕东, 邓亚虹, 李荣建, 等. 砂粒含量对砂质黄土力学性质影响试验研究[J]. 水利与建筑工程学报,2018,16(6):36 − 39. [MU Huandong, DENG Yahong, LI Rongjian, et al. Experimental study on effects of sand content on sandy loess mechanical properties[J]. Journal of Water Resources and Architectural Engineering,2018,16(6):36 − 39. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-1144.2018.06.007
      [10]
      袁中夏, 赵未超, 叶帅华, 等. 含水量对黄土边坡稳定性的影响[J]. 中国地质灾害与防治学报,2019,30(3):37 − 43. [YUAN Zhongxia, ZHAO Weichao, YE Shuaihua, et al. Influence of water content on loess slope stability[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):37 − 43. (in Chinese with English abstract)
      [11]
      刘钊钊, 钟秀梅, 张洪伟, 等. 典型地貌区原状黄土孔隙细观特征研究[J]. 水文地质工程地质,2019,46(2):148 − 155. [LIU Zhaozhao, ZHONG Xiumei, ZHANG Hongwei, et al. Research on pore microscopic characteristics of undisturbed loess in typical geomorphologies[J]. Hydrogeology & Engineering Geology,2019,46(2):148 − 155. (in Chinese with English abstract)
      [12]
      鲁拓, 唐亚明, 李喜安, 等. 马兰黄土孔隙分形特征与渗透性关系[J]. 科学技术与工程,2021,21(19):8138 − 8144. [LU Tuo, TANG Yaming, LI Xi’an, et al. Relationship between pore fractal characteristics and permeability of Malan loess[J]. Science Technology and Engineering,2021,21(19):8138 − 8144. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2021.19.038
      [13]
      杨泽, 蔺晓燕, 李同录, 等. 陇东黄土的物理力学性质指标统计分析[J]. 重庆科技学院学报(自然科学版),2021,23(1):111 − 114. [YANG Ze, LIN Xiaoyan, LI Tonglu, et al. Statistical analysis of physical and mechanical properties of longdong loess[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition),2021,23(1):111 − 114. (in Chinese with English abstract)
      [14]
      张卜平, 朱兴华, 成玉祥, 等. 黄土潜蚀机理及其致灾效应研究综述[J]. 中国地质灾害与防治学报,2021,32(6):41 − 52. [ZHANG Buping, ZHU Xinghua, CHENG Yuxiang, et al. A review on loess subsurface-erosion mechanism and it's hazard effects[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):41 − 52. (in Chinese with English abstract)
      [15]
      张玲玲, 龙建辉, 邢鲜丽, 等. 冻融循环作用下吕梁地区马兰黄土性质研究[J]. 太原理工大学学报,2021,52(4):557 − 563. [ZHANG Lingling, LONG Jianhui, XING Xianli, et al. Study on the properties of Malan loess in Lüliang area under freeze-thaw cycles[J]. Journal of Taiyuan University of Technology,2021,52(4):557 − 563. (in Chinese with English abstract)
      [16]
      TANG Y M, BI Y Q, GUO Z Z, et al. A novel method for obtaining the loess structural index from computed tomography images: A case study from the Lüliang mountains of the loess plateau (China)[J]. Land,2021,10(3):291. DOI: 10.3390/land10030291
      [17]
      宋拴萍. 吕梁市离石区地质灾害概况及防治建议[J]. 山西建筑,2014,40(35):78 − 79. [SONG Shuanping. The geological disaster situation and prevention suggestion of Lishi District in Lüliang[J]. Shanxi Architecture,2014,40(35):78 − 79. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-6825.2014.35.043
      [18]
      薛强, 唐亚明, 白轩. 吕梁山区大宁县城地质灾害破坏模式及风险管控[J]. 山地学报,2021,39(1):151 − 162. [XUE Qiang, TANG Yaming, BAI Xuan. Failure modes and risk control of geohazards in the county town of Daning in the Lüliang mountains, China[J]. Mountain Research,2021,39(1):151 − 162. (in Chinese with English abstract)
      [19]
      黄虎城. 山西主要地质灾害分布规律和影响因素研究[J]. 能源与环保,2020,42(1):87 − 90. [HUANG Hucheng. Study on distribution law and influence factors of main geological disasters in Shanxi Province[J]. China Energy and Environmental Protection,2020,42(1):87 − 90. (in Chinese with English abstract)
      [20]
      王鹏, 闫治利. 山西省地质灾害总体特征与分布规律研究[J]. 山西煤炭,2018,38(1):20 − 22. [WANG Peng, YAN Zhili. General features and distribution of geological disasters in Shanxi Province[J]. Shanxi Coal,2018,38(1):20 − 22. (in Chinese with English abstract)
    • Related Articles

      [1]Yuandong HUANG, Chong XU, Yi LIU, Xiangli HE, Xiaoyi SHAO, Binbin ZHAO, Xiaoang KONG. Inventory and distribution feature of shallow landslides triggered by heavy rain event in Shaoguan, Guangdong Province in April 2024[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(2): 28-42. DOI: 10.16031/j.cnki.issn.1003-8035.202412019
      [2]Zhengjun MAO, Jinge ZHANG, Jiaxin ZHONG, Jun WANG. Analysis of basic characteristics and deformation mechanism of loess potential landslide of terrace: Taking loess hilly region in southern Ningxia as an example[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 142-152. DOI: 10.16031/j.cnki.issn.1003-8035.202205005
      [3]Menglan DAI, Zhibo CHEN, Guodong SHI. Analysis of the distribution characteristics and influencing factors of geological hazards in Zhejiang Province based on fractal theory[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 63-69. DOI: 10.16031/j.cnki.issn.1003-8035.202110032
      [4]Peng JIN, Li SHEN, Xiaoji HAN, Ji GUO, Maomao WANG. Spatial-temporal distribution characteristics and influencing factors of geological disasters in the open-pit mining area of western Fushun,Liaoning Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 68-76. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-08
      [5]Zhengfa WEI, Xiaoyan CAO, Juncai ZHANG, Zhongmin YING, Huijun YAN, Sailajia WEI. Temporal and spatial characteristics of landslide, rockfall and debris flow disasters in Qinghai Province during the period[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 134-142. DOI: 10.16031/j.cnki.issn.1003-8035.2021.06-16
      [6]Yongtang YU, Jianguo ZHENG, Jiwen ZHANG, Zhi LIU. Development and distribution characteristics of ground fissures in high loess filled ground[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 85-92. DOI: 10.16031/j.cnki.issn.1003-8035.2021.04-11
      [7]Qingding HAN, Xiyi LUO, Shouyong YI, Jie ZOU. Characteristics and spatial-temporal distribution law of karst collapse in Sanzhou basin in Gaoming District of Foshan City, Guangdong Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 131-139. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-17
    • Cited by

      Periodical cited type(15)

      1. 李远远,李春鹏,和大钊,康鑫. 基于流固耦合作用的富水断层区隧道初期支护优化分析. 水文地质工程地质. 2025(03): 144-152 .
      2. 唐飞. 基于博弈论综合评价云模型的露天矿边坡岩体稳定性分析. 有色金属(矿山部分). 2024(02): 93-101 .
      3. 李涛,李树建,王宗勇,周帆,刘映辉,袁明礼,吴浩. 富水磷矿山复杂岩性巷道围岩稳定性评价研究. 采矿技术. 2024(02): 195-202 .
      4. 陈志敏,张赓旺,李宁. 隧道穿越岩堆体围岩剪切特性及分级. 科学技术与工程. 2024(20): 8640-8647 .
      5. 洪闯,李中明. 基于可拓云模型的文化遗产数字化平台信息服务质量评价研究. 图书馆学研究. 2024(09): 56-67+115 .
      6. 惠冰,王琳,张文俊,孟凌霄,许英东. 基于非线性方法的煤矸石路基适用性评价. 山东建筑大学学报. 2023(03): 125-134 .
      7. 许胜军,余华中,李德海,余永强. 基于博弈论—云模型的露天矿边坡稳定性分析. 能源与环保. 2023(07): 21-28 .
      8. 陈忠源,戴自航,简文彬. 基于因子权重反分析的新近失稳土质边坡稳定性评价云模型. 中国地质灾害与防治学报. 2023(04): 125-133 . 本站查看
      9. 童乐,代雍正,刘泽,彭亚雄,邵玉,王勋. 隧道洞口的施工风险云模型评价方法研究. 建筑技术. 2023(17): 2164-2166 .
      10. 张威,胡舫瑞,綦巍,彭琳,王咏林,陈枫. 基于XGBoost和云模型的地质灾害易发性评价. 中国地质灾害与防治学报. 2023(06): 136-145 . 本站查看
      11. 杨文东,林泳良,谢全敏. 基于博弈-和谐度方程的隧道围岩稳定性评价. 武汉理工大学学报. 2022(04): 64-70 .
      12. 黄淇,牟凤云,张用川,陈林,李云燕. 基于可拓云模型的重庆市中心城区公路洪灾风险评价. 水土保持通报. 2022(03): 157-165+397 .
      13. 彭意飞,张义平,黄薇,侯天亮,蒋云莱. 基于博弈论-未确知测度理论的围岩稳定性评价. 公路工程. 2022(06): 102-107 .
      14. 张润宇. 新形势下电力系统及其自动化施工技术问题及对策分析. 大众标准化. 2021(16): 173-175 .
      15. 崔光耀,李鹏宇,王庆建. 强震区隧道软弱围岩洞口段桩-筏抗震措施的作用效果分析. 中国地质灾害与防治学报. 2021(04): 106-112 . 本站查看

      Other cited types(9)

    Catalog

      Article views (352) PDF downloads (473) Cited by(24)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return