ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
ZHOU Suhua,FU Yuhang,XING Jingkang,et al. Assessment of landslide hazard risk in Kenya based on different statistical models[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4): 114-124. DOI: 10.16031/j.cnki.issn.1003-8035.202206006
Citation: ZHOU Suhua,FU Yuhang,XING Jingkang,et al. Assessment of landslide hazard risk in Kenya based on different statistical models[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4): 114-124. DOI: 10.16031/j.cnki.issn.1003-8035.202206006

Assessment of landslide hazard risk in Kenya based on different statistical models

More Information
  • Received Date: June 06, 2022
  • Revised Date: October 09, 2022
  • Available Online: May 15, 2023
  • Kenya is an important fulcrum of China's Belt and Road initiative in east Africa. However, due to its plateau rift terrain and aboriginal rain and drought season, geological disasters occur frequently in Kenya. The study used historical landslide data in Kenya as samples and selected several evaluation indexes, including elevation, slope, aspect, landform, plane curvature, soil type, annual average rainfall, stream power index, terrain witness index, and land use type. The landslide risk in Kenya was evaluated based on the information value model (IV), logistic regression model (LR), and extreme learning machine model (ELM), with the ELM model considering SIG, SIN, and HARDLIM functions as activation functions for discussion. The main findings are as follows: (1) The high-risk and above-grade areas of landslide disasters in Kenya are mainly concentrated in the plateau and plateau-rift transition zone in the southwest. (2) The ROC curve was used to evaluate the accuracy of the models, and the AUC values of the 0.977(IV), 0.965(LR), 0.859(ELM-SIG), 0.900(ELM-SIN), and 0.941(ELM-HARDLIM) models illustrate their validity. (3) Considering the PR curve results comprehensively, the recall rate and precision rate of the LR model are at a high level, marking it better than other models. (4) Nairobi, Central, Nyanza and Western provinces in Kenya account for a significant proportion of the high-risk and above-grade areas of landslide disasters.
  • [1]
    BATALA L K,YU Wangxing,KHAN A,et al. Natural disasters' influence on industrial growth,foreign direct investment,and export performance in the South Asian region of Belt and road initiative[J]. Natural Hazards,2021,108(2):1853 − 1876. DOI: 10.1007/s11069-021-04759-w
    [2]
    BAI Yuanli,WIERZBICKI T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture,2010,161(1):1 − 20. DOI: 10.1007/s10704-009-9422-8
    [3]
    ROGERS J D,CHUNG J. Applying Terzaghi’s method of slope characterization to the recognition of Holocene land slippage[J]. Geomorphology,2016,265:24 − 44. DOI: 10.1016/j.geomorph.2016.04.020
    [4]
    AHMED A,UGAI K,YANG Qing qing. Assessment of 3D slope stability analysis methods based on 3D simplified janbu and hovland methods[J]. International Journal of Geomechanics,2012,12(2):81 − 89. DOI: 10.1061/(ASCE)GM.1943-5622.0000117
    [5]
    WANG Chun ming,LIU Chun yuan,WU Mai,et al. Research on soil-like slope instability based on FEM strength reduction[J]. Applied Mechanics and Materials,2013,438/439:1244 − 1248. DOI: 10.4028/www.scientific.net/AMM.438-439.1244
    [6]
    吴信才,白玉琪,郭玲玲. 地理信息系统(GIS)发展现状及展望[J]. 计算机工程与应用,2000,36(4):8 − 9. [WU Xincai,BAI Yuqi,GUO Lingling. Development and prospect of geographic information system[J]. Computer Engineering and Applications,2000,36(4):8 − 9. (in Chinese with English abstract)

    WU Xincai, BAI Yuqi, GUO Lingling. Development and prospect of geographic information system[J]. Computer Engineering and Applications, 2000, 36(4): 8-9. (in Chinese with English abstract)
    [7]
    SON J,SUH J,PARK H D. GIS-based landslide susceptibility assessment in Seoul,South Korea,applying the radius of influence to frequency ratio analysis[J]. Environmental Earth Sciences,2016,75(4):310. DOI: 10.1007/s12665-015-5149-1
    [8]
    屠水云,张钟远,付弘流,等. 基于CF与CF-LR模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(2):96 − 104. [TU Shuiyun,ZHANG Zhongyuan,FU Hongliu,et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):96 − 104. (in Chinese with English abstract)

    TU Shuiyun, ZHANG Zhongyuan, FU Hongliu, et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 96-104. (in Chinese with English abstract)
    [9]
    刘福臻,王灵,肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报,2021,32(6):98 − 106. [LIU Fuzhen,WANG Ling,XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):98 − 106. (in Chinese with English abstract)

    LIU Fuzhen, WANG Ling, XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6)98-106(in Chinese with English abstract)
    [10]
    LIU Rui,LI Luyao,PIRASTEH S,et al. The performance quality of LR,SVM,and RF for earthquake-induced landslides susceptibility mapping incorporating remote sensing imagery[J]. Arabian Journal of Geosciences,2021,14(4):1 − 15.
    [11]
    WANG Xi,WANG Shuangyin,QI Jiashuo. Open-channel landslide hazard assessment based on AHP and fuzzy comprehensive evaluation[J]. Water Supply,2020,20(8):3687 − 3696. DOI: 10.2166/ws.2020.176
    [12]
    商冬凡,唐梦芸,苗雷强,等. 城市道路空洞隐患风险评估方法应用研究[J]. 市政技术,2022,40(11):37 − 42. [SHANG Dongfan,TANG Mengyun,MIAO Leiqiang,et al. Risk Assessment of Operation and Maintenance Stage of Utility Tunnel based on Combination Weighting-Improved Risk Matrix Method[J]. Journal of Municipal Technology,2022,40(11):37 − 42. (in Chinese with English abstract)

    [Shang Dongfan, Tang Mengyun, Miao Leiqiang, Shi Jiahao, Zhou Siqing. Risk Assessment of Operation and Maintenance Stage of Utility Tunnel based on Combination Weighting-Improved Risk Matrix Method [J]. Journal of Municipal Technology, 2022,40(11): 37-42. (in Chinese with English abstract)
    [13]
    张俊,殷坤龙,王佳佳,等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报,2016,35(2):284 − 296. [ZHANG Jun,YIN Kunlong,WANG Jiajia,et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):284 − 296. (in Chinese with English abstract)

    Zhang Jun, Yin Kunlong, Wang Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296. (in Chinese with English abstract)
    [14]
    CHEN Wei,LI Wenping,CHAI Huichan,et al. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City,China[J]. Environmental Earth Sciences,2016,75(1):63. DOI: 10.1007/s12665-015-4795-7
    [15]
    刘璐瑶,高惠瑛,李照. 基于CF与Logistic回归模型耦合的永嘉县滑坡易发性评价[J]. 中国海洋大学学报(自然科学版),2021,51(10):121 − 129. [LIU Luyao,GAO Huiying,LI Zhao. Landslide susceptibility assessment based on coupling of CF model and logistic regression model in Yongjia County[J]. Periodical of Ocean University of China,2021,51(10):121 − 129. (in Chinese with English abstract)

    LIU Luyao, GAO Huiying, LI Zhao. Landslide susceptibility assessment based on coupling of CF model and logistic regression model in Yongjia County[J]. Periodical of Ocean University of China, 2021, 51(10)121-129(in Chinese with English abstract)
    [16]
    国家市场监督管理总局, 国家标准化管理委员会. 地质灾害危险性评估规范: GB/T 40112—2021[S]. 北京: 中国标准出版社, 2021

    Standardization Administration of the People's Republic of China. Specifications for risk assessment of geological hazard: GB/T 40112—2021[S]. Beijing: Standards Press of China, 2021. (in Chinese)
    [17]
    杨先全,周苏华,邢静康,等. 肯尼亚滑坡灾害分布特征及敏感性区划[J]. 中国地质灾害与防治学报,2019,30(5):65 − 74. [YANG Xianquan,ZHOU Suhua,XING Jingkang,et al. Distribution patterns and susceptibility mapping of landslides in Kenya[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):65 − 74. (in Chinese with English abstract)

    YANG Xianquan, ZHOU Suhua, XING Jingkang, et al. Distribution patterns and susceptibility mapping of landslides in Kenya[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(5)65-74(in Chinese with English abstract)
    [18]
    朱丛瑞. 肯尼亚建国后的环境问题研究[D]. 昆明: 云南师范大学, 2021

    ZHU Congrui. Research on environmental problems after the founding of Kenya[D]. Kunming: Yunnan Normal University, 2021. (in Chinese with English abstract)
    [19]
    肯尼亚信息、通信和技术部.滑坡统计资料[M/OL]. [2015-5-18]. https://www.ict.go.ke/wp-content/uploadsKenya.

    Ministry of Information, Communication and Technology of Kenya. Landslide Statistics[M/OL]. [2015-5-18]. (in Chinese)
    [20]
    全球毁灭性滑坡数据库.肯尼亚地区滑坡数据[M/OL]. [2019-6-18]. https://blogs.agu.org/landslideblog/.

    Global Database of Fatal Landslides.Kenya Historical Landslide Data[M/OL]. [2019-6-18]. (in Chinese)
    [21]
    BROECKX J,VANMAERCKE M,DUCHATEAU R,et al. A data-based landslide susceptibility map of Africa[J]. Earth-Science Reviews,2018,185:102 − 121. DOI: 10.1016/j.earscirev.2018.05.002
    [22]
    NASA 地球公开数据. ASTERGDEMV2卫星全球高程公开共享数据[M/OL]. [2013-11-30].https://visibleearth.nasa.gov/.

    NASA Earth Open Data. ASTERGDEMV2 satellite global elevation data[M/OL]. [2013-11-30]. (in Chinese)
    [23]
    开放非洲数据库. 肯尼亚地区地表径流、地貌、年降雨量等共享数据[M/OL]. [2014-1-20]. www.Openafrica.org

    Open Africa Database. Shared data on surface runoff, landforms, and annual rainfall in Kenya [M/OL]. [2014-1-20]. (in Chinese)
    [24]
    世界资源研究所公开数据. 肯尼亚地区土地利用类型共享数据[M/OL]. [2014-1-20]. www.wri.org.

    World Resources Institute Open Data. Shared data on land use types in Kenya[M/OL]. [2014-1-20]. (in Chinese)
    [25]
    CHENG Yongzhen,HUANG Xiaoming. Effect of mineral additives on the behavior of an expansive soil for use in highway subgrade soils[J]. Applied Sciences,2018,9(1):30. DOI: 10.3390/app9010030
    [26]
    SWETS J A. Measuring the accuracy of diagnostic systems[J]. Science,1988,240(4857):1285 − 1293. DOI: 10.1126/science.3287615

Catalog

    Article views (1874) PDF downloads (226) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return