ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
ZHOU Yonghao,HU Xiewen,JIN Tao,et al. An in-situ method for assessing soil aggregate stability in burned landscapes[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6): 97-104. DOI: 10.16031/j.cnki.issn.1003-8035.202209022
Citation: ZHOU Yonghao,HU Xiewen,JIN Tao,et al. An in-situ method for assessing soil aggregate stability in burned landscapes[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6): 97-104. DOI: 10.16031/j.cnki.issn.1003-8035.202209022

An in-situ method for assessing soil aggregate stability in burned landscapes

More Information
  • Received Date: September 15, 2022
  • Revised Date: November 28, 2022
  • Available Online: October 15, 2023
  • Due to soil repellency in burned areas, slope runoff and soil erodibility escalates following forest fires, increasing the vulnerability to post-fire debris flows. Soil aggregate stability is a critical determinant of soil infiltration capacity and erosion susceptibility. The prevalent method of assessing soil aggregate stability in burned areas, the counting the number of water drop impacts (CND) method, is time-intensive and impractical for in-situ measurements. In response, this study introduces a novel technique based on the shock and vibration damage (SVD) effect for evaluating soil aggregate stability in burned areas. Thirteen distinct soil aggregate types were meticulously prepared for indoor simulated fire testing, with due consideration to factors such as bulk weight, organic matter content, and water repellency, which influence stability of soil aggregates. Employing a custom-built test apparatus, the mass loss rate (MLR) of soil aggregates was determined through orthogonal experiments using the SVD method and compared against the standard CND technique's quantification of water droplet-induced aggregate destruction. The findings demonstrated that SVD method, employing Test Scheme 6 (testing 20 aggregates, 1-meter impact height, 40% water content, and five impacts), exhibits excellent agreement (Kendall coefficient = 0.797) and correlation (R2 = 0.634) with CND method outcomes. This testing scheme, characterized by rapid determination and effective discrimination, is identified as the optimal testing approach. The SVD testing apparatus is straightforward, portable, and easily disassembled, rendering it suitable for on-site use. It can be used to distinguish the stability level of soil aggregates swiftly and quantitatively under various fire intensities in burned areas in situ, which is an important guiding significance for the study of soil erosion, erosion control, and post-fire debris flow initiation mechanism in burned areas.
  • [1]
    胡卸文,金涛,殷万清,等. 西昌市经久乡森林火灾火烧区特点及火后泥石流易发性评价[J]. 工程地质学报,2020,28(4):762 − 771. [HU Xiewen,JIN Tao,YIN Wanqing,et al. The characteristics of forest fire burned area and susceptibility assessment of post-fire debris flow in jingjiu township,xichang City[J]. Journal of Engineering Geology,2020,28(4):762 − 771. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2020-224

    HU Xiewen, JIN Tao, YIN Wanqing, et al. The characteristics of forest fire burned area and susceptibility assessment of post-fire debris flow in jingjiu township, xichang City[J]. Journal of Engineering Geology, 2020, 284): 762771. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2020-224
    [2]
    BADÍA-VILLAS D,GONZÁLEZ-PÉREZ J A,AZNAR J M,et al. Changes in water repellency,aggregation and organic matter of a mollic horizon burned in laboratory:Soil depth affected by fire[J]. Geoderma,2014,213:400 − 407. DOI: 10.1016/j.geoderma.2013.08.038
    [3]
    VARELA M E,BENITO E,KEIZER J J. Effects of wildfire and laboratory heating on soil aggregate stability of pine forests in Galicia:The role of lithology,soil organic matter content and water repellency[J]. CATENA,2010,83(2/3):127 − 134.
    [4]
    ZAVALA L M,GRANGED A J P,JORDÁN A,et al. Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions[J]. Geoderma,2010,158(3/4):366 − 374.
    [5]
    JORDÁN A,ZAVALA L M,MATAIX-SOLERA J,et al. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils[J]. CATENA,2011,84(3):136 − 147. DOI: 10.1016/j.catena.2010.10.007
    [6]
    WIETING C,EBEL B A,SINGHA K. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory[J]. Journal of Hydrology:Regional Studies,2017,13:43 − 57.
    [7]
    JIMÉNEZ-PINILLA P,MATAIX-SOLERA J,ARCENEGUI V,et al. Advances in the knowledge of how heating can affect aggregate stability in Mediterranean soils:a XDR and SEM-EDX approach[J]. CATENA,2016,147:315 − 324. DOI: 10.1016/j.catena.2016.07.036
    [8]
    胡卸文,王严,杨瀛. 火后泥石流成灾特点及研究现状[J]. 工程地质学报,2018,26(6):1562 − 1573. [HU Xiewen,WANG Yan,YANG Ying. Research actuality and evolution mechanism of post-fire debris flow[J]. Journal of Engineering Geology,2018,26(6):1562 − 1573. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2018-073

    HU Xiewen, WANG Yan, YANG Ying. Research actuality and evolution mechanism of post-fire debris flow[J]. Journal of Engineering Geology, 2018, 266): 15621573. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2018-073
    [9]
    郭军玲,王虹艳,卢升高. 亚热带土壤团聚体测定方法的比较研究[J]. 土壤通报,2010,41(3):542 − 546. [GUO Junling,WANG Hongyan,LU Shenggao. Comparative studies on measurement methods for aggregate stability of subtropical soils[J]. Chinese Journal of Soil Science,2010,41(3):542 − 546. (in Chinese with English abstract) DOI: 10.19336/j.cnki.trtb.2010.03.007

    GUO Junling, WANG Hongyan, LU Shenggao. Comparative studies on measurement methods for aggregate stability of subtropical soils[J]. Chinese Journal of Soil Science, 2010, 413): 542546. (in Chinese with English abstract) DOI: 10.19336/j.cnki.trtb.2010.03.007
    [10]
    SCHOMAKERS, J., et al. Measurement of soil aggregate stability using low intesity ultrasonic vibration[J]. Spanish Journal of Soil Science, 2011, 11): 819.

    SCHOMAKERS, J., et al. Measurement of soil aggregate stability using low intesity ultrasonic vibration[J]. Spanish Journal of Soil Science,2011,1(1):8 − 19.
    [11]
    AKSAKAL E L,ANGIN I,SARI S. A new approach for calculating aggregate stability:mean weight aggregate stability (MWAS)[J]. CATENA,2020,194:104708. DOI: 10.1016/j.catena.2020.104708
    [12]
    AMÉZKETA E. Soil aggregate stability:a review[J]. Journal of Sustainable Agriculture,1999,14(2/3):83 − 151.
    [13]
    黄悦等,基于高能水分特性法的土壤团聚体结构稳定性研究进展[J]. 水土保持研究,2022 :1 − 8. [HUANG Yue,et al. Progress in Research on Structural Stability of Soil Aggregates Based on High Energy Moisture Characteristic Method[J]. Research of Soil and Water Conservation,2022 :1 − 8. (in Chinese with English abstract)

    HUANG Yue, et al. Progress in Research on Structural Stability of Soil Aggregates Based on High Energy Moisture Characteristic Method[J]. Research of Soil and Water Conservation, 2022 : 1 − 8. (in Chinese with English abstract)
    [14]
    THOMAZ E L. Effects of fire on the aggregate stability of clayey soils:A meta-analysis[J]. Earth-Science Reviews,2021,221:103802. DOI: 10.1016/j.earscirev.2021.103802
    [15]
    成小彬. 水锤振荡器的关键技术研究与结构设计[D]. 北京:中国石油大学(北京),2017. [CHENG Xiaobin. Research on key technology of water hammer oscillator and its structural design[D]. Beijing:china university of petroleum (bei jing),2017. (in Chinese with English abstract)

    CHENG Xiaobin. Research on key technology of water hammer oscillator and its structural design[D]. Beijing: china university of petroleum (bei jing), 2017. (in Chinese with English abstract)
    [16]
    IMESON A C,VIS M. Assessing soil aggregate stability by water-drop impact and ultrasonic dispersion[J]. Geoderma,1984,34(3/4):185 − 200.
    [17]
    MCCALLA T M. Water-drop method of determining stability of soil structure[J]. Soil Science,1944,58(2):117 − 122. DOI: 10.1097/00010694-194408000-00002
    [18]
    ALMAJMAIE A,HARDIE M,ACUNA T,et al. Evaluation of methods for determining soil aggregate stability[J]. Soil and Tillage Research,2017,167:39 − 45. DOI: 10.1016/j.still.2016.11.003
    [19]
    RAWLINS B G,TURNER G,WRAGG J,et al. An improved method for measurement of soil aggregate stability using laser granulometry applied at regional scale[J]. European Journal of Soil Science,2015,66(3):604 − 614. DOI: 10.1111/ejss.12250
    [20]
    张绍科,胡卸文,王严,等. 四川省冕宁县华岩子沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报,2021,32(5):79 − 85. [ZHANG Shaoke,HU Xiewen,WANG Yan,et al. Disaster mechanism of post-fire debris flow in Huayanzi gully,Mianning County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):79 − 85. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-09

    ZHANG Shaoke, HU Xiewen, WANG Yan, et al. Disaster mechanism of post-fire debris flow in Huayanzi gully, Mianning County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 325): 7985. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-09
    [21]
    胡彩莉,马玉贞,郭超,等. 烧失量法测定土壤有机质含量的实验条件探究[J]. 地球与环境,2016,44(1):110 − 118. [HU Caili,MA Yuzhen,GUO Chao,et al. Optimization of the experiment conditions for estimating organic matter content with loss-on-ignition method[J]. Earth and Environment,2016,44(1):110 − 118. (in Chinese with English abstract) DOI: 10.14050/j.cnki.1672-9250.2016.01.015

    HU Caili, MA Yuzhen, GUO Chao, et al. Optimization of the experiment conditions for estimating organic matter content with loss-on-ignition method[J]. Earth and Environment, 2016, 441): 110118. (in Chinese with English abstract) DOI: 10.14050/j.cnki.1672-9250.2016.01.015
    [22]
    孔凡伟. 如何精测土壤容重[J]. 黑龙江农业科学,2010,(10):178. [KONG Fanwei. How to accurately measure soil bulk density[J]. Heilongjiang Agricultural Sciences,2010,(10):178. (in Chinese)

    KONG Fanwei. How to accurately measure soil bulk density[J]. Heilongjiang Agricultural Sciences, 2010, (10): 178. (in Chinese)
    [23]
    BISDOM E B A,DEKKER L W,TH SCHOUTE J F. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure[J]. Geoderma,1993,56(1/2/3/4):105 − 118.
    [24]
    程佳会,范成伟,徐晓兵,等. 正交试验下黏土导热系数影响分析[J]. 江西建材,2022(3):34 − 36. [CHENG Jiahui,FAN Chengwei,XU Xiaobing,et al. Influence analysis of thermal conductivity of clay under orthogonal test[J]. Jiangxi Building Materials,2022(3):34 − 36. (in Chinese with English abstract)

    CHENG Jiahui, FAN Chengwei, XU Xiaobing, et al. Influence analysis of thermal conductivity of clay under orthogonal test[J]. Jiangxi Building Materials, 20223): 3436. (in Chinese with English abstract)
    [25]
    侯勋,方刚. 基于肯德尔系数的改进ID3算法[J]. 科学技术创新,2021,(22):21 − 22. [HOU Xun,FANG Gang. Improved ID3 algorithm based on Kendall coefficient[J]. Scientific and Technological Innovation,2021,(22):21 − 22. (in Chinese)

    HOU Xun, FANG Gang. Improved ID3 algorithm based on Kendall coefficient[J]. Scientific and Technological Innovation, 2021, (22): 2122. (in Chinese)
    [26]
    LI Qiwen,AHN S,KIM T,et al. Post-fire impacts of vegetation burning on soil properties and water repellency in a pine forest,South Korea a[J]. Forests,2021,12(6):708,2021
    [27]
    李萌. 热声制冷机板叠内工质流动与换热规律研究[D]. 包头:内蒙古科技大学,2021. [LI Meng. Study on the flow and heat transfer laws of working medium in the stack of thermoacoustic refrigerator[D]. Baotou:Inner Mongolia University of Science & Technology,2021. (in Chinese with English abstract)

    LI Meng. Study on the flow and heat transfer laws of working medium in the stack of thermoacoustic refrigerator[D]. Baotou: Inner Mongolia University of Science & Technology, 2021. (in Chinese with English abstract)
  • Related Articles

    [1]Zaicheng LAN, Xiewen HU, Xichao CAO, Guanglin HUANG, Jinzhao BAI, Xiao FENG. Disaster mechanism and its deposition area of the Xiaochang gully debris flow in Hanyuan County industrial park[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 61-69. DOI: 10.16031/j.cnki.issn.1003-8035.202303026
    [2]Yuanhuan WANG, Haowen SHEN, Wanyin XIE, Ke LU, Guisheng HU. Analysis of the rainfall threshold for post-fire debris flow initiation: A case study of the debris flow at Ren’eyong gully in Xiangcheng County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 108-115. DOI: 10.16031/j.cnki.issn.1003-8035.202208007
    [3]Chaopeng LUO, Ming CHANG, Binbin WU, Peiyuan LIU, Bo YU. Simulation of debris flow head movement process in mountainous area based on FLOW-3D[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 53-62. DOI: 10.16031/j.cnki.issn.1003-8035.202107005
    [4]Bin SUN, Chuanbing ZHU, Xiaobo KANG, Lei YE, Yi LIU. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 119-127. DOI: 10.16031/j.cnki.issn.1003-8035.202204003
    [5]Wentao ZHANG, Jinfeng LIU, Yong YOU, Hao SUN, Huaquan YANG, Ming LU. Damage evaluation of control works against debris flow: A case study in Wenchuan area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 77-83. DOI: 10.16031/j.cnki.issn.1003-8035.202104015
    [6]Xiangbin YANG, Xiewen HU, Xichao CAO, Tao JIN, Chuanjie XI, Jian HUANG, Ying YANG. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully, Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 1-8. DOI: 10.16031/j.cnki.issn.1003-8035.202203039
    [7]Jian HUANG, Xiewen HU, Tao JIN, Xichao CAO, Xiangbin YANG. Mechanism of the post-fire debris flow of the Xiangshui gully in “3·30” fire area of Xichang,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 15-22. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-02
    [8]Shaoke ZHANG, Xiewen HU, Yan WANG, Tao JIN, Ying YANG. Disaster mechanism of post-fire debris flow in Huayanzi gully, Mianning County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 79-85. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-09
    [9]Wanqing YIN, Tao JIN, Xiewen HU, Xichao CAO, Xiangbin YANG, Jian HUANG. Study on the development characteristics of post-fire debris flow and its early warning risk aversion in Zhongba Village, Xide County[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 61-69. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-08
    [10]ZHAI Shuhua, MAO Jian, NAN Yun, LIU Huanhuan, WANG Yuntao, WANG Qiangqiang, XIONG Chunhua, WANG Yanmei. Multi-factors fusion method of debris flow prediction based on genetic programming[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 111-115. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.14
  • Cited by

    Periodical cited type(10)

    1. 刘娟,王宇栋,李晓丽,林静. 基于WOE-CatBoost耦合模型的滑坡灾害易发性评价. 地质灾害与环境保护. 2025(01): 6-14 .
    2. 孔雅茜,肖正辉,黄炜敏,罗伟奇,肖巍峰,曹运江,罗路广,唐豪. 极端降雨背景下滑坡易发性评估模型集成及关键因素分析. 国土资源导刊. 2025(01): 89-97 .
    3. 郑德凤,潘美伊,高敏,闫成林,李媛媛,年廷凯. 集中降雨影响下辽南仙人洞国家级自然保护区滑坡灾害多因子风险评价. 地质科技通报. 2025(02): 48-58 .
    4. 王秀英,杨红娟,贾一凡,张少杰,宋建洋,田华. 利用MIA-HSU方法划分斜坡单元的奉节县滑坡易发性评价. 中国地质灾害与防治学报. 2025(02): 152-161 . 本站查看
    5. 黄远东,许冲,刘毅,何祥丽,邵霄怡,赵斌滨,孔小昂. 2024年4月广东韶关暴雨诱发的浅层滑坡编目与滑坡分布特征分析. 中国地质灾害与防治学报. 2025(02): 28-42 . 本站查看
    6. 安雪莲,密长林,孙德亮,文海家,李晓琴,辜庆渝,丁悦凯. 基于不同评价单元的三峡库区滑坡易发性对比——以重庆市云阳县为例. 吉林大学学报(地球科学版). 2024(05): 1629-1644 .
    7. 李瑞晨,侯木舟,孔梦麟,谢昊含. 基于VMD-SegSigmoid-XGBoost-ClusterLSTM算法的山体滑坡表面位移预测. 科技通报. 2024(09): 111-115 .
    8. 周鹏飞,王艳霞. 应用机器学习算法分析广西林火发生驱动因素及林火预测. 东北林业大学学报. 2024(11): 72-82 .
    9. 张锦瑞,汪洋,冯霄,李远耀,金必晶,周超,张鑫,邓扬. 考虑地表形变和土地利用变更的滑坡时空易发性差异分析. 地质科技通报. 2024(06): 184-195 .
    10. 马祥龙,文海家,张廷斌,孙德亮,潘明辰. 自动可解释机器学习滑坡易发性评价模型. 北京师范大学学报(自然科学版). 2024(06): 806-818 .

    Other cited types(10)

Catalog

    Article views (144) PDF downloads (62) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return