Citation: | CHE Xinqian,NI Wankui,NIU Fujun,et al. Evaluation of freeze-thaw wind erosion and analysis of influencing factors on the Tibetan Plateau based on the improved RWEQ[J]. The Chinese Journal of Geological Hazard and Control,2025,36(4): 1-12. DOI: 10.16031/j.cnki.issn.1003-8035.202404015 |
Freeze-thaw wind erosion refers to the process in which temperature fluctuations cause changes in the surface structure, significantly impacting on the formation of surface landform and soil properties. However, due to the particularity and complexity of the Tibetan Plateau, the study of freeze-thaw wind erosion has not received widespread attention. Due to the relative scarcity of quantitative studies on the freeze-thaw wind erosion on the Tibetan Plateau, this study utilizes a Revised Wind Erosion Equation (RWEQ) that incorporates a freezing N-factor to analyze the distribution characteristics of freeze-thaw wind erosion on the Tibetan Plateau in 2022. The study also categorizes the intensity of freeze-thaw wind erosion across the Tibetan Plateau. The results indicate: (1) The freeze-thaw wind erosion modulus on the Qinghai- Tibet Plateau ranges from 8.90×108 to 4.95×105 (t·km−2·a−1), with a total erosion amount of 2.87×1013 t and a total affected area of 2.41×10 km2; (2) Moderate or greater freeze-thaw wind erosion accounts for 84.26% of the total affected area, indicating that light and mild erosion are predominant. (3) The significance tests of the five factors were all significant, and the influence of the freezing-thawing wind erosion modulus on the Qinghai-Tibet Plateau was ranked as meteorological factors > soil crust factors > soil erodibility factors > surface roughness factors>vegetation coverage factors. This study not only provides foundational data and practical references for environmental protection and sustainable development in the Qinghai-Tibet Plateau, but also offers a diverse range of methods and experiences for studying freeze-thaw wind erosion in other regions with similar climatic and geographical characteristics through the application of the model.
[1] |
杨珍珍,倪万魁,李兰,等. 基于GIS的多因子土壤冻融侵蚀强度分级评价——以长江上游为例[J]. 水利与建筑工程学报,2022,20(6):89 − 95. [YANG Zhenzhen,NI Wankui,LI Lan,et al. Grading evaluation of multi factor soil freeze-thaw erosion intensity based on GIS:A case study of the upper reache of the Yangtze River[J]. Journal of Water Resources and Architectural Engineering,2022,20(6):89 − 95. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-1144.2022.06.014
YANG Zhenzhen, NI Wankui, LI Lan, et al. Grading evaluation of multi factor soil freeze-thaw erosion intensity based on GIS: A case study of the upper reache of the Yangtze River[J]. Journal of Water Resources and Architectural Engineering, 2022, 20(6): 89 − 95. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-1144.2022.06.014
|
[2] |
魏霞,丁永建,李勋贵. 冻融侵蚀研究的回顾与展望[J]. 水土保持研究,2012,19(2):271 − 275. [WEI Xia,DING Yongjian,LI Xungui. Review and prospect of freeze-thaw-induced erosion research[J]. Research of Soil and Water Conservation,2012,19(2):271 − 275. (in Chinese with English abstract)]
WEI Xia, DING Yongjian, LI Xungui. Review and prospect of freeze-thaw-induced erosion research[J]. Research of Soil and Water Conservation, 2012, 19(2): 271 − 275. (in Chinese with English abstract)
|
[3] |
景国臣. 冻融侵蚀的类型及其特征研究[J]. 中国水土保持,2003(10):17 − 18. [JING Guochen. Study on types of freeze-thaw erosion and its characteristics[J]. Soil and Water Conservation in China,2003(10):17 − 18. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-0941.2003.10.010
JING Guochen. Study on types of freeze-thaw erosion and its characteristics[J]. Soil and Water Conservation in China, 2003(10): 17 − 18. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0941.2003.10.010
|
[4] |
谢胜波,屈建军,韩庆杰. 青藏高原冻融风蚀形成机理的实验研究[J]. 水土保持通报,2012,32(2):64 − 68. [XIE Shengbo,QU Jianjun,HAN Qingjie. Mechanisms of freezing-thawing induced wind erosion in Qinghai-Tibet Plateau[J]. Bulletin of Soil and Water Conservation,2012,32(2):64 − 68. (in Chinese with English abstract)]
XIE Shengbo, QU Jianjun, HAN Qingjie. Mechanisms of freezing-thawing induced wind erosion in Qinghai-Tibet Plateau[J]. Bulletin of Soil and Water Conservation, 2012, 32(2): 64 − 68. (in Chinese with English abstract)
|
[5] |
BAGNOLD R A. The physics of blown sand and desert dunes[M]. Dordrecht Springer Netherlands,1971.
|
[6] |
CHEPIL W S,Milne R A. Comparative study of soil drifting in the field and in a wind tunnel[J]. Scientific Agriculture,1939,19(5):249 − 257.
|
[7] |
CHEPIL W S. Measurement of wind erosiveness of soils by dry sieving procedure[J]. Scientific Agriculture,1942,23(3):154 − 160.
|
[8] |
CHEPIL W S. Factors that influence clod structure and erodibility of soil by wind[J]. Soil Science,1953,75(6):473 − 484.
|
[9] |
CHEPIL W S. Influence of moisture on erodibility of soil by wind[J]. Soil Science Society of America Journal,1956,20(2):288 − 292.
|
[10] |
江凌,肖燚,欧阳志云,等. 基于RWEQ模型的青海省土壤风蚀模数估算[J]. 水土保持研究,2015,22(1):21 − 25. [JIANG Ling,XIAO Yi,OUYANG Zhiyun,et al. Estimate of the wind erosion modules in Qinghai Province based on RWEQ model[J]. Research of Soil and Water Conservation,2015,22(1):21 − 25. (in Chinese with English abstract)]
JIANG Ling, XIAO Yi, OUYANG Zhiyun, et al. Estimate of the wind erosion modules in Qinghai Province based on RWEQ model[J]. Research of Soil and Water Conservation, 2015, 22(1): 21 − 25. (in Chinese with English abstract)
|
[11] |
殷海军. RWEQ模型的改进及其在风沙区的应用研究[D]. 北京:中国农业大学,2007. [YIN Haijun. Research on improvement and application of revised wind erosion model in the windy and sandy regions [D]. Beijing:China Agricultural University,2007. (in Chinese with English abstract)]
YIN Haijun. Research on improvement and application of revised wind erosion model in the windy and sandy regions [D]. Beijing: China Agricultural University, 2007. (in Chinese with English abstract)
|
[12] |
GREGORY J M,BORRELLI J,FEDLER C B. TEAM:Texas erosion analysis model[J]. American Society of Agricultural Engineers (Microfiche collection)(USA),1988.
|
[13] |
SHAO Y P,RAUPACH M R,LEYS J F. A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region[J]. Soil Research,1996,34(3):309.
|
[14] |
董治宝. 建立小流域风蚀量统计模型初探[J]. 水土保持通报,1998,18(5):55 − 62. [DONG Zhibao. Establishing statistic model of wind erosion on small watershed basis[J]. Bulletin of Soil and Water Conservation,1998,18(5):55 − 62. (in Chinese)] DOI: 10.3969/j.issn.1000-288X.1998.05.013
DONG Zhibao. Establishing statistic model of wind erosion on small watershed basis[J]. Bulletin of Soil and Water Conservation, 1998, 18(5): 55 − 62. (in Chinese) DOI: 10.3969/j.issn.1000-288X.1998.05.013
|
[15] |
严平,董光荣,张信宝等. 137Cs 法测定青藏高原土壤风 蚀 的 初 步 结 果[J]. 科 学 通 报,2000(2):199 − 204. (in Chinese).
|
[16] |
张国平. 基于遥感和 GIS 的中国土壤风力侵蚀研究[D]. 中国科学院研究生院(遥感应用研究所),2002. [ZHANG Guoping. Remote sensing and GIS based study on the soil wind erosion in China[D]. Graduate University of Chinese Academy of Sciences (Institute of Remote Sensing Digital Earth),2002. (in Chinese with English abstract)]
ZHANG Guoping. Remote sensing and GIS based study on the soil wind erosion in China[D]. Graduate University of Chinese Academy of Sciences (Institute of Remote Sensing Digital Earth), 2002. (in Chinese with English abstract)
|
[17] |
程江浩. 1990—2020年青藏高原生态系统调节服务时空变化及其驱动力研究[D]. 大理大学,2023. [CHENG Jianghao. Spatial and temporal changes in typical ecosystem services and the driving forces,Tibetan Plateau,1990−2020[D]. Dali University,2023. (in Chinese with English abstract)]
CHENG Jianghao. Spatial and temporal changes in typical ecosystem services and the driving forces, Tibetan Plateau, 1990−2020[D]. Dali University, 2023. (in Chinese with English abstract)
|
[18] |
赖锋,乔占明连. 青海省风蚀量及防风固沙量时空特征分析[J]. 测绘学,2023,48(1):148 − 156. [LAI Feng,QIAO Zhanming,XIONG Zenglian. Spatiotemporal characteristics of wind erosion and wind prevention and sand fixation in Qinghai Province[J]. Science of Surveying and Mapping,2023,48(1):148 − 156. (in Chinese with English abstract)]
LAI Feng, QIAO Zhanming, XIONG Zenglian. Spatiotemporal characteristics of wind erosion and wind prevention and sand fixation in Qinghai Province[J]. Science of Surveying and Mapping, 2023, 48(1): 148 − 156. (in Chinese with English abstract)
|
[19] |
巩俐,王发科,李积芳,等. 五道梁地区土壤风蚀变化特征及气象影响因子分析[J]. 青海草业,2020,29(3):59 − 63. [GONG Li,WANG Fake,LI Jifang,et al. Characteristics of soil wind erosion and analysis of meteorological influencing factors in Wudaoliang area[J]. Qinghai Prataculture,2020,29(3):59 − 63. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-1445.2020.03.015
GONG Li, WANG Fake, LI Jifang, et al. Characteristics of soil wind erosion and analysis of meteorological influencing factors in Wudaoliang area[J]. Qinghai Prataculture, 2020, 29(3): 59 − 63. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-1445.2020.03.015
|
[20] |
杨栋,王全成,姜昭群. 季节性冻土区滑坡防治工程的冻融效应分析[J]. 中国地质灾害与防治学报,2021,32(6):82 − 89. [YANG Dong,WANG Quancheng,JIANG Zhaoqun. Analysis on the effect of freeze-thaw on landslide prevention projects in seasonal frozen soil area[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):82 − 89. (in Chinese with English abstract)]
YANG Dong, WANG Quancheng, JIANG Zhaoqun. Analysis on the effect of freeze-thaw on landslide prevention projects in seasonal frozen soil area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 82 − 89. (in Chinese with English abstract)
|
[21] |
沈凌铠,周保,魏刚,等. 气温变化对多年冻土斜坡稳定性的影响——以青海省浅层冻土滑坡为例[J]. 中国地质灾害与防治学报,2023,34(1):8 − 16. [SHEN Lingkai,ZHOU Bao,WEI Gang,et al. Influence of air temperature change on stability of permafrost slope:A case study of shallow permafrost landslide in Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):8 − 16. (in Chinese with English abstract)]
SHEN Lingkai, ZHOU Bao, WEI Gang, et al. Influence of air temperature change on stability of permafrost slope: A case study of shallow permafrost landslide in Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 8 − 16. (in Chinese with English abstract)
|
[22] |
ZHAO Dongsheng,WU Shaohong. Projected changes in permafrost active layer thickness over the Qinghai-Tibet Plateau under climate change[J]. Water Resources Research,2019,55(9):7860 − 7875.
|
[23] |
PANG Qiangqiang,ZHAO Lin,LI Shuxun,et al. Active layer thickness variations on the Qinghai–Tibet Plateau under the scenarios of climate change[J]. Environmental Earth Sciences,2012,66(3):849 − 857.
|
[24] |
庞强强,李述训,吴通华,等. 青藏高原冻土区活动层厚度分布模拟[J]. 冰川冻土,2006,28(3):390 − 395. [PANG Qiangqiang,LI Shuxun,WU Tonghua,et al. Simulated distribution of active layer depths in the frozen ground regions of Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2006,28(3):390 − 395. (in Chinese with English abstract)]
PANG Qiangqiang, LI Shuxun, WU Tonghua, et al. Simulated distribution of active layer depths in the frozen ground regions of Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 390 − 395. (in Chinese with English abstract)
|
[25] |
徐晓明,吴青柏,张中琼. 青藏高原多年冻土活动层厚度对气候变化的响应[J]. 冰川冻土,2017,39(1):1 − 8. [XU Xiaoming,WU Qingbai,ZHANG Zhongqiong. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change[J]. Journal of Glaciology and Geocryology,2017,39(1):1 − 8. (in Chinese with English abstract)]
XU Xiaoming, WU Qingbai, ZHANG Zhongqiong. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 1 − 8. (in Chinese with English abstract)
|
[26] |
徐晓明,吴青柏. 三江源多年冻土活动层厚度变化特征研究[J/OL]. 冰川冻土:1 − 15. [XU Xiaoming,WU Qingbai. Research on the variation characteristics of active layer thickness of permafrost in the Three River Source Region[J/OL]. Glacial permafrost:1 − 15. (in Chinese with English abstract)]
XU Xiaoming, WU Qingbai. Research on the variation characteristics of active layer thickness of permafrost in the Three River Source Region[J/OL]. Glacial permafrost: 1 − 15. (in Chinese with English abstract)
|
[27] |
张中琼,吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土,2012,34(3):505 − 511. [ZHANG Zhongqiong,WU Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology,2012,34(3):505 − 511. (in Chinese with English abstract)]
ZHANG Zhongqiong, WU Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505 − 511. (in Chinese with English abstract)
|
[28] |
刘文惠,谢昌卫,刘海瑞,等. Stefan方程在土壤冻融过程模拟中的应用[J]. 冰川冻土,2022,44(1):327 − 339. [LIU Wenhui,XIE Changwei,LIU Hairui,et al. Application of Stefan equation on simulating freezing-thawing process of permafrost[J]. Journal of Glaciology and Geocryology,2022,44(1):327 − 339. (in Chinese with English abstract)]
LIU Wenhui, XIE Changwei, LIU Hairui, et al. Application of Stefan equation on simulating freezing-thawing process of permafrost[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 327 − 339. (in Chinese with English abstract)
|
[29] |
张云霞. 2000—2020年青藏高原生态质量时空变化及其影响因素[D]. 兰州:兰州大学,2023. [ZHANG Yunxia. Spatiotemporal changes of ecological quality and itsinfluencing factors of the Qinghai-Tibetan Plateaufrom 2000 to 2020 [D]. Lanzhou:Lanzhou University,2023. (in Chinese with English abstract)]
ZHANG Yunxia. Spatiotemporal changes of ecological quality and itsinfluencing factors of the Qinghai-Tibetan Plateaufrom 2000 to 2020 [D]. Lanzhou: Lanzhou University, 2023. (in Chinese with English abstract)
|
[30] |
NI Jie,WU Tonghua,ZHU Xiaofan,et al. Simulation of the present and future projection of permafrost on the Qinghai-Tibet Plateau with statistical and machine learning models[J]. Journal of Geophysical Research:Atmospheres,2021,126(2):e2020jd033402.
|
[31] |
高荣,韦志刚,董文杰. 青藏高原土壤冻结始日和终日的年际变化[J]. 冰川冻土,2003,25(1):49 − 54. [GAO Rong,WEI Zhigang,DONG Wenjie. Interannual variation of the beginning date and the ending date of soil freezing in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2003,25(1):49 − 54. (in Chinese with English abstract)]
GAO Rong, WEI Zhigang, DONG Wenjie. Interannual variation of the beginning date and the ending date of soil freezing in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25(1): 49 − 54. (in Chinese with English abstract)
|
[32] |
王一菲,郑粉莉,张加琼,等. 冻融作用对典型黑土土壤风蚀的影响[J]. 水土保持学报,2020,34(5):34 − 41. [WANG Yifei,ZHENG Fenli,ZHANG Jiaqiong,et al. Effects of freeze-thaw on wind erosion in the typical mollisol region[J]. Journal of Soil and Water Conservation,2020,34(5):34 − 41. (in Chinese with English abstract)]
WANG Yifei, ZHENG Fenli, ZHANG Jiaqiong, et al. Effects of freeze-thaw on wind erosion in the typical mollisol region[J]. Journal of Soil and Water Conservation, 2020, 34(5): 34 − 41. (in Chinese with English abstract)
|
[33] |
董瑞琨,许兆义,杨成永. 青藏高原冻融侵蚀动力特征研究[J]. 水土保持学报,2000,14(4):12 − 16. [DONG Ruikun,XU Zhaoyi,YANG Chengyong. Dynamic and characteristic of freezing thawing erosion on Qinghai Tibet Plateau[J]. Journal of Soil Water Conservation,2000,14(4):12 − 16. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1009-2242.2000.04.003
DONG Ruikun, XU Zhaoyi, YANG Chengyong. Dynamic and characteristic of freezing thawing erosion on Qinghai Tibet Plateau[J]. Journal of Soil Water Conservation, 2000, 14(4): 12 − 16. (in Chinese with English abstract) DOI: 10.3321/j.issn:1009-2242.2000.04.003
|
[34] |
吴雅琼,刘国华,傅伯杰,等. 青藏高原土壤有机碳密度垂直分布研究[J]. 环境科学学报,2008,28(2):362 − 367. [WU Yaqiong,LIU Guohua,FU Bojie,et al. Study on the vertical distribution of soil organic carbon density in the Tibetan Plateau[J]. Acta Scientiae Circumstantiae,2008,28(2):362 − 367. (in Chinese with English abstract)]
WU Yaqiong, LIU Guohua, FU Bojie, et al. Study on the vertical distribution of soil organic carbon density in the Tibetan Plateau[J]. Acta Scientiae Circumstantiae, 2008, 28(2): 362 − 367. (in Chinese with English abstract)
|
[35] |
刘勇,魏良帅,黄安邦,等. 气候变化下长江源土壤水时空演化及其环境响应[J]. 水文地质工程地质,2023,50(5):39 − 52. [LIU Yong,WEI Liangshuai,HUANG Anbang,et al. Spatial and temporal evolution of soil water and its response to the environment in the Yangtze River source area under climate change[J]. Hydrogeology & Engineering Geology,2023,50(5):39 − 52. (in Chinese with English abstract)]
LIU Yong, WEI Liangshuai, HUANG Anbang, et al. Spatial and temporal evolution of soil water and its response to the environment in the Yangtze River source area under climate change[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 39 − 52. (in Chinese with English abstract)
|
[36] |
张永双,郭长宝,李向全,等. 川藏铁路廊道关键水工环地质问题:现状与发展方向[J]. 水文地质工程地质,2021,48(5):1 − 12. [ZHANG Yongshuang,GUO Changbao,LI Xiangquan,et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor:Current status and development direction[J]. Hydrogeology & Engineering Geology,2021,48(5):1 − 12. (in Chinese with English abstract)]
ZHANG Yongshuang, GUO Changbao, LI Xiangquan, et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor: Current status and development direction[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 1 − 12. (in Chinese with English abstract)
|
[37] |
支泽民,刘峰贵,周强,等. 基于流域单元的地质灾害易发性评价——以西藏昌都市为例[J]. 中国地质灾害与防治学报,2023,34(1):139 − 150. [ZHI Zemin,LIU Fenggui,ZHOU Qiang,et al. Evaluation of geological hazards susceptibility based on watershed units:A case study of the Changdu City,Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):139 − 150. (in Chinese with English abstract)]
ZHI Zemin, LIU Fenggui, ZHOU Qiang, et al. Evaluation of geological hazards susceptibility based on watershed units: A case study of the Changdu City, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 139 − 150. (in Chinese with English abstract)
|
[1] | Nan SUO, Jinming XU, Baoming LU. Analysis of the main controlling factors of weathering rates in Yungang Grottoes sandstones[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(3): 68-75. DOI: 10.16031/j.cnki.issn.1003-8035.202401042 |
[2] | Wenxuan HUANG, Hengxing LAN, Xing GAO, Wei WANG, Yuming WU, Wenping LI, Jie LIU, Langping LI. Importance analysis of seismic landslide influencing factors on the eastern margin of the Tibetan Plateau[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202407006 |
[3] | Bing LIU, Kun ZHENG, Chaolin WANG, Jing BI, Shuailong LIAN. Mechanism analysis on anisotropic degradation of sandstone in freeze thaw environment based acoustic emission[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 132-142. DOI: 10.16031/j.cnki.issn.1003-8035.202302008 |
[4] | Bin CHEN, Yingyi LI, Lianzhi ZHANG, Tianqiang QU, Na WEI, Ning LIU, Chunlin HUANG. Classification optimization of geological hazard susceptibility evaluation factors based on AIFFC algorithm[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 72-81. DOI: 10.16031/j.cnki.issn.1003-8035.202210048 |
[5] | Mingli XIE, Nengpan JU, Jianjun ZHAO, Qiang FAN, Chaoyang HE. Evaluation on spatial accuracy and validation of geological hazard susceptibility based on a multi-factor combination[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 10-19. DOI: 10.16031/j.cnki.issn.1003-8035.202302032 |
[6] | Fujin ZHANG, Shulin XU, Ping WANG, Cheng CAI, Yi CHEN. Susceptibility assessment of geological hazards based on susceptibility quantitative factors: A case study in Qijiang District, Chongqing City[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 136-144. DOI: 10.16031/j.cnki.issn.1003-8035.202203042 |
[7] | Sen WU, Wen ZHANG, Minsheng LIU. Susceptibility analysis on influencing factors of rockfalls and landslides in Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 109-117. DOI: 10.16031/j.cnki.issn.1003-8035.202201017 |
[8] | Dong YANG, Quancheng WANG, Zhaoqun JIANG. Analysis on the effect of freeze-thaw on landslide prevention projects in seasonal frozen soil area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 82-89. DOI: 10.16031/j.cnki.issn.1003-8035.2021.06-10 |
[9] | ZHAI Shuhua, MAO Jian, NAN Yun, LIU Huanhuan, WANG Yuntao, WANG Qiangqiang, XIONG Chunhua, WANG Yanmei. Multi-factors fusion method of debris flow prediction based on genetic programming[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 111-115. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.14 |