Citation: | YANG Qiangguo,LUO Gang,WU Maolin,et al. Re-evaluation on rockfall risk at tunnel entrances and exits during the construction phase of Yichang—Zhengwan high speed railway connection line[J]. The Chinese Journal of Geological Hazard and Control,2025,36(4): 1-13. DOI: 10.16031/j.cnki.issn.1003-8035.202405033 |
The new Yichang—Zhengwan high speed railway connection line crosses the eastern edge of the Dabashan arc tectonic belt in the Qinling orogenic belt, with strong neotectonic movement, mixed stratigraphic lithology, large topographic relief, and a large number of perilous rocks developed on the upward slopes of tunnel entrances, which poses a serious threat to the safety of the construction and operation of the connection line. On the basis of the preliminary evaluation during the survey phase, this paper takes 35 risky slopes screened out in the preliminary evaluation as research objects to carry out re-evaluation. Considering the efficacy of temporary construction protective measures, we narrowed down two high risk tunnels using stereographic projection analysis and the fuzzy mathematical analytic hierarchy process. Subsequently, the predictive analysis was conducted to assess the dynamic characteristics of falling rocks by Rockpro3D simulation based on GIS and probability models. The results show that: (1) The exit of the Weijiashan tunnel has a low probability of being impacted by falling rocks, while the exit of the Laolingang tunnel has an extremely high probability of being impacted by falling rocks; (2) The probability of the perilous rock of Laolingang tunnel impacting directly on the tunnel opening is 24.73%, with the maximum impact energy of 6 693 kJ and the maximum speed of 26.2 m/s, and the impact points are concentrated in the right side of the tunnel entrance; (3) According to the factors of impact probability, impact energy, impact velocity, woods and topography, there is an urgent need for engineering management of perilous rock zone 3. The research results can provide reference for the effective prevention and control of perilous rocks in the tunnel of Zheng-Wan high speed railway connection line.
[1] |
HUNGR O,LEROUEIL S,PICARELLI L. The Varnes classification of landslide types,an update[J]. Landslides,2014,11(2):167 − 194. DOI: 10.1007/s10346-013-0436-y
|
[2] |
臧佳园,常文斌,邢爱国,等. 含构造节理的崩塌体动力破碎特征[J]. 中国地质灾害与防治学报,2024,35(3):1 − 11. [ZANG Jiayuan,CHANG Wenbin,XING Aiguo,et al. Dynamic fragmentation characteristics of rock avalanche with tectonic joints[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):1 − 11. (in Chinese with English abstract)]
ZANG Jiayuan, CHANG Wenbin, XING Aiguo, et al. Dynamic fragmentation characteristics of rock avalanche with tectonic joints[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 1 − 11. (in Chinese with English abstract)
|
[3] |
GANG Luo,HU Xiewen,DU Yingjin,et al. A collision fragmentation model for predicting the distal reach of brittle fragmentable rock initiated from a cliff[J]. Bulletin of Engineering Geology and the Environment,2019,78(1):579 − 592. DOI: 10.1007/s10064-018-1286-6
|
[4] |
贺凯,高杨,殷跃平,等. 基于岩体损伤的大型高陡危岩稳定性评价方法[J]. 水文地质工程地质,2020,47(4):82 − 89. [HE Kai,GAO Yang,YIN Yueping,et al. Stability assessment methods for huge high-steep unstable rock mass based on damage theory[J]. Hydrogeology & Engineering Geology,2020,47(4):82 − 89. (in Chinese with English abstract)]
HE Kai, GAO Yang, YIN Yueping, et al. Stability assessment methods for huge high-steep unstable rock mass based on damage theory[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 82 − 89. (in Chinese with English abstract)
|
[5] |
罗刚,程谦恭,沈位刚,等. 高位高能岩崩研究现状与发展趋势[J]. 地球科学,2022,47(3):913 − 934. [LUO Gang,CHENG Qiangong,SHEN Weigang,et al. Research status and development trend of the high-altitude extremely-energetic rockfalls[J]. Earth Science,2022,47(3):913 − 934. (in Chinese with English abstract)]
LUO Gang, CHENG Qiangong, SHEN Weigang, et al. Research status and development trend of the high-altitude extremely-energetic rockfalls[J]. Earth Science, 2022, 47(3): 913 − 934. (in Chinese with English abstract)
|
[6] |
黄达,杨伟东,陈智强. 考虑软弱基座风化效应的望霞危岩崩塌机制分析[J]. 人民长江,2018,49(6):64 − 69. [HUANG Da,YANG Weidong,CHEN Zhiqiang. Collapse mechanism of Wangxia dangerous rock mass considering weathering effect of underlying soft rock[J]. Yangtze River,2018,49(6):64 − 69. (in Chinese with English abstract)]
HUANG Da, YANG Weidong, CHEN Zhiqiang. Collapse mechanism of Wangxia dangerous rock mass considering weathering effect of underlying soft rock[J]. Yangtze River, 2018, 49(6): 64 − 69. (in Chinese with English abstract)
|
[7] |
边江豪,李秀珍,徐瑞池,王栋. 基于贡献率权重模型的川藏铁路沿线大型滑坡危险性区划[J]. 中国地质灾害与防治学报,2021,32(2):84 − 93. [BIAN Jianghao,LI Xiuzhen,XU Ruichi,et al. Hazard zonation of large-scale landslides along Sichuan—Tibet railway based on contributing weights model[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):84 − 93. (in Chinese with English abstract)]
BIAN Jianghao, LI Xiuzhen, XU Ruichi, et al. Hazard zonation of large-scale landslides along Sichuan—Tibet railway based on contributing weights model[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 84 − 93. (in Chinese with English abstract)
|
[8] |
王明辉,曹熙平,谯立家. 危岩体精细调查与崩塌过程三维场景模拟−以西南某水电站高边坡为例[J]. 中国地质灾害与防治学报,2023,34(6):86 − 96. [WANG Minghui,CAO Xiping,QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model:A case study of the high cut slope near damsite of a hydropower stationin southern China[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):86 − 96. (in Chinese with English abstract)]
WANG Minghui, CAO Xiping, QIAO Lijia. Comprehensive analysis of hazardous rock mass and simulation of potential rockfall processes using 3D terrain model: A case study of the high cut slope near damsite of a hydropower stationin southern China[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 86 − 96. (in Chinese with English abstract)
|
[9] |
LI Haibo,LI Xiaowen,LI Wanzhou,et al. Quantitative assessment for the rockfall hazard in a post-earthquake high rock slope using terrestrial laser scanning[J]. Engineering Geology,2019,248:1 − 13. DOI: 10.1016/j.enggeo.2018.11.003
|
[10] |
董秀军,许强,佘金星,等. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报(信息科学版),2020,45(3):432 − 441. [DONG Xiujun,XU Qiang,SHE Jinxing,et al. A preliminary study on the interpretation of geological hazards in the core scenic area of Jiuzhaigou Valley with multi-source remote sensing data[J]. Journal of Wuhan University (Information Science Edition),2020,45(3):432 − 441. (in Chinese with English abstract)]
DONG Xiujun, XU Qiang, SHE Jinxing, et al. A preliminary study on the interpretation of geological hazards in the core scenic area of Jiuzhaigou Valley with multi-source remote sensing data[J]. Journal of Wuhan University (Information Science Edition), 2020, 45(3): 432 − 441. (in Chinese with English abstract)
|
[11] |
AZZONI A,LA BARBERA G,ZANINETTI A. Analysis and prediction of rockfalls using a mathematical model[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(7):709 − 724.
|
[12] |
STEVENS W D. Rocfall:A tool for probablistic analysis,design of remedial measures and prediction of rockfalls[M]. University of Toronto,1998.
|
[13] |
黄维,艾东,胡胜华,等. 鄂西山区崩塌落石运动特征及危险性分析−以远安县瓦坡崩塌区为例[J]. 中国地质灾害与防治学报,2022,33(6):37 − 43. [HUANG Wei,AI Dong,HU Shenghua,et al. Characteristics of rockfall trajectory and hazard assessment in western Hubei Province:A case study of the Wapo collapse area in Yuan’an County[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):37 − 43. (in Chinese with English abstract)]
HUANG Wei, AI Dong, HU Shenghua, et al. Characteristics of rockfall trajectory and hazard assessment in western Hubei Province: A case study of the Wapo collapse area in Yuan’an County[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 37 − 43. (in Chinese with English abstract)
|
[14] |
吴茂林,罗刚,梅雪峰,等. 基座损伤型危岩崩塌的动力学机理研究[J]. 三峡大学学报(自然科学版),2024,46(4):44 − 51. [WU Maolin,LUO Gang,MEI Xuefeng,et al. Dynamics mechanism study of collapse in pedestal-damaged type perilous rock[J]. Journal of China Three Gorges University (Natural Sciences),2024,46(4):44 − 51. (in Chinese with English abstract)]
WU Maolin, LUO Gang, MEI Xuefeng, et al. Dynamics mechanism study of collapse in pedestal-damaged type perilous rock[J]. Journal of China Three Gorges University (Natural Sciences), 2024, 46(4): 44 − 51. (in Chinese with English abstract)
|
[15] |
GUZZETTI F,CROSTA G,DETTI R,et al. STONE:A computer program for the three-dimensional simulation of rock-falls[J]. Computers & Geosciences,2002,28(9):1079 − 1093.
|
[16] |
RAMMER W,BRAUNER M,LEXER M J. Validation of An Integrated 3D Forest – Rockfall Model[J]. Journal of Geophysical Research-Space Physics,2007,9,04634,Vienna.
|
[17] |
YANG M,FUKAWA T,OHNISHI Y,et al. The application of 3-dimensional dda with a spherical rigid block for rockfall simulation[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:611 − 616. DOI: 10.1016/j.ijrmms.2004.03.108
|
[18] |
LAN Hengxing,DEREK MARTIN C,LIM C H. RockFall analyst:A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling[J]. Computers & Geosciences,2007,33(2):262 − 279.
|
[19] |
马显东,周剑,张路青,等. 基于崩塌滚石运动特征的防护网动态响应规律[J]. 地球科学,2022,47(12):4559 − 4573. [MA Xiandong,ZHOU Jian,ZHANG Luqing,et al. Dynamic response laws of flexible rockfall barriers based on movement characteristics of rockfall[J]. Earth Science,2022,47(12):4559 − 4573. (in Chinese with English abstract)]
MA Xiandong, ZHOU Jian, ZHANG Luqing, et al. Dynamic response laws of flexible rockfall barriers based on movement characteristics of rockfall[J]. Earth Science, 2022, 47(12): 4559 − 4573. (in Chinese with English abstract)
|
[20] |
ZHANG Wen,ZHAO Xiaohan,PAN Xiaojuan,et al. Characterization of high and steep slopes and 3D rockfall statistical kinematic analysis for Kangyuqu area,China[J]. Engineering Geology,2022,308:106807. DOI: 10.1016/j.enggeo.2022.106807
|
[21] |
AKIN M,DINÇER İ,OK A Ö,et al. Assessment of the effectiveness of a rockfall ditch through 3-D probabilistic rockfall simulations and automated image processing[J]. Engineering Geology,2021,283:106001. DOI: 10.1016/j.enggeo.2021.106001
|
[22] |
王忠福,罗干,杨晓洁. 基于RocPro3D的大华桥水电站危岩体数值模拟研究[J]. 华北水利水电大学学报(自然科学版),2025,46(1):152 − 160. [WANG Zhongfu,LUO Gan,YANG Xiaojie. Rockfall numerical simulation at Dahuaqiao hydropower station using RocPro3D,2025,46(1):152 − 160. (in Chinese with English abstract)]
WANG Zhongfu, LUO Gan, YANG Xiaojie. Rockfall numerical simulation at Dahuaqiao hydropower station using RocPro3D, 2025, 46(1): 152 − 160. (in Chinese with English abstract)
|
[23] |
黎尤,何坤,胡卸文,等. 震裂山体崩塌形成特征及运动学三维模拟——以汶川县三官庙村崩塌为例[J]. 工程地质学报,2022,30(2):542 − 552. [LI You,HE Kun,HU Xiewen,et al. Formation characteristics and kinematics 3D simulation of rockfall evolved from shattered mountain:Case study of Sanguanmiao Village rockfall in Wenchuan County[J]. Journal of Engineering Geology,2022,30(2):542 − 552. (in Chinese with English abstract)]
LI You, HE Kun, HU Xiewen, et al. Formation characteristics and kinematics 3D simulation of rockfall evolved from shattered mountain: Case study of Sanguanmiao Village rockfall in Wenchuan County[J]. Journal of Engineering Geology, 2022, 30(2): 542 − 552. (in Chinese with English abstract)
|
[24] |
陈宇,沈位刚,宋忠友,等. 土垫层缓冲落石冲击力特性离散元数值模拟分析[J]. 中国地质灾害与防治学报,2024,35(2):90 − 97. [CHEN Yu,SHEN Weigang,SONG Zhongyou,et al. Analysis of soil cushion buffering characteristic for rockfall impact force through discrete element numerical simulation[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2):90 − 97. (in Chinese with English abstract)]
CHEN Yu, SHEN Weigang, SONG Zhongyou, et al. Analysis of soil cushion buffering characteristic for rockfall impact force through discrete element numerical simulation[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 90 − 97. (in Chinese with English abstract)
|
[25] |
黄海宁,巨能攀,黄健,等. 郑万高铁宜万段边坡危岩崩落破坏特征[J]. 水文地质工程地质,2020,47(3):164 − 172. [HUANG Haining,JU Nengpan,HUANG Jian,et al. Caving failure characteristic of slope rockfall on Yiwan section of the Zhengzhou—Wanzhou high-speed railway[J]. Hydrogeology & Engineering Geology,2020,47(3):164 − 172. (in Chinese with English abstract)]
HUANG Haining, JU Nengpan, HUANG Jian, et al. Caving failure characteristic of slope rockfall on Yiwan section of the Zhengzhou—Wanzhou high-speed railway[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 164 − 172. (in Chinese with English abstract)
|
[26] |
孔伟. 郑万铁路宜万段边坡危岩变形破坏及落石运动特征[D]. 成都:成都理工大学,2018. [KONG Wei. Deformation,failure and rockfall movement characteristics of dangerous rocks on the slope of Yiwan section of Zhengzhou-Wanzhou railway[D]. Chengdu:Chengdu University of Technology,2018. (in Chinese with English abstract)]
KONG Wei. Deformation, failure and rockfall movement characteristics of dangerous rocks on the slope of Yiwan section of Zhengzhou-Wanzhou railway[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese with English abstract)
|
1. |
张明鹏,张帅,吕运鸿. 基于深度学习的地震诱发滑坡自动提取研究. 地基处理. 2024(03): 242-249 .
![]() | |
2. |
豆红强,黄思懿,简文彬,王浩. 基于遥感数据的闽东南山区公路滑坡快速识别技术研究. 自然灾害学报. 2023(01): 217-227 .
![]() | |
3. |
陈靖,文广超,谢洪波,张哲伟,陈红旗. 白格滑坡区遥感光谱时空特征对滑坡发育的指示作用. 自然灾害学报. 2022(06): 239-247 .
![]() | |
4. |
杨寅,包红军,徐成鹏. 地质灾害气象风险预警实时检验客观工具关键技术及应用. 气象科技. 2021(02): 291-296 .
![]() | |
5. |
李文娟,邵海. 基于遥感影像多尺度分割与地质因子评价的滑坡易发性区划. 中国地质灾害与防治学报. 2021(02): 94-99 .
![]() | |
6. |
刘志中,宋英旭,叶润青. 渝东北2014年“8·31”暴雨诱发滑坡遥感解译与分析. 自然资源遥感. 2021(04): 192-199 .
![]() |