ISSN 1003-8035 CN 11-2852/P
    HUANG Qiangqiang,REN Feifan. Stability analysis of geosynthetic-reinforced soil bridge abutments under extreme rainfall conditions[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 78-86. DOI: 10.16031/j.cnki.issn.1003-8035.202412025
    Citation: HUANG Qiangqiang,REN Feifan. Stability analysis of geosynthetic-reinforced soil bridge abutments under extreme rainfall conditions[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 78-86. DOI: 10.16031/j.cnki.issn.1003-8035.202412025

    Stability analysis of geosynthetic-reinforced soil bridge abutments under extreme rainfall conditions

    More Information
    • Received Date: December 15, 2024
    • Revised Date: January 11, 2025
    • Accepted Date: March 02, 2025
    • Available Online: March 09, 2025
    • Geosynthetic-reinforced soil (GRS) abutments have demonstrated significant potential in road and transportation engineering due to their cost-effectiveness, ease of construction, and eco-friendly characteristics. However, the increasing frequency of extreme rainfall events in recent years has significantly impacted on the deformation and stability of these structures. This study systematically evaluated the performance of GRS abutments under traffic loads and extreme rainfall conditions through model tests and numerical analysis. The findings indicate that the numerical model developed with the DBLEAVES-X program can accurately simulates the mechanical response of GRS abutments under conditions of rainfall infiltration, confirming its reliability in the analysis of unsaturated soil mechanics. Parameter analysis reveals that rainfall intensity and the permeability coefficient of the backfill significantly influence the abutment’s resistance to rainfall. Using high-permeability backfill with a permeability coefficient of 1.0×10−2 cm/s can significantly enhance the abutment’s resistance to rainfall, maintaining stability even under extreme rainfall conditions of 200 mm/h. In contrast, a permeability coefficient of 1.0×10−3 cm/s or 1.0×10−4 cm/s may lead to rapid accumulation of pore water pressure, causing soil swelling deformation and substantially increasing the risk of deformation and instability of the abutment. Therefore, it is advisable in practical engineering design to prioritize high-permeability backfill materials, optimize drainage system designs, and implement specific protective measures to enhance the long-term stability and safety of the GRS abutments under complex environmental conditions.

    • [1]
      ABU-HEJLEH N,ZORNBERG J G,WANG T,et al. Monitored displacements of unique geosynthetic-reinforced soil bridge abutments[J]. Geosynthetics International,2002,9(1):71 − 95. DOI: 10.1680/gein.9.0211
      [2]
      ADAMS M T,SCHLATTER W,STABILE T. Geosynthetic reinforced soil integrated abutments at the bowman road bridge in defiance county,Ohio[C]//Geosynthetics in Reinforcement and Hydraulic Applications. Denver,Colorado,USA. American Society of Civil Engineers,2007:1-10.
      [3]
      ADAMS M,NICKS J,STABILE T,et al. Geosynthetic reinforced soil integrated bridge system[C]// EuroGeo4 Paper 2011(271).
      [4]
      任非凡,何江洋. 加筋土结构动力特性研究现状综述[J]. 中国地质灾害与防治学报,2016,27(4):120 − 129. [REN Feifan,HE Jiangyang. Research status review on dynamic properties of reinforced earth structure[J]. The Chinese Journal of Geological Hazard and Control,2016,27(4):120 − 129. (in Chinese with English abstract)]

      REN Feifan, HE Jiangyang. Research status review on dynamic properties of reinforced earth structure[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(4): 120 − 129. (in Chinese with English abstract)
      [5]
      徐超,金宇,杨阳,等. 路面荷载下包裹式加筋土桥台变形的试验研究[J]. 岩土力学,2023,44(增刊1):410 − 418. [XU Chao,JIN Yu,YANG Yang,et al. Experimental study of deformation of mixed reinforced soil abutment under pavement load[J]. Rock and Soil Mechanics,2023,44(Sup 1):410− 418. (in Chinese)]

      XU Chao, JIN Yu, YANG Yang, et al. Experimental study of deformation of mixed reinforced soil abutment under pavement load[J]. Rock and Soil Mechanics, 2023, 44(Sup 1): 410− 418. (in Chinese)
      [6]
      GEBREMARIAM F,TANYU B F,CHRISTOPHER B,et al. Evaluation of vertical stress distribution in field monitored GRS-IBS structure[J]. Geosynthetics International,2020,27(4):414 − 431. DOI: 10.1680/jgein.20.00004
      [7]
      ZHAO Chongxi,XU Chao,WANG Qingming. Centrifuge model studies on the load-bearing characteristics of geosynthetic-reinforced soil abutment[C]// Engineering Geology for a Habitable Earth:IAEG XIV Congress 2023 Proceedings,Chengdu,China. Singapore:Springer Nature Singapore,2024:875 − 883.
      [8]
      王裘申,徐超,张振,等. 交通荷载下加筋土桥台工作性能试验研究[J]. 岩土力学,2022,43(12):3416 − 3425. [WANG Qiushen,XU Chao,ZHANG Zhen,et al. Experimental study on service performance of reinforced soil abutment subjected to traffic loads[J]. Rock and Soil Mechanics,2022,43(12):3416 − 3425. (in Chinese with English abstract)]

      WANG Qiushen, XU Chao, ZHANG Zhen, et al. Experimental study on service performance of reinforced soil abutment subjected to traffic loads[J]. Rock and Soil Mechanics, 2022, 43(12): 3416 − 3425. (in Chinese with English abstract)
      [9]
      XU Chao,LUO Minmin,SHEN Panpan,et al. Seismic performance of a whole Geosynthetic Reinforced Soil–Integrated Bridge System (GRS-IBS) in shaking table test[J]. Geotextiles and Geomembranes,2020,48(3):315 − 330. DOI: 10.1016/j.geotexmem.2019.12.004
      [10]
      JIA Yafei,ZHANG Jun,TONG Lihong,et al. Cumulative deformation behavior of GRS bridge abutments under cyclic traffic loading[J]. Geosynthetics International,2025,32(1):94 − 108. DOI: 10.1680/jgein.23.00144
      [11]
      孟亚,徐超,赵崇熙,等. 分离式加筋土桥台性能及气候因素的影响研究[J]. 华中科技大学学报(自然科学版),2024,52(9):118 − 126. [MENG Ya,XU Chao,ZHAO Chongxi,et al. Research on the performance of disconnect-type reinforced soil abutment and the influence of climatic factors on the abutment[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2024,52(9):118 − 126. (in Chinese with English abstract)]

      MENG Ya, XU Chao, ZHAO Chongxi, et al. Research on the performance of disconnect-type reinforced soil abutment and the influence of climatic factors on the abutment[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(9): 118 − 126. (in Chinese with English abstract)
      [12]
      REN Feifan,HUANG Qiangqiang,WANG Guan. Shaking table tests on reinforced soil retaining walls subjected to the combined effects of rainfall and earthquakes[J]. Engineering Geology,2020,267:105475. DOI: 10.1016/j.enggeo.2020.105475
      [13]
      REN Feifan,HUANG Qiangqiang,GENG Xueyu,et al. Influence of groundwater level changes on the seismic response of geosynthetic-reinforced soil retaining walls[J]. Journal of Zhejiang University:Science A,2022,23(11):850 − 862. DOI: 10.1631/jzus.A2200188
      [14]
      ADAMS M,NICKS J. Design and construction guidelines for geosynthetic reinforced soil abutments and integrated bridge systems[R]. United States:Federal Highway Administration,2018.
      [15]
      廖碧海,王国鼎. 巫山(新县城)超高加筋土挡土墙质量事故及原因分析[J]. 中南公路工程,2001,26(2):58 − 59. [LIAO Bihai,WANG Guoding. Quality accident and causes analysis of retaining wall with bar-soil at the superelevation section in Wushan[J]. Central South Highway Engineering,2001,26(2):58 − 59. (in Chinese)]

      LIAO Bihai, WANG Guoding. Quality accident and causes analysis of retaining wall with bar-soil at the superelevation section in Wushan[J]. Central South Highway Engineering, 2001, 26(2): 58 − 59. (in Chinese)
      [16]
      ABDULLAH N H H,NG K S,JAIS I B M,et al. Use of geosynthetic reinforced soil-integrated bridge system to alleviate settlement problems at bridge approach:A review[J]. Physics and Chemistry of the Earth,Parts A/B/C,2023,129:103304. DOI: 10.1016/j.pce.2022.103304
      [17]
      HATAMI K,BOUTIN J. Influence of backfill type on the load-bearing performance of GRS bridge abutments[J]. Geosynthetics International,2022,29(5):506 − 519. DOI: 10.1680/jgein.21.00052
      [18]
      刘海洋,王录仓,常跟应. 郑州“7•20” 特大暴雨灾害对中国铁路运网的冲击过程和机制[J]. 地理学报,2024,79(3):617 − 634. [LIU Haiyang,WANG Lucang,CHANG Genying. The impact process and mechanism of the superheavy rainfall event in Zhengzhou on July 20,2021 on the China’s railway transport network[J]. Acta Geographica Sinica,2024,79(3):617 − 634. (in Chinese with English abstract)] DOI: 10.11821/dlxb202403005

      LIU Haiyang, WANG Lucang, CHANG Genying. The impact process and mechanism of the superheavy rainfall event in Zhengzhou on July 20, 2021 on the China’s railway transport network[J]. Acta Geographica Sinica, 2024, 79(3): 617 − 634. (in Chinese with English abstract) DOI: 10.11821/dlxb202403005
      [19]
      NICKS J E,ESMAILI D,ADAMS M T. Deformations of geosynthetic reinforced soil under bridge service loads[J]. Geotextiles and Geomembranes,2016,44(4):641 − 653. DOI: 10.1016/j.geotexmem.2016.03.005
      [20]
      上海市政工程设计研究总院,北京市市政工程设计研究总院,天津市市政工程设计研究院,兰州市城市建设设计院. 城市桥梁设计规范:CJJ11-2011[S]. 行业标准-城建,2019. [Shanghai Municipal Engineering Design Institute,Beijing Municipal Engineering Design Research Institute,Tianjin Municipal Engineering Design Institute,Lanzhou Urban Construction Design Institute. Design code for urban bridges:CJJ11-2011[S]. Industry Standard - Urban Construction,2019. (in Chinese)]

      Shanghai Municipal Engineering Design Institute, Beijing Municipal Engineering Design Research Institute, Tianjin Municipal Engineering Design Institute, Lanzhou Urban Construction Design Institute. Design code for urban bridges: CJJ11-2011[S]. Industry Standard - Urban Construction, 2019. (in Chinese)
      [21]
      XIONG Yonglin,BAO Xiaohua,YE Bin,et al. Soil–water–air fully coupling finite element analysis of slope failure in unsaturated ground[J]. Soils and Foundations,2014,54(3):377 − 395. DOI: 10.1016/j.sandf.2014.04.007
      [22]
      谢轶,朱文轩,熊勇林,等. 非饱和路堑和路堤边坡地震响应的数值分析[J/OL]. 上海交通大学学报,2024:1 − 24. (2024-07-12)[2024-12-16]. [XIE Yi, ZHU Wenxuan, XIONGYonglin, et al. Numerical analysis of seismic response of unsaturated cutting and embankment slope[J/OL]. China Industrial Economics, 2024: 1 − 24. (2024-07-12)[2024-12-16]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=SHJT20240708001&dbname=CJFD&dbcode=CJFQ. (in Chinese with English abstract)]

      XIE Yi, ZHU Wenxuan, XIONGYonglin, et al. Numerical analysis of seismic response of unsaturated cutting and embankment slope[J/OL]. China Industrial Economics, 2024: 1 − 24. (2024-07-12)[2024-12-16]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=SHJT20240708001&dbname=CJFD&dbcode=CJFQ. (in Chinese with English abstract)
      [23]
      REN Feifan,HUANG Qiangqiang,CHEN Jianfeng. Centrifuge modeling of geosynthetic-reinforced soil retaining walls subjected to the combined effect of earthquakes and rainfall[J]. Geotextiles and Geomembranes,2022,50(3):470 − 479. DOI: 10.1016/j.geotexmem.2022.01.005
      [24]
      周洪福,冯治国,石胜伟, 等. 川藏铁路某特大桥成都侧岸坡工程地质特征及稳定性评价[J]. 水文地质工程地质,2021,48(5):112 − 119. [ZHOU Hongfu,FENG Zhiguo,SHI Shengwei,et al. Slope engineering geology characteristics and stability evaluation of a grand bridge to Chengdu bank on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology,2021,48(5):112 − 119. (in Chinese with English abstract)]

      ZHOU Hongfu, FENG Zhiguo, SHI Shengwei, et al. Slope engineering geology characteristics and stability evaluation of a grand bridge to Chengdu bank on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 112 − 119. (in Chinese with English abstract)
      [25]
      杨豪,魏玉峰,张御阳,等. 基于离心试验的反倾层状岩质边坡内非贯通性裂缝变形特性分析[J]. 水文地质工程地质,2022,49(6):152 − 161. [YANG Hao,WEI Yufeng,ZHANG Yuyang,et al. An analysis of non-penetration cracks in anti-dip rock slope based on centrifugal test[J]. Hydrogeology & Engineering Geology,2022,49(6):152 − 161. (in Chinese with English abstract)]

      YANG Hao, WEI Yufeng, ZHANG Yuyang, et al. An analysis of non-penetration cracks in anti-dip rock slope based on centrifugal test[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 152 − 161. (in Chinese with English abstract)
      [26]
      郭延辉,杨溢,杨志全,等. 国产GB-InSAR在特大型水库滑坡变形监测中的应用[J]. 中国地质灾害与防治学报,2021,32(2):66 − 72. [GUO Yanhui,YANG Yi,YANG Zhiquan,et al. Application of GB-InSAR in deformation monitoring of huge landslide in reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):66 − 72. (in Chinese with English abstract)]

      GUO Yanhui, YANG Yi, YANG Zhiquan, et al. Application of GB-InSAR in deformation monitoring of huge landslide in reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 66 − 72. (in Chinese with English abstract)
    • Related Articles

      [1]Xia LYU, Gang FAN, Darui LIU, Ziyu LIN. Analysis of slope erosion and failure mechanism under rainfall conditions based on field experiments: A case study of the residual slope of landslide and debris flow in Hexiluo gully, Ganluo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 82-89. DOI: 10.16031/j.cnki.issn.1003-8035.202306004
      [2]Zhongzhong WANG, Zhuohan ZHUANG, Feiyue HU, Wenlong HUANG. Formation conditions and susceptibility assessment of karst collapses in the northern hilly area of Guangzhou City[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 163-172. DOI: 10.16031/j.cnki.issn.1003-8035.202311008
      [3]Weimin HUANG, Quanming CHEN, Jixiang CHEN. Analysis of the “631” geological disaster early warning mode and case studies in Hunan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 74-80. DOI: 10.16031/j.cnki.issn.1003-8035.202312022
      [4]Jiawei WAN, Bin LI, Yang GAO, Yadong QIN, Xiang ZHANG, Jun LI, Pingping ZHANG. Characteristics, hazard conditions, and research progress of shattered mountains in the Yarlung Zangbo Suture Belt, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202410028
      [5]Qiang YANG, Gaofeng WANG, Jinzhu LI, Rongjian LI, Youlong GAO, Weicui DING. Formation conditions and the disaster modes of debris flows along middle and upper reaches of the Bailongjiang River Basin[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 70-79. DOI: 10.16031/j.cnki.issn.1003-8035.202107021
      [6]Yuangui PAN, Zhonggeng WU, Dong SUN, Xiaoguo XIE, Yinchuan TIAN, Jianchao ZHANG. Analysis on the distributive characteristics and causes of the geological disasters induced by the “8·8” heavy rainstorm in Qu County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 125-133. DOI: 10.16031/j.cnki.issn.1003-8035.202203017
      [7]Wei XU, Tao RAN, Kai TIAN. Developing law and disaster modes of geohazards in red bed region of southwestern China: A case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 127-133. DOI: 10.16031/j.cnki.issn.1003-8035.2021.06-15
      [8]Wenming JIANG, Luqi WANG, Peng ZHAO, Bolin HUANG, Zhihua ZHANG, Mingjun HU. Analyses on failure modes and effectiveness of the prevention measures of Jianchuandong dangerous rock mass in the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 105-112. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-13
      [9]Ping WANG, Mingjun HU, Bolin HUANG, Zhihua ZHANG, ZHENG Tao   , Kunda WU, Bo MAO. An analysis on the destruction mode of Wuxia scissors peak down the shore slope in the Three-Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 52-61. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-06
      [10]Jiawei WAN, Hongliang CHU, Bin LI, Yang GAO, Kai HE, Zhuang LI, Yihao LI. Characteristics, types, main causes and development of high-position geohazard chains along the Jiali fault zone, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 51-60. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-07
    • Cited by

      Periodical cited type(11)

      1. 张云,资锋,郭杰华,曹运江,段九龄,郭志刚,唐龙. 基于生态位模型的地质灾害风险评价——以邵阳市隆回县为例. 水文地质工程地质. 2025(01): 190-201 .
      2. 何一飞,张耀南. 滑坡数据不完整对易发性建模的影响及改进建议. 数据与计算发展前沿(中英文). 2025(01): 186-202 .
      3. 张云,资锋,曹运江,成湘伟,韩用顺,唐龙. 基于MaxEnt模型的沅陵县滑坡易发性评价. 自然灾害学报. 2025(01): 105-116 .
      4. 张天宇,李林翠,刘凡,洪增林,钱法桥,胡斌,张淼. 基于优化最大熵模型的黄土滑坡易发性评价:以陕西省吴起县为例. 西北地质. 2025(02): 172-185 .
      5. 何佳璇,江玉红. 中尼交通廊道318国道沿线泥石流分布及特征数据集(2022年). 中国科学数据(中英文网络版). 2024(02): 331-340 .
      6. 王浩,牛全福,刘博,雷姣姣,王刚,张瑞珍. 基于MaxEnt结合粒子群优化的陇南市山洪灾害空间分布预测研究. 武汉大学学报(信息科学版). 2024(08): 1444-1455 .
      7. 张伟,周松林,尹仑. 基于优化MaxEnt模型的高山峡谷区地质灾害易发性评价——以云南省德钦县为例. 灾害学. 2023(02): 185-190 .
      8. 贾雨霏,魏文豪,陈稳,杨清卓,盛逸凡,徐光黎. 基于SOM-I-SVM耦合模型的滑坡易发性评价. 水文地质工程地质. 2023(03): 125-137 .
      9. 卢业勤,赵鹏军,马国强,肖人荣,司子黄,赵东一. 面向国土空间规划的地质灾害易发性评价模型——以自然遗产地梵净山为例. 兰州大学学报(自然科学版). 2023(04): 427-436 .
      10. 刘凡,邓亚虹,慕焕东,钱法桥. 基于最大熵-无限边坡模型的降雨诱发浅层黄土滑坡稳定性评价方法研究. 水文地质工程地质. 2023(05): 146-158 .
      11. 黄敏. 基于FR的多种机器学习模型在地质灾害易发性评价中的对比分析. 福建地质. 2023(03): 236-243 .

      Other cited types(3)

    Catalog

      Article views (65) PDF downloads (36) Cited by(14)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return