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基于 SMOTE-Tomek 和 CNN 耦合的滑坡易发性
评价模型及其应用

—以三峡库区秭归—巴东段为例

于宪煜，汤　礼

（湖北工业大学土木建筑与环境学院，湖北 武汉　430068）

摘要：中国是受滑坡灾害影响较为严重的国家，滑坡对受灾害影响地区的人民生命与财产造成了巨大的威胁。滑坡易发

性评价作为对滑坡风险预测的重要工具，具有重要的防灾减灾的意义，但是传统的滑坡易发性评价中存在滑坡与非滑坡

样本数据不平衡的问题 ，使得训练集的建立在本质上是对非滑坡数据进行了欠采样 ，导致滑坡事件的重要信息特征丢

失，进而影响到滑坡易发性评价的可靠性。文章以三峡库区巴东至秭归段为例，选取高程、坡度等 14个评价因子作为滑

坡易发性评价因子，划分原始训练集与验证集，采用 SMOTE-Tomek方法 (synthetic minority oversampling technique-Tomek Links，

SMOTE-Tomek)处理原始训练数据集 ，构建输入训练集 ，输入并训练卷积神经网络模型 (convolutional neural networks，CNN)，

得到 SMOTE-Tomek-CNN耦合模型 ，再通过将 SMOTE-Tomek方法与传统的欠采样方法 (random undersampling, RUS)，分别与

CNN模型和支持向量机模型 (support vector machine, SVM)交叉组合成 SMOTE-Tomek-SVM、RUS-CNN和 RUS-SVM三种耦合

模型 ，并与 SMOTE-CNN耦合模型进行对比。结果表明 ，在四种耦合模型中 ， SMOTE-CNN耦合模型的特定类别精度与

ROC曲线下面积较高，结果分别为 73.60% 和 0.965，表明该方法的预测能力优于传统的方法，能为研究区滑坡预测工作提

供可靠参考。

关键词：滑坡；滑坡易发性评价；SMOTE-Tomek；卷积神经网络；不平衡数据
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Landslide susceptibility mapping model based on a coupled model of
SMOTE-Tomek and CNN and its application: A case study in the

Zigui-Badong section of the Three Gorges Reservoir area

YU Xianyu，TANG Li

（School of Civil Engineering Architecture and Environment, Hubei University of Technology, Wuhan, Hubei　430068, China）

Abstract：China is a nation severely impacted by landslide disasters, which poses a great threat to the lives and properties of

people in the disaster-affected areas. Landslide susceptibility assessment, as an important tool for landslide risk prediction, is of

great significance for disaster mitigation and prevention. However, traditional landslide susceptibility assessment faces the issue  
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of imbalanced data between landslide and non-landslide samples, leading to the inherent undersampling of non-landslide data in

the  training  set.  This  results  in  the  loss  of  important  information  features  related  to  landslide  events,  thereby  affecting  the

reliability of landslide susceptibility assessment.  In this study, using the Zigui-Badong section of the Three Gorges Reservoir

Area  as  an  example,  14  evaluation  factors,  such  as  elevation  and  slope  were  chosen  as  landslide  susceptibility  assessment

factors,  and  the  original  training  set  and  the  validation  set  were  divided.  In  this  study,  the  synthetic  minority  oversampling

technique - Tomek Links (SMOTE-Tomek) method was employed to process the original training dataset, construct the input

training set.  A convolutional  neural  networks (CNN) was then trained using this  input data,  resulting in the SMOTE-Tomek-

CNN  coupling  model.  In  addition,  by  intersecting  the  SMOTE-Tomek  method  with  undersampling  methods  (random

undersampling,  RUS),  they were separately coupled with the CNN model  and support  vector  machine model  (SVM) to form

three  coupled  models:  SMOTE-Tomek-SVM,  RUS-CNN,  and  RUS-SVM.  These  were  compared  with  the  SMOTE-CNN

coupled model. The results indicate that, among the four coupling models, the SMOTE-CNN coupled model has higher specific

class accuracy and area under the ROC curve, with values of 73.60% and 0.965, respectively. This indicates that this method's

predictive ability is superior to that of traditional methods, making it a reliable resource for landslide prediction in the studied

area.

Keywords：landslide；landslide susceptibility assessment；SMOTE-Tomek；convolutional neural network；unbalanced data

 

0    引言

滑坡易发性评价是以工程地质类比法为理论基础，

可以对研究区域内的滑坡空间分布进行预测的一种方

法[1]。这种方法可以根据理论基础的不同，分为确定性

方法与非确定方法。当前滑坡易发性评价常用的非确定

性方法有支持向量机（support vector machine, SVM）[2 − 3]，

Logistic回归[4 − 6]，决策树[7]与神经网络[8]等。

深度学习属于机器学习研究中的一个新领域，通过

构建深层的网络结构，拥有很强的非线性拟合能力。

已有学者将卷积神经网络（convolutional neural networks，
CNN）用于滑坡易发性评价分析之中，以现有的滑坡数

据挖掘了主要致灾因子和成灾规律，并验证了这种方法

的可行性[9]。

上述机器学习方法在滑坡易发性评价中均得到了

成功地应用，但是需要注意的是，这些方法中训练模型

的数据集是基于滑坡数据与非滑坡数量是均衡的假定，

但在实际情况中数据不平衡问题是普遍存在的，即研究

区内的非滑坡的面积是远远大于滑坡的面积[10]。传统

的训练数据集构建过程使得模型在训练时被动地丢失

掉非滑坡数据内的重要信息特征，从而进一步影响了滑

坡易发性评价的可靠性。

本文综合前人对三峡库区秭归到巴东段滑坡易发

性评价的研究基础，以及地质学、地貌学、统计分析和

机器学习等多学科的理论方法，SMOTE-Tomek方法

（synthetic  minority  oversampling  technique-Tomek  Links，
SMOTE-Tomek）与 CNN模型耦合应用于滑坡易发性评

价，同时引入 SVM模型作为对照，客观比较与评价该采

样方法与不同机器学习方法组合所得到的结果，使得滑

坡数据不平衡问题对滑坡易发性评价的影响最小化，提

高其预测结果的精确性和可靠性，帮助相关部门顺利开

展防灾减灾的工作，以减少滑坡灾害给生产生活带来的

损失。 

1    研究方法
 

1.1    卷积神经网络

Lecun利用梯度下降更新参数的思想设计了 CNN，

CNN作为一种强大的深度学习技术，在不需要对输入

数据进行分类操作的前提下，能够自主学习海量输入数

据与输出数据之间的潜在规则，提取数据的局部特征，

从而进行高精度分类。本研究使用一种 CNN-2D结构，

实现此结构，需将输入的一维数据转化为二维矩阵，具

体来说，一维数据中的每一个因子与二维矩阵中每一个

列向量对应，对于这个列向量，对应于相应属性值的位置

处的值被赋值为 1，其他值被赋值为 0。矩阵大小为滑

坡易发性评价因子的个数，本研究选取 L 个因子，故该

二维矩阵的大小为 L×L，通过独热编码以及补零等方法

完成了到二维矩阵的转换操作，该过程如图 1（a）所示。

CNN-2D结构有两个内核大小都为 m×m 卷积层，

和两个内核大小为 n×n 的最大池化层。假设将输入的

滑坡栅格单元数据转化为一个 a×a 的二维矩阵，输入第

一个卷积层中，得到 N 个 (a−m+1)×(a−m+1)的特征图。

最大池化层紧接在卷积层后使用，大小为 n×n，该层输

· 142 ·  中国地质灾害与防治学报 第  3 期



出大小为 [(a−m+1)/n]×[(a-m+1)/n]的特征图，此后的卷

积层和最大池化层重复上述过程，最终输出 M 个特征

图，大小为[(a−(n+1)(m−1)/n2]×[(a−(n+1)(m−1)/n2]。最后

一个最大池化层后有一个与所有神经单元完全连接的

全连接层，将特征图展开为向量并重新组织提取的特

征。最后在输出层上的两个神经单元用 1和 0分别表

示滑坡与非滑坡，该结构比传统机器学习模型有更高的

精度 [11]。该结构如图 1（b）所示，在此结构中，a = 14，
m = 3，n = 2，N = 6，M = 32。 

1.2    支持向量机模型

xi (i = 1,2, · · · ,n) yi = ±1

支持向量机的原理是构建一个 n-维超平面作为分

类平面，对输入的数据进行分类。假设一个非线性可分

的向量 ，包含了两类 ，则这个 n-

维超平面定义式如式（1）所示：min
1
2
∥ w ∥2

s.t.yi ((w× xi)+b)≥1
（1）

∥ w ∥式中： ——w 的 2-范数；

w——垂直与超平面的向量；

xi——超平面上的点；

b——为了使得超平面不会通过坐标轴原点的常数。

K
(
xi,xj
)

训练数据集通过核函数 转换到 n-维空间

中，这个核函数本质上是一个映射函数。文献[12]表明使

用径向基核 RBF核的支持向量机模型的性能是优于其

他核支持向量机模型，故本研究采用基于 RBF核的支

持向量机进行滑坡易发性评价。 
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（a）一维数据到二维数据的转换

（b）卷积层及CNN-2D模型结构图
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图 1    一维数据到二维矩阵的转换及 CNN-2D 模型结构图

Fig. 1    Transformation from one-dimensional data to a two-dimensional matrix and structure diagram of the CNN-2D model
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1.3    SMOTE-Tomek方法

x̃

x̃

SMOTE是 Chawla等[13]提出的一种过采样算法，通

过对原始数据进行函数运算生成少数类的数据，其过程

为：（1）对于一个少数类的数据 xi，计算它到其他少数类

数据集中所有数据的距离，得到其 k 个近邻；（2）对于每

一个少数类数据 xi，从其 k 近邻中随机选择若干个数

据，假设选择的近邻为 ；（3）对于每一个随机选出的近

邻 ，分别与原数据按照式（2）构建新的数据。

xnew = x+ rand(0,1)× (x̃− x) （2）

式中：xnew——新构建的少数类数据；

rand(0, 1)——0到 1之间的一个随机数，该随机

  数是在区间内离散均匀分布的伪随

  机数，所以每个新生成的数据所使

  用的随机数是不同的，见图 2（a）（b）。
滑坡样本与非滑坡样本的不平衡会影响模型的

准确性，常通过使用欠采样方法在非滑坡样本中抽取

部分样本与滑坡样本数量达到均衡，或者使用过采样方

法增加滑坡样本与非滑坡样本数量达到均衡[14]。在过

采样方法中，SMOTE算法容易产生数据重叠问题，而

Tomek Links方法可以在一定程度上缓解此问题[15]，本

研究将二者组合成为的 SMOTE-Tomek方法对不平衡

的滑坡数据进行处理。Tomek Links方法是计算所属

不同类别的两个数据实例 xi 和 xj 两者之间的距离，两

者的距离用 d(xi, xj)表示。如果数据集中不存在除 xi

和 xj 之外的一个其他数据点 x，满足 d(xi, x)<d(xi, xj)或
者 d(xj, x)<d(xi, xj)的条件时，则 xi 和 xj 被称作为 Tomek
Links对。如果两个点被判断为 Tomek Links对，则说

明这两者中含有一个是噪声数据，或者表明两者都是在

边界位置上。在经过 SMOTE方法处理过的数据集使用

Tomek Links方法删除掉 Tomek Links对，见图 2（c）（d）。

 
 

（a）原始训练数据集

Tomek Links对

（c）识别Tomek Links对（b）SMOTE方法增加数据

生成的新数据

x
i

x
i

~

x
i

~

x
i

~

（d）移除Tomek Links对后的数据集

图 2    SMOTE-Tomek 方法处理数据集

Fig. 2    Processing of the dataset using the SMOTE-Tomek method
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2    研究区概况及数据源

研究区位于三峡库区秭归到巴东段，该段位于重庆

奉节以东，宜昌秭归以西，东西跨越约 54 km，南北跨越

约 16 km（图 3）。由于在长江长年下切作用，导致研究

区内整个地形地貌有明显的四周高和中间低的盆地特

征，沿江两岸的地势表现出中间低，两岸高[16]。该区域

处于中纬度区域，属于亚热带季风气候，气候和降雨量

随季节变化明显，同时气温受高差影响变化明显，巴东

县年平均降雨量为 1 034.3 mm，秭归地区年平均降雨量

为 1 158.9 mm。
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图 3    研究区地理位置及滑坡分布情况

Fig. 3    Geographic location and landslide distribution in the study area
 

有学者[17]将滑坡易发性评价的计算单元总结为归

纳为 5种，它们分别是：子流域单元、斜坡单元、唯一条

件单元、地域单元以及栅格单元。其中栅格单元的优

势是可利用栅格数据本身的像元作为计算单元，这样能

保证每个计算单元的面积是相同的，并且它是适合输

入 CNN-2D结构的所需的数据形式，栅格故本研究采

用 30 m×30 m的栅格单元作为评价单元。数据源主要

有：（1）1∶10 000比例尺的滑坡灾害图；（2）1∶50 000比

例尺的地形图和 1∶50 000比例尺的地质图；（3）Land-
sat-8卫星 OLI传感器数据；（4）中国气象局大气降水数

据；（5）高级星载热发射和发射辐射计全球数字高程模

型数据。

根据调查结果显示新生滑坡和复活的古滑坡共计

202处滑坡，分布如图 3所示，总面积为 23.4 km2，占研

究区域面积的 6.03%。 

3    滑坡易发性评价因子的筛选

通过分析前人的研究成果 [18]，结合数据源选取高

程、坡向、坡度、坡长、地形表面纹理、地形起伏度指

数、距断层距离、岩性、距长江距离、地形湿度指数、年

平均降雨量、土地利用类型、归一化植被指数和距道路

距离共 14个因子作为滑坡易发性评价因子，其分级情

况如表 1所示。其中大多具有天然相关性，进而要对

这 14个因子进行分析和筛选，步骤如下：
  

表 1    14 个因子多重共线性分析
Table 1    Multicollinearity analysis of 14 factors

因子 TOL VIF 因子 TOL VIF

高程 0.363 2.758 岩性 0.776 1.289
坡向 0.971 1.030 距长江距离 0.388 2.578
坡度 0.118 8.454 地形湿度指数 0.838 1.193
坡长 0.631 1.586 年平均降雨量 0.511 1.957

地形表面纹理 0.887 1.274 土地利用类型 0.862 1.160
地形起伏度指数 0.114 8.734 归一化植被指数 0.750 1.334

距断层距离 0.818 1.223 距道路距离 0.513 1.951
 

（1）使用皮尔逊相关系数分析（Pearson correlation
coefficient, PCC）。为去除因子间相关性对模型预测的
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影响，利用皮尔逊相关系数分析对 14个因子组合进行

分析，分析结果如图 4所示，所有因子组合的分析结果

均通过相关性检测。

（2）使用容忍度（TOL）及方差膨胀因子（VIF）进行

多重共线性分析。多重共线性分析结果如表 2所示，最

大的方差膨胀因子值是 8.734，满足 VIF<10，且 TOL>0.1，
故本研究选取的滑坡易发性评价因子之间不存在多重

共线性。

wi

（3）利用 Relief-F算法的因子重要性筛选。Relief-
F方法可以计算滑坡易发性评价因子与滑坡之间的相

关性来评估该因子，以确定该因子对滑坡发生的相对重

要性 [19]。Relief-F随机选择一个数据 R，并且使用数据

标签为 R 的 k 最近邻数据和来自 R 的不同标签分别构

建数据集 H 和 M，对于所有特征 ，按照式（3）更新特

征的权重：

wi =wi−
k∑

j=1

di f f (Ai,R,Hi)
mk

+

∑
C,Class(R)

 p (C)
1− p [Class (R)]

k∑
j=1

di f f
[
Ai,R,M j (C)

]
mk


（3）

式中：C——数据标签；

p(C)——C 类的概率；

R 类——R 类的数据标签，是 C 类的第 j 个数据；

diff(Ai,R,Hi)和 diff[Ai,R,Mj(C)]——距离函数，将在

重复该计算过程 m 次后计算因子的重要性。

各因子的 Relief-F系数如图 5所示。

Relief-F系数最低的是归一化植被指数因子，其
 

表 2    选取的滑坡易发性评价因子

Table 2    The selected factors for the landslide susceptibility assessment

因子 分级 因子 分级 因子 分级

高程/m

<400

地势起伏度指数

0～35

土地利用类型

水体

400～800 35～70 森林

800～1 200 70～105 人工覆盖面

1 200～1 600 105～140 草地

>1 600 >140 农业用地

坡向

平地

距断层距离/m

0～1 500

归一化植被指数

<0.075
正北 1 500～3 000 0.075～0.15

北东 3 000～4 500 0.15～0.225

正东 4 500～6 000 0.225～0.3

南东 6 000～7 500 0.3～0.375

正南 >7 500 >0.375
西南

岩性

硬岩

距道路距离/m

0～800

正西 软岩 800～1 600

坡度/（°）

0～15 软硬交替 1 600～2 400

15～30

距长江距离/m

0～1 000 2 400～3 200

30～45 1 000～2000 3 200～4 000

45～60 2 000～3 000 >4 000
60～75 3 000～4 000
>75 4 000-5 000

坡长/m

0～800 >5 000
800～1 600

地形湿度指数

<6
1 600～2 400 6～9

2 400～3 200 9～12

>3 200 12～15

地形表面纹理

0～0.14 15～18

0.14～0.28

年平均降雨量/mm

<990
0.28～0.42 990～1 020

0.42～0.56 1 020～1 050

>0.56

1 050～1 080

1 080～1 110
>1 110
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值大于 0，则表示所选取的因子对于滑坡发生都是重

要的。 

4    滑坡易发性评价结果与分析
 

4.1    训练数据集的建立

据统计研究区共计有 425 257个栅格单元。随机选

取 70% 的滑坡数据，即 141处滑坡（19 263个栅格单

元）和 70% 的非滑坡数据（279 736个栅格单元）构建原

始训练数据集。先使用 SMOTE方法增加原始训练数

据集中的滑坡数据，生成与非滑坡数据相同数量的滑坡

栅格单元，数据集包含 559 472个栅格单元，接着使用

Tomek Links方法在数据集中找到 112个 Tomek Links
对（即 224个栅格单元），并将其在数据集中删除掉，最

终训练数据集的栅格单元数量为 559 248。 

4.2    四种耦合模型的建立

将上一节得到的训练数据集导入 CNN模型进行训

练与建模，组成 SMOTE-Tomek-CNN耦合模型。同时

使用传统欠采样（random undersampling, RUS）处理得到

 

高程 坡向 坡度 坡长 岩性

高程 1 0.42 0.074 −0.136 0.159 0.085 −0.125 −0.275 0.512 0.135 −0.174 −0.154 0.338 0.598

坡向 0.42 1 0.011 −0.011 0.03 0.008 −0.036 0.008 0.011 0.142 0.028 −0.043 −0.005 0.014

坡度 0.074 0.011 1 0.013 −0.171 0.0939 0.058 −0.073 −0.065 0.113 −0.436 −0.206 0.03 0.11

坡长 −0.136 −0.011 0.013 1 −0.28 0.000586 −0.012 −0.053 −0.106 0.049 0.524 0.034 −0.035 −0.051

地形表面纹理 0.159 0.03 −0.171 −0.28 1 −0.107 −0.056 0.099 0.274 −0.072 −0.145 0.000964 0.143 0.11

地形起伏度指数 0.085 0.008 0.0939 0.000586 −0.107 1 0.029 −0.088 −0.046 0.125 −0.409 −0.202 0.033 0.119

距断层距离 −0.125 −0.036 0.058 −0.012 −0.056 0.029 1 0.291 −0.084 −0.233 −0.042 0.067 0.046 0.107

岩性 −0.275 0.008 −0.073 −0.053 0.099 −0.088 0.291 1 −0.149 −0.166 0.006 0.131 0.076 −0.009

距长江距离 0.512 0.011 −0.065 −0.106 0.274 −0.046 −0.084 −0.149 1 0.04 −0.06 0.009 0.389 0.582

地形湿度指数 0.135 0.142 0.113 0.049 −0.072 0.125 −0.233 −0.166 0.04 1 0.007 −0.137 −0.125 0.162

年平均降雨量 −0.174 0.028 −0.436 0.524 −0.145 −0.409 −0.042 0.006 -0.06 0.007 1 0.123 −0.018 −0.091

土地利用类型 −0.154 −0.043 −0.206 0.034 0.000964 −0.202 0.067 0.131 0.009 −0.137 0.123 1 0.176 −0.104

归一化植被指数 0.338 −0.005 0.03 −0.035 0.143 0.033 0.046 0.076 0.389 −0.125 −0.018 0.176 1 0.221

距道路距离 0.598 0.014 0.11 −0.051 0.11 0.119 0.107 −0.009 0.582 0.162 −0.091 −0.104 0.221 1
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图 4    14 个因子的 PCC 系数矩阵

Fig. 4    Pearson correlation coefficient (PCC) matrix for the 14 factors
 

0 1 2 3 4 5 6 7 8 9 10

归一化植被指数

土地利用类型

距道路距离

坡度

年平均降雨量

地形起伏度指数

坡长

地形表面纹理

地形湿度指数

坡向

岩性

距长江距离

高程

距断层距离

图 5    14 个因子的 Relief-F 系数

Fig. 5    Relief-F coefficients for the 14 factors
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的一组平衡数据集，将其与 SMOTE-Tomek方法得到的

训练数据集分别与 CNN模型与 SVM模型交叉耦合，

即得到 RUS-CNN、RUS-SVM和 SMOTE-Tomek-SVM
三种耦合模型，建立对比试验。

CNN模型各项参数设置如表 3所示。其中，卷积

层选取的激活函数采用的 ReLu函数，ReLu函数能在一

定程度上加快模型的收敛速度，并可以在一定程度上克

服梯度消失的问题[20]。交叉熵误差可以真实地反映出

分类结果和预测结果的误差，常和 Softmax分类一起使

用将回归变成概率分布。CNN模型在训练过程中，需

要迭代更新参数以提高模型分类效果，本研究使用的权

重更新算法为 Adam算法，它是随机梯度下降算法的扩

展，它能有效减少计算机资源的消耗和降低对参数的调

整要求[21]。
  

表 3    CNN 模型参数设置表
Table 3    Configuration of parameters for the CNN model

CNN-2D各参数项 参数值 CNN-2D各参数项 参数值

卷积核大小 3 × 3 优化器 Adam
最大池化核 2 × 2 迭代次数 20
激活函数 ReLu 批量数据大小 2 000
误差函数 交叉熵误差 学习率 0.001

  

4.3    四种耦合模型的滑坡易发性评价结果

将全部数据导入训练好的 CNN模型与 SVM模型

得到研究区内每个栅格单元的滑坡易发性指数。

为提高滑坡易发性指数的可读性，以及完整了解滑

坡易发性的分布，根据 0～0.5、0.5～0.75、0.75～0.85、
0.85～0.95和 0.95～1的阈值将区域划为 5类易发区

划：极低易发区划、低易发区划、中易发区划、高易发

区划和极高易发区划，得到两个模型的滑坡易发性区划

图，如图 6所示。

结合研究区已知滑坡面的分布情况，并选取黄土坡

滑坡、卡子湾滑坡与新滩滑坡作为参考。在滑坡易发

性评价区划（图 6）结果中，RUS-SVM耦合模型，见图 6
（c）与 SMOTE-Tomek-SVM耦合模型见图 6（d），对这三

个滑坡面的预测结果吻合程度较低；对比之下，RUS-
CNN耦合模型见图 6（a）预测出的滑坡面基本吻合，

SMOTE-Tomek-CNN耦合模型见图 6（b）在此基础上，

预测出的滑坡面更为吻合，表明其预测结果与实际滑坡

发生面的吻合程度相较于其他耦合模型有明显提高。 

4.4    试验结果对比与分析 

4.4.1    特定类别精度分析

特定类别精度分析充分考虑分类区域内栅格单元

个数的因素，并且可用于解决根据最易发生滑坡的区域

占滑坡总面积的比例作为分析滑坡易发性评价的结果

的传统方法，其所易产生两极分化的滑坡易发性评价定

量分析问题[22 − 23]，该方法定义式如下：

pi =
Ai

Bi
×100% （4）

式中：i=1, 2, ···, n——滑坡易发性区划的分类个数；

Ai——第 i 个滑坡易发性分类区划分类中的滑坡

所占栅格单元的数量；

Bi——第 i 个滑坡易发性区划分类中的栅格单元

的数量；

Pi——在第 i 个滑坡易发性区划分类中的特定类

别精度。

根据式（4），两模型的特定类别精度分析结果如表 4
所示。

根 据 表 4， 经 SMOTE-Tomek方 法 处 理 的 结 果

（73.40%，61.17%）均表现好于传统欠采样的评价结果

（64.10%，56.73%），且基于 SMOTE-Tomek方法的 CNN
模型的评价结果是优于 SMOTE-Tomek-SVM耦合模型

的评价结果。 

4.4.2    受试者工作特征（receiver operating characteristic,
ROC）曲线分析

ROC曲线是常用来验证模型性能优劣的常用指

标，它可以直观地展现模型预测结果的精度和可靠性。

ROC曲线是以敏感性 TRR为 Y 轴，以将特异性 TNR
为 X 轴，ROC曲线越靠近左上角点时，说明分类器分类

效果越好（图 7）。
为了评价不同分类器或者分类器在不同条件下的

表现时，一般是以曲线下面积（AUC 值）作为评价标准。

由表 5可见，传统采样方法的 AUC 值均低于 SMO-
TE-Tomek方法的结果，且 SMOTE-Tomek-CNN耦合模

型的 AUC 值为 0.965，大于 SVM模型的 0.951。说明在

ROC曲线分析中，基于 SMOTE-Tomek方法与 CNN耦

合模型的滑坡易发性评价结果最优。 

4.5    滑坡易发性评价结果分析

经过上述两种方法对滑坡易发性评价结果的分析

对比，表现最好的是 SMOTE-Tomek-CNN耦合模型，相

较于传统的欠采样方法，该组合采样方法的定量分析数

值有显著提升，这表明新增加的数据有与原始滑坡数据

一样的预测能力，进而提高了模型的预测性能。同时，

得益于 CNN模型内部卷积核的权值共享和全连接的特

点，它能充分提取隐藏的有价值的特征，并且有效防止

模型产生过拟合。

在滑坡易发性评价中，存在用来训练模型的滑坡数
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据量相对较少的问题，即使传统的对非滑坡数据进行欠

采样处理取得了不错的结果，但用于建模的样本量占总

样本量较小，会对滑坡易发性评价预测结果的精确性和

可靠性产生不利影响。SMOTE方法生成的滑坡数据是

通过线性插值得到的，滑坡与非滑坡数据在达到平衡的

同时扩张了滑坡数据的数据空间，继续通过 Tomek
Links方法在经 SMOTE方法处理过的数据集的数据空

间中寻找噪声点以及边界点，增强滑坡空间与非滑坡数

据空间边界的区分度，不仅使得数据数量达到平衡，也

为模型提供一个更好的决策边界，提高了预测能力与分

辨能力。 

5    结论

滑坡易发性评价是对滑坡进行空间预测，同时以一
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（d）基于SMOTE-Tomek-SVM耦合模型的LSM结果
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图 6    研究区滑坡易发性区划结果

Fig. 6    The result of landslide susceptibility assessment in the study area

 

表 4    特定类别精度分析

Table 4    Analysis of specific category accuracy

模型 RUS-CNN
SMOTE-

Tomek-CNN
RUS-SVM

SMOTE-
Tomek-SVM

极低易发 1.28 0.60 0.76 0.46
低易发 15.71 16.40 9.31 9.12
中易发 27.24 29.15 23.91 24.33
高易发 41.09 45.26 38.57 44.18

极高易发 64.14 73.60 56.73 61.17
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种可视化的方式展现结果的方法。本研究除使用传统

的欠采样减少非滑坡的数据量，还使用 SMOTE-Tomek
方法有效增加训练集中滑坡数据的数量，并最终使用这

些新生成的滑坡样本与同等数量的非滑坡样本共同组

成的平衡样本集来训练 CNN模型与 SVM模型，并按

照一定阈值完成研究区的滑坡易区划，得到结论如下：

（1）使用 SMOTE-Tomek方法处理过的数据集训练

的模型，其评价结果均表现对处理滑坡数据不平衡有

效果，通过比对 SMOTE-Tomek-CNN与 SMOTE-Tomek-
SVM与传统欠采样方法易发性评价的结果，该方法不

仅有效增加滑坡数据，还增强了滑坡数据与非滑坡在数

据空间中的区分度，从而提高模型的分类与预测能力。

（2）根据特定类别精度分析与 ROC曲线分析的结

果，采用 CNN模型，其预测结果均优于 SVM模型。通

过将一维数据转化为二维矩阵，使得 CNN模型有效地

提取滑坡空间信息，并通过共享权重来显著减少神经网

络参数的数量，逐渐在因子向量中学习更复杂的特征表

示，其强大的泛化能力与数据特征提取能力在未来滑坡

易发性评价中有更广阔的运用空间。

（3）对于滑坡易发性区划，通过比对各已发生的滑

坡面，SMOTE-Tomek与 CNN耦合模型预测的极高易

发性区划与黄土坡滑坡、卡子湾滑坡和新滩滑坡等滑

坡面吻合程度高，验证了该评价结果可靠，能为研究区

滑坡预测工作提供参考。
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图 7    滑坡易发性评价结果的 ROC 曲线

Fig. 7    ROC curve of landslide susceptibility assessment result

 

表 5    曲线下面积分析

Table 5    Area under curve analysis

检验结果变量 面积 标准差① 渐进Sig.②
渐进95%置信区间

下限 上限

RUS-CNN 0.929 0.001 0.000 0.928 0.930
SMOTE-Tomek-CNN 0.965 0.000 0.000 0.964 0.965

RUS-SVM 0.942 0.000 0.000 0.941 0.943
SMOTE-Tomek-SVM 0.951 0.000 0.000 0.950 0.952

　　注：①在非参数假设下；②零假设：实面积=0.5。
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