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with the pre-existing landslide, weakening matric suction and soil shear strength, leading to the formation of tension cracks
internally. This triggers overall sliding and localized extensive deformations. Existing studies seldom considers the interaction
between the seepage field and stress field of the Erzhuangke landslide. Therefore, based on the actual engineering geological
disaster scenarios, supported by on-site monitoring data and terrain physical parameters, a geometric computational model is
established, and hydraulic coupled numerical simulations are conducted. By investigating variations in saturation and pore
pressure within the landslide, the paper explores the rainfall infiltration patterns. It examines the impact of rainfall intensity on
landslide reactivation from the perspective of stress displacement. In addition, in order to validate the accuracy and feasibility of
the method, selected measurement points from the landslide are matched with corresponding positions in the numerical model.
Comparative analysis is performed on displacement, soil pressure, and saturation aspects, confirming that the numerical model
effectively reflects the actual situation. Through coupling numerical simulations and the study of the reactivation mechanism of

the old landslide under rainfall conditions, the paper interprets field data, analyzes the reactivation process, and provides
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theoretical foundations and technical guidance for subsequent engineering early warning and disaster mitigation works.
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Fig. 4 Variation of pore pressure and saturation under extreme heavy rainfall
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Fig.5 Shear stress distribution map
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Fig. 6 Comparison of landslide displacements
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Table 2 Comparison of actual and simulated vertical
displacements for monitoring point G6

H 2021-10-28  2021-10-29  2021-10-30  2021-10-31
SZFREE mm 239.01 241.03 242.00 243.04
B/ mm 202.98 209.76 214.31 219.05

RE/% 15.07 12.97 11.44 9.87
F3 G7 BBEALELFRELEERT L

Table 3 Comparison of actual and simulated vertical
displacements for monitoring point G7

H 2021-10-10  2021-10-11  2021-10-12  2021-10-13
FEBREE /mm -2.014 -2.991 ~4.028 -4.028
RS /mm 1.630 2.370 2,610 2.780

RIE/% 180.93 179.24 164.80 169.02
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Fig. 8 Horizontal displacement and simulation results of monitoring
points G6 and G7 during rainfall process
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Table 4 Comparison of actual and simulated horizontal
displacements for monitoring point G6

H 2021-10-15  2021-10-16  2021-10-17  2021-10-18
SBRE R /mm 109.50 111.35 113.32 117.00
REAIE R /mm 102.85 106.15 107.12 107.97

R2/% 6.07 4.67 5.47 7.72

x5 GT RKFALFEBREIUEERT EE
Table 5 Comparison of actual and simulated horizontal
displacements for monitoring point G7

H 1 2021-10-12  2021-10-13  2021-10-14  2021-10-15
SBRER/mm 9.249 14.798 20.348 24.093
RLIER/mm 4.090 4.170 4.400 5.670

BR2E% 55.7 71.82 78.38 76.47

B9 /R T G7 s A ity BT B 3 AN i Ak 1 +
JE S B S, T2-1, T2-2, T2-3 M E[E]FE 1 m, M
R 1 m AMRR I RAN SE A, B AR AT LR, =
A7 0] R IR G E I K A R, R
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Fig. 9 Vertical soil pressure and simulation results of monitoring point

G7 during rainfall process
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monitoring point G7 during rainfall process
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