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摘要：卷积神经网络（convolutional neural networks，CNN）模型因其强大的特征提取能力被广泛应用于滑坡易发性评估，但传

统 CNN已难以满足要求。文章提出一种能够顾及深层与浅层特征的多尺度卷积神经网络 （multi-scale convolutional neural

networks，MSCNN）模型，通过增加模型深度和样本的感受野，挖掘更深层和更稳定的特征，提高复杂场景下的滑坡易发性

评估可靠性。文章以深圳市为研究区，根据系统性原则和代表性原则选取了 12个深圳市滑坡影响因子，构建多尺度卷积

神经网络滑坡易发性评估模型，并与多层感知器（multilayer perceptron，MLP）、支持向量机（ support vector machine，SVM）以及

随机森林 （ random forest，RF）等方法进行对比。结果表明，文章构建的 MSCNN模型的 AUC 值 （0.99）较高，优于 MLP（0.97）、

SVM（0.91）和 RF（0.85），证明提出的 MSCNN模型具有优异的预测能力；深圳市极高易发性区域面积约为 105.3 km2，占研究

区总面积的 4.98%，主要分布在坡体较陡、植被覆盖稀疏和人类工程活动频繁的龙岗区，坡度、地表粗糙度和地表起伏度

成为影响深圳市滑坡的主控因子。文章实现的滑坡易发性图反映了深圳市滑坡灾害的分布现状，可为深圳市未来滑坡

灾害防治提供数据支持和关键技术支撑。
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Abstract：   Convolutional  neural  network  (CNN)  models  are  widely  used  in  landslide  susceptibility  assessment  due  to  their

powerful feature extraction capabilities, and traditional CNN is no longer able to meet the requirements. Therefore, this paper

proposes a multi-scale convolutional neural networks (MSCNN) model that can take into account deep and shallow features. By  
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increasing the depth of the model and expanding the receptive field of samples,  the MSCNN can tap deeper and more stable

features to improve the reliability of landslide susceptibility assessment in complex scenarios.  In this study, Shenzhen City is

selected  as  the  research  area,  and  12  landslide  conditioning  factors  of  landslides  in  Shenzhen  City  were  selected  based  on

systematic and representative principles. A multi-scale convolutional neural network landslide susceptibility assessment model

is constructed and compared with methods such as multilayer perceptron (MLP), support vector machine (SVM), and random

forest (RF). The results show that the AUC value (0.99) of the MSCNN model constructed in this paper is higher than that of

MLP (0.97), SVM (0.91), and RF (0.85), which proves that the proposed MSCNN model has excellent prediction ability. The

area of extremely high susceptibility in Shenzhen City is approximately 105.3 km², accounting for 4.98% of the total area of the

study area, mainly distributed in Longgang District with steep slopes, sparse vegetation cover, and frequent human engineering

activities.  Slope,  surface  roughness,  and  surface  relief  are  identified  as  the  main  conditioning  factors  affecting  landslides  in

Shenzhen  City.  The  landslide  susceptibility  mapping  implemented  in  this  paper  reflects  the  current  distribution  of  landslide

disasters in Shenzhen City, providing data support and key technical support for future landslide disaster prevention and control

in Shenzhen City.

Keywords：MSCNN；landslide susceptibility assessment；machine learning model；Shenzhen

 

0    引言

滑坡是一种危害性很大的自然地质现象[1 − 3]，在我

国山区广泛发育，严重威胁人民群众的生命安全、破坏

正常的生产生活、给国民经济造成了重大损失[4 − 5]。依

据相关资料显示，我国平均每年发生滑坡地质灾害总

数 23 935处，占地质灾害总数 68.7%，直接经济损失约

18.7亿元[6]。为此，习近平总书记就防灾减灾救灾工作

作出一系列重要部署，十九届五中全会也提出了“加强

隐患识别，突出解决隐患在哪里”的问题。可见，全面开

展高、中易发区潜在滑坡早期识别至关重要[7]。滑坡易

发性评估可准确预测区域内潜在滑坡发生的概率，对于

滑坡灾害的预防和治理都具有重要意义[8]。

自改革开放以来，作为国家经济特区的深圳市，进

入了快速发展阶段。深圳市随着经济的不断腾飞和城

市化进程的加快，城市集聚效应明显，人口密度更是位

于全国前列。随之而来的是深圳市城市资源短缺、交

通拥堵和住房紧张等问题。为配备与之相适应的公共

服务设施，不断开展开发利用土地、移山填海和开采地

下水等人类工程活动，导致深圳市地理环境遭到了大量

的破坏，生态失衡[9]。近年来深圳市以滑坡为主的地质

灾害频频发生，严重威胁了地区工程建设进程和人民生

命财产安全 [10 − 12]。在过去的案例中，深圳市的滑坡发

生可归结为自然因素和人为因素共同作用的结果。在

自然方面，全市东西宽，中间窄，总体地势东高西低。地

表形态的迅速变化加之季风气候强降雨时期的影响，极

易诱发滑坡。在人为方面，深圳市的快速城市化进程

中，建设活动密度大，大量的人工切坡、堆坡形成不稳

定要素，加之地表水排放及下渗等要素的影响，共同构

成滑坡发生的人为因素。鉴于此，本文以深圳市为研究

区，对深圳市进行滑坡易发性评估研究能够为该区域提

供数据支持和关键技术支撑。

滑坡易发性评估方法总体可分模型驱动和数据驱

动两种方法，模型驱动方法包括力学机理和经验规则，

而数据驱动方法包括统计回归和机器学习[13]。与其他

类型的方法相比，机器学习的非线性关系数据处理能力

强，能挖掘特征潜在关联，在滑坡易发性评估中逐步得

到广泛应用 [14]。如多层感知机、随机森林 [15]和支持向

量机[16]等方法被应用到区域滑坡易发性评估中，这些机

器学习方法在小场景任务中可以精确地识别环境因素

与滑坡易发性指数之间的隐含关系[17]。但在大范围复

杂异质的地理环境中，无法深度挖掘滑坡潜在关联特

征，导致易发性结果较差。

随着深度学习技术的快速发展，深度学习已被引

入到滑坡易发性评估的研究与应用中[18]。卷积神经网

络（convolutional neural networks，CNN）模型是一种专门

用来处理图像数据的神经网络，被广泛应用于滑坡易

发性评估[19]。如赵占骜等[20]构建了耦合多维 CNN模型

进行滑坡易发性评估，该模型通过不同维度卷积进行融

合，降低模型参数量，获取影响因子的更深层次特征。

但面对复杂场景，多维 CNN模型存在难以顾及深层与

浅层滑坡因子特征的关联性，且难以适应空间尺度变

化，进而导致滑坡预测精度降低。多尺度卷积神经网络

（multi  scale  convolutional  neural  networks， MSCNN）作

为 CNN模型核心思想的扩展，与 CNN模型网络架构类
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似，不同的是添加了融合深浅特征的 Flatten层，使得

MSCNN模型能够学习滑坡因子深层与浅层的关联性

特征，进而更好建立滑坡与环境因子之间的映射关系，

提高滑坡易发性评估的精度[21]。 

1    研究区及数据源
 

1.1    研究区

深圳市位于广东省的南端，地处丘陵、低山、台地

及海湾地带，其中西北部多为丘陵河谷，西南部为典

型的海岸台地。深圳全境地势东南高，西北低，地形复

杂，大部分区域被五华-深圳断裂带斜跨。市区东西长

81.4 km，南北宽 10.8 km，整体呈带状分布（图 1）。同

时，深圳作为全国人口最密集的城市，自成为经济特区

以来，为加快经济建设，不断开发利用土地、移山填海

和开采地下水，导致地理环境遭到大面积的破坏[22]。客

观事实表明，大规模的人类工程活动，已经成为深圳地

质灾害的主要诱因[23]。因此，对于以深圳市为例的灾害

易发城市进行易发性评估方法探究，对滑坡隐患区域进

行排查和管理是非常必要的。
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图 1    研究区概况图

Fig. 1    Overview map of the study area
 
 

1.2    数据源

（1）历史滑坡编目

滑坡在遥感影像上具有独特的结构特征和形状，在

遥感影像常表现为长舌状、簸箕状和其他不规则形状[24]，

通过对比周围环境的纹理、形状、色调和范围等，并结

合滑坡自身的发育阶段特征，可以很容易识别出滑坡。本

文通过遥感影像、实地考察、新闻报道、调查报告和中

国地质调查局等途径共编目 205处滑坡。编目的滑坡

类型主要是土质滑坡，滑坡面积大小为 0.001～0.6 km2，

滑坡总面积为 12.36 km2。在过去的几年里，山体滑坡

给深圳市造成灾难性的破坏。历史滑坡如图 2所示。

（2）滑坡影响因子

本文根据该区域地质背景与区域内多个滑坡的失

稳机理作为依据，并结合前人已有的研究成果资料，依

据系统性原则和代表性原则，从地形、地质、水文和人

类工程活动等 4个方面共选取 12个滑坡影响因子（高

程、坡度、坡向、曲率、地表粗糙度、地表起伏度、到断

层距离、沙含量、土壤类型、到道路距离、土地利用类

型和到河流距离）。其中对于距离类因子，如断层、河

流和道路，通过欧式距离计算得到影响因子。此外，由

于不同数据的分辨率不同，致使所提取的滑坡影响因子

尺度不同，为便于后续数据的处理，基于 ArcGIS软件统

一重采样至 30 m×30 m的分辨率。滑坡样本的最小面

积大于每个像素的实际面积，因此在该分辨率下能够充

分反映滑坡特征。土壤类型和沙含量数据的分辨率为

1 000 m，两者在研究区内呈大面积分布，对滑坡特征变

化的影响较小，能够满足反映滑坡特征的要求。数字高

程模型和土地利用类型数据的分辨率为 30 m，与我们

后期试验中所采用的分辨率一致，能够全面反映滑坡特

征。因此，本文所使用的滑坡数据和基础数据的精度是

匹配的，能够满足模型学习的基本要求。数据来源如

表 1所示。
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① 地形因子

深圳地形复杂，地势变化起伏，考虑地形因素对滑

坡的影响至关重要。本文选取空间分辨率为 30 m的

DEM数据来表示深圳市的地表起伏，并选择由 DEM数

据计算得到的坡度、坡向、曲率、地表起伏度和地表粗

糙度等影响因子。其中，曲率表示地面一点的弯曲程

度，反映地形的侵蚀和沉积情况；地表起伏度能反映地

形特征，是指单元面积指定邻域内高程的最大差值，常

被认为是滑坡失稳的重要影响因子[25]；地表粗糙度是反

映地表起伏和侵蚀程度的一个重要指标，通常以栅格面

积与水平投影面积之比来表达，数值越大，则表示单位

面积越粗糙[26]。

② 地质因子

地质条件是影响滑坡发生的重要内在因素之一，控

制着滑坡的发育与演变。本文选取地质影响因子包括

距断层距离、沙含量和土壤类型。其中，距断层距离反

映了滑坡体的力学性质以及自身的结构破损程度，距离

断层越近，滑坡体破损严重，越容易发生边坡失稳和基

岩顺滑，发生滑坡的可能性越大[27]；沙含量反映了河流

裹挟流沙对堤岸坡体侵蚀冲刷程度，进而影响斜坡的稳

定性；不同土壤类型其自身的结构构造、渗透性和抗剪

切性能不同，在降雨作用下，雨水向土壤中渗透，使土壤

中的孔隙水压力增加。孔隙水压力增大，可使有效荷载

应力增大，降低土的剪切强度，进而诱发滑坡。

③ 水文因子

水文因素是滑坡演化的重要因素，影响着地表水

分布、水土饱和度。深圳市水系发育，水网密布，距河

流距离是影响滑坡发生的关键因素。河流通过侵蚀河

岸对区域地貌进行切割与重构，软化了岩土，减少坡体

抗剪能力，通过冲刷坡脚，加大了坡体临空面，进而增加

斜坡的不稳定性[28]。离河流越近，河流对坡体的侵蚀越

 

(a)

(b) (c) (e)(d)

滑坡A

历史滑坡
深圳边界

滑坡B

N

滑坡A
滑坡B

0 5 10 km

图 2    研究区滑坡隐患识别结果

Fig. 2    Results of landslide hazard identification in the study area

注：（a）历史滑坡空间分布；（b）滑坡 A实地考查照片；（c）滑坡 A新闻照片；（d）滑坡 B实地考查照片；（e）滑坡 B新闻照片。
 

表 1    滑坡影响因子数据来源

Table 1    Data sources for landslide conditioning factors

数据源 分辨率 滑坡影响因子 数据来源

数字高程模型 30 m

高程

https://www.gscloud.cn/

坡度

坡向

曲率

地表粗糙度

地表起伏度

断层 1∶2 500 000 到断层距离 https://www.cgs.gov.cn/

道路和河流 1∶1 000 000
到河流距离

OpenStreetMap
到道路距离

土地利用类型 30 m 土地利用类型 http://data.ess.tsinghua/
土壤类型 1 000 m 土壤类型 https://www.fao.org/
沙含量 1 000 m 沙含量 http://www.geodata.cn/
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严重，坡体的临空面越广阔，大大增加了滑坡发生的可

能性。

④ 人类工程活动因子

深圳市近几年快速城市化进程中，建设活动密度

大、人类活动强度高，大量的人工切坡、堆坡形成不稳

定要素，加之地表水排放及下渗等要素的影响，共同构

成滑坡发生的人为因素。道路的修建通常会对斜坡体

进行开挖与削减等工程施工，这通常会改变坡体原有的

自然地形地貌与地质环境特征规律，增加该斜坡失稳的

可能性[29]，距河流越近，发生滑坡的可能性越大。由于

人类活动的作用，不同的土地使用状况，不同的植被类

型、覆盖程度，造成了不同的降雨和吸收，从而削弱了

土壤的抗剪强度，进而增大了滑坡发生的可能性。因

此，本文选取距道路距离和土地利用类型作为影响滑坡

的重要因素。

本文选取的深圳市滑坡影响因子如图 3所示。
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图 3    滑坡影响因子空间分布

Fig. 3    Spatial distribution of landslide conditioning factor
 
 

2    研究方法
 

2.1    多重共线性分析

滑坡易发性预测是一个线性回归模型求解的过程，

其中，滑坡影响因子是自变量，是否滑坡为因变量。影

响因子之间是否独立，决定了训练出的模型是否具有足

够的鲁棒性和稳健性。例如：地表粗糙度和地表起伏度

均由 DEM数据计算得到，若两者之间存在相关关系，

这将很大程度造成模型失真或难以估计准确，这将影响
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滑坡易发性评估的精度。因此，需对滑坡因子之间的共

线性问题进行数学分析，本文采用方差膨胀系数和容忍

度来检验滑坡因子之间的共线性程度[30]。公式如下：

VIF =
1

1−A2
=

1
T

（1）

式中：VIF——方差膨胀因子，当由最小二乘法估算的回

  归系数的方差与假定的自变量不成线性

  关系时的所估计的回归系数的方差的比值;
A2——各变量之间的方差；

T——容忍度。

随着标准偏差的增大，共线性的程度也随之增加。

当 VIF<10或 T>0.1，表明所选择的自变量具有良好的独

立性。 

2.2    频率比模型

频率比（frequency ratio，FR）模型是通过计算在不同

因子分类间隔下滑坡发生的概率来表示的，大小等于滑

坡面积比与分类面积比的比值 [31 − 32]。然而，由于历史

滑坡可能存在一定的演变，其滑坡范围与实际面积有所

出入，因此，准确统计每个滑坡的面积并非易事。此外，

当研究区范围较大，滑坡数量较多时，统计滑坡面积的

工作量将大大增加。为此，本文采用相对频率来代替滑

坡面积比，以便能够更好地揭示滑坡数据与影响因子之

间的空间分布关系，计算公式如下：

FR =
Ni j

Nr

/
Ai j

Ar
（2）

式中：FR——频率比；

Ni j——第 j 个种类下第 i 个滑坡因子所对应的滑

  坡区；

Nr——全部的滑坡区；

Ai j——第 j 个种类下第 i 个滑坡因子所对应的区域；

Ar——全部的研究区域。 

2.3    地理探测器

随着对滑坡易发性评估研究的深入，学者们挖掘出

众多的滑坡影响因子，利用因子进行建模之前，对因子

的质量进行筛选是必不可少的。因子质量对评估结果

的影响不可忽略，因子对滑坡的解释能力越强，表明该

因子对诱发滑坡发生的驱动力越强，即该因子的重要性

越强，反之则越弱。地理探测器是通过计算因子的空间

分异性，来揭示其背后的驱动力，主要包括：分异及因子

探测器、交互作用探测器、风险区探测器以及生态探测

器 [33 − 34]。其中，分异及因子探测主要用来探测评价指

标对探测目标的空间分异性及各指标对探测目标的影

响程度大小，常用 q 值大小来衡量，其值介于 0～1，越
大表明该因子对滑坡的解释力越强越重要。在本文中，

将利用分异及因子探测器来评价不同滑坡影响因子对

滑坡的影响力并对各因子进行重要性排序。

q = 1−

m∑
i=1

Niσ
2
i

Nσ2
= 1− S L

S T
（3）

S L =
m∑

i=1

Nhσ
2
h （4）

S T = Nσ2 （5）

式中：i=1, 2, ···, m——滑坡影响因子的分层数（分类数

  或分区数）；

Ni、N——滑坡影响因子的第 i 层和该因子全区域

  （所有层）的单元数；

σ2
i σ

2、 ——滑坡影响因子第 i 层和该因子全区域

  （所有层）对应滑坡 Y 值的方差；

SL、ST——层内分成之和和全区域总方差。

q 的取值范围为 0～1，q 值越大，代表该滑坡影响

因子对滑坡影响大，重要性更大，反之，q 值越小，代表

该滑坡影响因子对滑坡影响越小，重要性也越小。 

2.4    构建滑坡数据集

借助 Google Earth所提供的历史遥感影像，参考历

史滑坡点位，结合滑坡体的位置、形状和植被分布等环

境条件作为依据目视解译深圳市历史滑坡，共目视解译

得到 205个历史滑坡作为标签样本数据集，并将其转换

为 0和 1的二值图像，其中 0代表非滑坡，1代表滑

坡。将选择的滑坡因子数据通过 ArcMap软件统一重

采样至 30 m×30 m，并经直方图均衡化将像素差异动态

拉伸至 0～255，使其在单波段位图下仍具丰富且明显

的特征，方便后续模型读取和处理。本文以滑动切割的

方式对滑坡库及滑坡因子图像分块处理（图 4），将滑坡

库和滑坡因子图像通过 ArcMap软件转换为 3 233列

1 518行的灰度图像。研究区的每张灰度图像的像元采

用 13×13的移动窗口进行裁剪，经测试试验采用的图像

大小和窗口大小可以充分保留图像特征并避免数据冗

余。窗口每次移动一个像素格网以保证图像中的每个

像素都可以遍历到。对于因子图像与历史滑坡图像同

步进行滑动切割，以确保各因子与原始滑坡区域对应，

构成图像子集。在每个子集中，以原始滑坡中心点像素

值作为该区域的标签，即滑坡点标签为 1，非滑坡点标

签为 0，这样便构成了邻域图像样本。在切割过程中提
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取各窗口中心点像素值作为该类因子的特征构建序列

样本，同样以滑坡点标签为 1，非滑坡为 0。图像切割结

果共得到 490多万个图像子集，随机选取了 25 491个滑

坡子集，25 591个非滑坡子集，共同构建数据集。对整

体数据集按 7∶3比例划分模型训练集和测试集。
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图 4    滑动裁剪过程

Fig. 4    The process of sliding cutting
 
 

2.5    MSCNN的滑坡易发性评估模型构建

本文首先构建滑坡数据库，选取影响该地区的滑坡

因子，共同构成数据集；然后基于数据集构建 MSCNN
滑坡易发性评估模型，并与 MLP、SVM和 RF模型对比

分析，同时利用多种评价指标进行模型精度评估；最后

基于构建的 MSCNN模型得到该地区滑坡易发性分布

图，整体研究流程如图 5 所示。
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图 5    总体技术流程图

Fig. 5     Overall technical flowchart
 

本研究构建的MSCNN模型详细过程如下：

设计的MSCNN模型主要包括三个卷积层、三个最

大池化层、三个接收不同层次特征的 Flatten层、FC层

以及 Sigmoid输出层（图 6）。
利用三个卷积层和最大池化层获取滑坡库及滑坡

影响因子数据全局特征，每个最大池化层后添加 Flatten

层，用于“展平”多维特征，防止特征信息丢失，逐层增

大卷积层中卷积核的个数，以保证提取到的特征更全

面。利用 Concatenate层拼接三个 Flatten层获取的特征

向量，再利用 FC层对不同深度的特征向量进行融合，

从而获得顾及不同尺度的融合特征。融合具体运算过

程如式（6）（7）所示：
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hi = f
(
W ixi+bi) (i = 1,2,3, · · · ,n) （6）

h =
n∑

i=1

hi （7）

hi式中： ——第 i 个全连接层；

xi——第 i 层展开特征；

W i bi——对应权重矩阵和偏置；

n——全连接层总数；

f (·)——全连接层构建函数。

将所有全连接层融合相加得到 h，即不同尺度的融

合特征。

此外，在每个接收不同层次特征的 Flatten层后添

加 Dropout层，抑制模型过拟合。同时，设置合理的权

重初始化方法和激活函数克服梯度消失或梯度爆炸。

而且每层卷积层和全连接层设置了 RELU激活函数，保

证模型权重在误差反向传播的过程中更新速度一致，以

加快模型的收敛。最后基于 Sigmoid输出层以实现滑

坡易发性评估。 

2.6    模型对比

为进一步验证模型预测能力的可靠性，将通过与机

器学习方法做对比，来评价本文构建模型的优异。选取

的对比方法有MLP、SVM和 RF。
（1）MLP
多层感知器是一种经典机器学习方法，其结构通常

包含输入层、多个隐藏层及输出层，层与层间神经元都

通过全连接相连。MLP模型输入为一个向量数据，将

输入变量传入神经网络中前馈传递，通过误差反向传播

及梯度下降算法，对神经元间的连接参数进行训练和测

试，使网络稳定有序，从而具有决策能力[33]。

（2）SVM
支持向量机最早是由 Vapnik等于 1995年提出的

一种机器学习算法，其主要思想是把线性不可分的数据

映射到高维空间，通过构造最佳决策超平面，使最接近

于平面的两种类型的采样间距达到最大，从而实现输出

变量的线性可分[33]。

（3）RF
随机森林是一种整合多个分类器的分类结果，并根

据投票选出最优结果的机器学习算法。其基本原理是

从原始数据集中有放回的随机抽取多组相同数量的样

本，构建数据子集；再从每个样本中选取一定量的特征

作为决策树的输入；每个样本对应一个分类器，并把每

个分类的结果综合起来，把得分最高的一组作为最后的

输出[35]。 

2.7    模型评估与验证

模型误差评估对评价模型的优劣起着非常重要的

作用，模型验证对于评估模型的预测能力和研究结果的

科学性是至关重要的。本文采用 Logcosh 作为损失函

数来评估模型训练过程中的损失情况，以 AUC、Recall
和 Precision 作为评估模型的精度指标。

x2

Logcosh 是一种更为平滑的损失函数，利用双曲余

弦来计算预测误差。它的优点在于对于很小的误差来

说 log(cosh(x))与 ( )/2很相近，而对于很大的误差则

与 abs(x)-log2很相近。这意味着 Logcosh 损失函数可

以在拥有 MSE优点的同时也不会受到异常值的太多影

响。它拥有 Huber 的所有优点，并且在每一个点都是二

次可导的，计算公式如（8）示。

L (y,yp) =
n∑

i=1

log(cosh(yp
i − yi)) （8）
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图 6    构建的 MSCNN 模型结构

Fig. 6    Proposed MSCNN model structure
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为评价模型效果，将模型生成的 LSM与历史滑坡

分布对比，结果以混淆矩阵的形式展示，可以将其预测

结果划分为 4种类型：其中预测结果与实际结果都为

正，称为真阳（true positive，TP）；预测值为正，实际值为

负则称为伪阳（false positive，FP）；预测和真实的结果都

是负的，叫作“真阴”（true negative，TN）；当预测值是负

值，而实际值是正值时，则是伪阴（false negative，FN）。

受试者工作特征曲线（receiver operating characteri-
stic, ROC）曲线是对不同阈值下的混淆矩阵的综合，被

广泛应用于滑坡易发性评价结果中。ROC以未发生滑

坡的单元但被预测发生滑坡单元的比例（伪阳率，FPR，
式 9）为横坐标，以发生滑坡的单元同时被正确预测的

比例（真阳率，TPR，式 10）为纵坐标，反映数据特异性和

敏感性的连续变化。ROC的曲线下面积（area under the
curve，AUC）可以直接反映结果，曲线越接近左上角，

AUC 的值越大，表明模型分类效果越好。

FPR =
FP

FP+T N
（9）

T PR/Recall =
T P

T P+FN
（10）

Recall 即召回率，表示样本被正确判定的正样本占

总的正样本的比例，衡量的是模型的查全率，计算公式

如（10）所示。

Precision 即准确率，表示预测出来的正确的正样本

数与预测为正样本数的比值，衡量的是模型的查准率，

计算公式如（11）所示。

Precision =
T P

T P+FP
（11）

 

3    结果与讨论
 

3.1    滑坡影响因子分析

通过表 2可知，选定的 12种滑坡影响因子的方差

膨胀因子（VIF），其介于 1～7，最大的 VIF 是坡度，最小

的 VIF 是坡向。T 值介于 0.1～1，最大的 T 值是曲率

（0.997），最小的 T 值是坡向（0.15）。12个滑坡状况因

子的 VIF、 T 值都符合条件（VIF<10或 T>0.1），具有良

好的独立性，表明本文所选因子可靠可行，故可代入滑

坡易发性评估模型，以保证模型的准确性。

采用频比法来定量分析滑坡与影响因子之间的关

系（图 7），当频比值大于 1，表示对滑坡有促进作用，且

随着频率比增大，滑坡发生的概率也增大。通过图 7得

知，在相同的影响因子下，不同的种类对滑坡影响不

同。坡度、地表粗糙度和地表起伏度跟滑坡发生之间

表现出强烈的正相关关系，随着划分等级增大，频率比

的值也逐渐增大，这与深圳市的地形起伏大是相符的。

滑坡条件因子和滑坡之间存在很强的空间分布关系，发

生滑坡可能性大的位置通常离道路和河流近，大部分滑

坡发生在离道路和河流 8 000 m之内，呈现出沿河流、

道路分布的特征。滑坡发生的位置跟距道路的距离密

切相关，揭示了人类活动对坡向平稳性的影响。修建道

路意味着坡向改变或房屋建立，这些都是影响滑坡产生

的因素，同时也表明了后续滑坡发生对人类社会的影

响。地理结构改变通常伴随着一系列的断层和褶皱，这

些地方很有可能发生滑坡。在土地利用和土壤方面，

FR 在灌木湿地表现较低的值，相反，大面积的草原和植

被覆盖率高的地面被视为滑坡发生高概率的地方。 

3.2    滑坡影响因子重要性排序

地理探测器的研究对象为离散型变量，因此本文在

利用地理探测器分析影响因子重要性前，首先将除土壤

类型和土地利用数据以外的所有连续型数据，依据自然

断点法进行重分类离散化。由于研究区内多数滑坡面

积相对较小，在对因子重分类时，统一划分为 5个类

别。地理探测器空间异质性分析结果如表 3所示，所有

因子 q 值均大于 0.05置信区间。空间分异性越强，表

明该因子对滑坡影响越重要，其中，DEM的空间分异性

最强（0.322）地表起伏度次之（0.193），坡向的空间分异

性最低（0.058>0.05），因此，所选 12种影响因子对该研

究区滑坡均会产生重要的影响。 

3.3    滑坡易发性图

滑坡易发性图（landslide susceptibility mapping，LSM）

是一个综合显示模型预测结果的可视化手段。为了更

好地对比 MSCNN模型的可视化结果，在 ArcGIS软件

 

表 2    影响因子共线性评价表

Table 2    Evaluation of factor collinearity among conditioning
factors

序号 影响因子 VIF 容差

1 高程 1.514 0.660

2 坡度 6.666 0.150

3 坡向 1.007 0.993

4 曲率 1.003 0.997

5 地表粗糙度 5.012 0.200

6 地表起伏度 2.148 0.466

7 到断层距离 1.082 0.924

8 土壤类型 1.071 0.993

9 沙含量 1.029 0.972

10 到河流距离 1.110 0.901

11 土地利用类型 1.285 0.778

12 到道路距离 1.070 0.935
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中采用自然断点法来划分滑坡易发性等级，如图 8所

示。LSM的空间分布分为 5种易发性区域，即非常低、

低、中等、高和非常高易发性。

RF模型预测结果，图 8（a）中，各类别区域差异较

大，在四种方法中表现出最大的极高易发区，约占研究

区的 45%。但这些高易发区域存在分布广泛，无法突出

典型的问题。结合建模过程分析，对于有不同取值的属

性的数据，取值划分较多的属性会对 RF产生较大的影

响。因此，RF在这种数据上产出的属性权值是不可信

的，使得 RF模型的精度和结果较差。

在同样的数据条件下，SVM模型预测得到的易发

性划分结果，见图 8（b），较 RF稍好，但极高和高易发区

仍然分布广泛。从模型本身来看，SVM在二分类时，更

适合于接受同性质特征或连续特征，对多样性特征没有

更好地支持。例如：土壤类型或土地利用类型等离散特

征，对模型不是很友好，对模型的贡献度不大。

MLP模型预测结果，见图 8（c），各类别划分区域较

RF和 SVM有所改善，但极高易发性区域的面积仍然占

据一半以上。这结合建模过程可以看出，虽然输入的序

列信息通过 MLP模型中神经元之间的互连很快被学习

到，但因为滑坡原始记录样本数量有限，非滑坡网格单

元随机选取，不确定性高，MLP模型在有限的数据集内

学习能力不足，使得MLP模型的精度和结果较差。

相比于 RF、SVM和MLP模型，本文提出的MSCNN
模型预测结果，见图 8（d），极高易发性区域最低，而低

易发性区域最高。这与一些学者[36]提出，在滑坡易发性
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图 7    影响因子频率比值等级

Fig. 7    Frequency ratio rating chart of conditioning factors
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评估中，一个高和非常高的易发性区域仅占据研究区的

小部分是相符的，这表明本文提出的 MSCNN模型滑坡

易发性评估模型表现出更强的学习能力。从模型架构

分析，得益于本文在传统 CNN模型的基础上，构建融合

深浅层特征的 concatenate层，能够更深层次建立滑坡与

环境因子之间的映射关系。

总的来说，从滑坡易发性图来看，四种模型表现一

定的相似性，对高和极高易发性区域的划分是大致相同

的，绝大多数原始滑坡均分布在四种模型预测的极高易

发性区域，这表明模型对滑坡的预测结果具有一定的参

考价值，可辅助决策者防范治理。综合来看，深圳市滑

坡主要分布在开发建设强度最大的龙岗区，并且这与历

史滑坡点的分布是一致的，这表明人类活动作用对滑坡发

生产生了较大的影响，应当引起重视。在四种模型预测

结果中，RF模型区分明显，具有更加丰富的纹理特征，

但极高和高易发性区域分布广泛，无法突出典型的问题。

相比之下，所提出的模型在滑坡位置上刻画更加准确。

为量化滑坡易发性统计结果，将各易发区的分布情

况与历史滑坡面积对比，并结合滑坡影响因子分析，以

对结果进行客观评价。为便于后面的统计分析，将

205处滑坡通过 ArcGIS工具，先转为栅格，再栅格转点

共得到 14 916个滑坡点。极高易发性区域主要分布在

深圳市的龙岗区和宝安区，主要分布在坡度 12.24°～
20.41°的斜坡上，面积约为 105.3 km2，占深圳市总面积

的 4.98%。位于该区域滑坡点数 7 821个，占总滑坡点

数 52.45%，与该区域的易发性程度相吻合。该区域坡

体较陡，植被覆盖稀疏，容易失稳发生滑坡，因此该区域

的易发性高于其他区域。高易发性区域分布广泛，主要

 

表 3    影响因子地理探测器结果

Table 3    Results of geodetector analysis for
conditioning factors

序号 影响因子 q值

1 高程 0.322

2 坡度 0.185

3 坡向 0.058

4 曲率 0.073

5 地表粗糙度 0.118

6 地表起伏度 0.193

7 到断层距离 0.107

8 土壤类型 0.144

9 沙含量 0.179

10 到河流距离 0.172

11 土地利用类型 0.128

12 到道路距离 0.093

 

（a）RF模型评估结果 （b）SVM模型评估结果

（c）MLP模型评估结果 （d）MSCNN模型评估结果
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图 8    深圳市滑坡易发性评估结果

Fig. 8    Landslide susceptibility assessment results for Shenzhen City
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分布在深圳市的坪山区和盐田区，面积达到 24.53 km2，

占深圳市总面积的 1.16%。据统计，位于该区域的滑坡

灾害点共有 5 268个，占总滑坡灾害点的 35.33%，分布

较为分散、稀疏。该区域坡度较为陡峭，阴坡多于阳

坡，植被覆盖度一般，多为建筑用地，距河流和道路相

距不远，到断层距离较近，受人类工程活动影响较大，故

也是滑坡易发的区域。中易发性区域分布较为分散，在

深圳市的各个区均有分布，面积达到 23.68 km2，占深圳

市总面积的 1.12%。位于该区域的滑坡灾害点有 903
个，占总滑坡灾害点 6.06%。该区域植被覆盖度较为集

中，土壤类型多为潜育土，土地利用类型以裸地为主，

部分为草地植被，距河流和道路 10 000 m左右，但距离

断层较近，受断层影响的可能性较大，故滑坡易发性程

度适中。低易发性区域分布较为集中，主要分布在深圳

市的光明区，面积达到 36.37 km2，占深圳市总面积的

1.72%。据统计，位于该区域的滑坡灾害点有 834个，占

总滑坡灾害点 5.59%。该区域坡度较为平缓，坡向多为

阳坡，植被覆盖度良好，土壤紧实，沙含量低，地表粗糙

度和地表起伏度较高，土壤类型以潜育土为主。到断层、

河流和道路的距离较远，受人为干涉影响较低，故对滑

坡易发性程度不高。极低易发性区域分布较为广泛集

中，占据了深圳市的大部分区域，面积高达 1 924.87 km2，

占深圳市总面积的 91.02%。位于该区域的滑坡灾害点

有 86个，占总滑坡灾害点 0.58%。该区域在坡度 0°～
5.54°，坡度平缓；坡向以阳坡为主，植被覆盖率高，曲

率高，以凹轮廓为主，沉积占优势；地表粗糙度和地表起

伏度高，受滑坡影响小；含沙量低，距河流、道路和断层

距离甚远，均在 20 000 m以上，且人类工程活动少，因

此自然条件破坏小，不易发生滑坡，故对滑坡的易发性

极低。 

3.4    模型评估与精度分析

使用构建的 MSCNN模型进行易发性预测，将数据

集按照 7∶3的比例分为训练数据集和测试数据集。首

先，将训练数据集输入 MSCNN以挖掘滑坡影响因子和

历史滑坡之间隐藏的关系。然后，模型的表现和预测能

力通过使用训练和测试数据集来验证。模型的优异可

通过查看损失函数曲线和评价指标曲线随迭代次数增

加的变化情况，如图 9所示。从图中可以得知，模型损
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图 9    MSCNN 模型精度评价曲线

Fig. 9    MSCNN model accuracy evaluation curve
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失函数 Logcosh的整体损失值在训练到第 20个 Epoch
的时候急剧下降，最终稳定在 0.001 1左右，AUC 上升

到 0.995 2左右基本稳定。当模型训练稳定后，召回率

（Recall）为 0.999 5，准确率（Precision）达到 0.995 3。从

以上评价指标来看本文构建的模型具有较好的预测能

力和高的预测精度，能够充分挖掘滑坡与影响因子之间

的映射关系，具有较强的稳健性。

MSCNN模型主要思想是在不同尺度下分别建立卷

积层和池化层，以提取到数据的局部和全局特征，并将

它们融合在一起，得到更丰富和表达能力更强的特征表

示。从图 8模型预测结果来看，RF、SVM和 MLP模型

所预测的极高和高易发区域分布广泛，无法突出典型的

问题。相比于 RF、SVM和MLP模型，本文提出MSCNN
预测结果中，极高易发性区域最低，而低易发性区域最

高。相比之下，所提出的模型在滑坡位置上描述更加准

确。从图 9模型训练过程得知，模型在第 20次迭代训

练时已基本完成收敛，并且模型的训练损失值保持在

0.02以下，召回率和准确率均在 0.9以上，表明本文提

出的 MSCNN滑坡易发性评估模型收敛速度快，表现出

更为强大的特征学习能力。模型的表现能力，可通过采

用 AUC 指标来衡量模型的优异。从图 10中可以得知，

本文构建的MSCNN模型具有最高的 AUC 值，达到 0.99。
其他三种模型的 AUC 值都比新构建的模型低。相比于

其他三种模型，新构建的模型预测滑坡易发性最优。对

于滑坡的预防和控制来说，绘制高精度和可靠稳定的

LSM是至关重要的。为进一步验证模型预测结果的可

靠性，可通过多期高精度遥感影像来验证本文构建模型

所预测高敏感性区是否具有滑坡灾难。为更好展示观

测结果，选定一块未在滑坡编目中出现的滑坡区域来评

估模型的精度。图 11是选定区域的 LSM和卫星图。

从谷歌卫星影像得知滑坡事件发生在 2022年 8月。除

此之外，MSCNN模型预测该区域是高敏感性区域，而

RF和 MLP模型预测该区域是低敏感性区域，SVR模型

预测该区域是中敏感性区域。提出的模型能够高效预

测滑坡的位置，这对滑坡预防和管理具有重要意义。综

上得知，本文提出的 MSCNN模型相较于 MLP、SVM
和 RF模型具有更好的泛化能力和可迁移性，可适用于

与研究区有相同地理环境的地区。 

3.5    影响因子的易发性

由图 8得知，本文构建的 MSCNN模型对滑坡隐患
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图 10    四种模型的受试者工作特征曲线

Fig. 10    Receiver operating characteristic (ROC) curves
of the four models
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图 11    谷歌地球图像调查结果

Fig. 11    Evaluation of prediction performance based on google earth image

注：（a）为 RF；（b）为 SVM；（c）为MLP；（d）为MSCNN；（e）（f）（g）为谷歌地球图像。
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预测，相较于其他 3种模型，具有良好的识别效果。因

此，为便于未来滑坡隐患的防范与治理，统计 MSCNN
模型预测结果在不同滑坡影响因子上的分布，以找出影

响滑坡发生的主控因子，如图 12所示。
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图 12    不同滑坡易发性在不同影响因子面积中的比重

Fig. 12    Proportion of different levels of landslide susceptibility in areas of different conditioning factors
 

从图 12中得知，坡度、地表粗糙度和地表起伏度

与滑坡发生之间表现出强烈的正相关关系。因为，随着

因子的划分等级升高，极高和高易发区的占比也在逐渐

增大，这与历史滑坡点的分布占比是一致的。这一现象

的出现可以解释为，在古滑坡与新预测的滑坡的发生诱

因中，坡度、地表粗糙度和地表起伏度始终起着关键的

作用，成为影响滑坡发生的主控因子。此外，滑坡发生

与距河流和道路距离也表现出相关关系，因为预测的

“极高”和“高”易发区域分布在距河流和道路距离近的

区域，并呈现出沿道路和河流分布的特征。这也进一步

反映出深圳市地表形态、地质环境由于人类活动而遭

到破坏失衡。特别是在山坡坡脚地段修建房屋、道路

以及堆填加载等，改变了坡体地质构造，地表变得支离

破碎，使斜坡承载不了过大重量，失去平衡而沿软弱面

下滑，进而诱发滑坡。因此，在后续滑坡的防范与治理

中，应当对人类工程活动引起足够的重视。 

3.6    不同场景下提出模型的应用

为验证所提出模型的泛化能力和可迁移性，本文选

2024年 张　清 ，等： 基于多尺度卷积神经网络的深圳市滑坡易发性评价  · 159 ·



取甘肃省兰州市西固区及安宁区部分区域进行模型验

证，如图 13所示。其中图 13（a）表示模型的标签，13（b）
为 MSCNN模型滑坡易发性评估结果。对比两者可以

发现，所构建的 MSCNN模型能够精确识别滑坡的位

置。因此，本文构建的 MSCNN模型特征学习能力强，

能够深度挖掘滑坡与影响因子之间的关系，模型具有一

定的泛化能力和可迁移性。
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图 13    模型验证结果

Fig. 13    Results of model validation
 
 

4    结论

（1）本文提出了一种能够顾及深浅层特征的MSCNN
网络模型，扩大了感受野，捕获了滑坡因子更加细节的

信息。构建的 MSCNN模型具有最高的 AUC 值，达到

0.99，相比于 RF、SVM和 MLP模型，新提出的 MSCNN
模型预测滑坡易发性最优，降低了虚警率和漏警率，提

高了滑坡易发性评估的可靠性。

（2）坡度、地表粗糙度和地表起伏度是影响深圳市

滑坡发生的主控因子。深圳市滑坡极低易发性区域面

积达到 1 924.87 km2，占深圳市总面积的 91.02%；低易发

性区域面积达到 36.37 km2，占深圳市总面积的 1.72%；

中易发性区域面积达到 23.68 km2，占深圳市总面积的

1.12%；高易发性区域达到 24.53 km2，占深圳市总面积

的 1.16%；极高易发性区域面积达到 105.3 km2，占深圳

市总面积的 4.98%，主要分布在坡体较陡、植被覆盖稀

疏和人类工程活动频繁的龙岗区。
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