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泥石流易发性间谍技术随机森林模型研究
—以岷江上游为例

陈宇涛1，李　宁1，常　鸣2，幸夫诚1，向　晗1，李晋生1，杨　瑞1，陈子龙3

（1. 西华大学应急管理学院，四川 成都　610039；2. 地质灾害防治与环境保护国家重点实验室（成都

理工大学），四川 成都　610059；3. 四川省华地建设工程有限责任公司，四川 成都　610036）

摘要：泥石流作为一种由强降雨或冰雪融化引发的高浓度非均质流体，具有复杂的形成和运动过程。评估泥石流的易发

性对于灾害监测与应对具有重要的实际意义。传统方法难以准确预测泥石流的发生，因此近年来机器学习算法在该领

域的应用逐渐增多。文章以岷江上游为例，提出一种基于间谍技术（SPY）的随机森林模型 SPY-RF，用于构建泥石流易发

性评价系统。SPY方法通过对未标记数据进行伪负样本生成，克服了不平衡数据集在负样本获取上的局限性，提高了模

型的区分能力。在研究中选取 14个评价因子，如沟壑密度、岩性、流域面积等，结合遥感影像和地质灾害数据构建泥石

流数据集。通过 SPY技术优化负样本的获取 ，结合随机森林模型对泥石流易发性进行建模。结果显示 ：SPY-RF模型和

RF模型的 AUC 值分别为 0.98，0.93，且 SPY-RF模型性能指标整体优于 RF模型，SPY-RF模型在预测泥石流易发性方面表现

出较高的精确度和稳定性，极高易发区与现有泥石流点的分布吻合，在极低和低风险区域也能识别泥石流点。在负样本

获取和筛选策略上，采用 SPY技术显著提高了负样本的质量，从而提升了模型的预测精度和可靠性。为岷江上游地区泥

石流风险管理提供了参考依据。
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Abstract： Debris  flow  is  a  high-concentration,  heterogeneous,  multiphase  flow  typically  triggered  by  intense  rainfall  or

snowmelt. Its complex formation and movement processes make accurate susceptibility assessment vital for disaster monitoring

and mitigation. Traditional methods often fall short in predictive accuracy, leading to a growing adoption of machine learning  
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algorithms  in  this  field  in  recent  years.  This  study  proposes  a  debris  flow  susceptibility  assessment  model,  SPY-RF,  which

integrates  the  random  forest  (RF)  algorithm  with  the  spy  technique  (SPY),  using  the  upper  Minjiang  River  Basin  as  a  case

study.  The  SPY method addresses  the  common issue  of  class  imbalance  by  generating  high-quality  pseudo-negative  samples

from unlabeled data, thereby enhancing the model’s classification performance. A total of fourteen assessment factors, including

gully  density,  lithology,  area,  and  others,  were  selected  based  on  geological  disaster  data  and  remote  sensing  imagery  to

construct  a  comprehensive  debris  flow  dataset.  The  SPY  technique  was  utilized  to  optimize  the  negative  sample  selection

process, which was then combined with the RF model to evaluate susceptibility. The findings indicate that the SPY-RF model

outperforms the traditional RF model, achieving an AUC of 0.98 compared to 0.93. The predicted distribution of extremely high

susceptibility  areas  aligns  closely  with  the  current  debris  flow points,  indicating that  the  SPY-RF model  predicts  debris  flow

susceptibility with greater accuracy and stability. Additionally, the model also successfully identifies debris flow occurrences in

low-risk  and  extremely  low-risk  susceptibility  areas.  The  quality  of  negative  samples  was  greatly  increased  by  using  SPY

technology  in  terms  of  negative  sample  acquisition  and  filtering  techniques,  which  raised  the  prediction  accuracy  and

dependability of the model. The proposed SPY-RF model serves as a useful guidance for managing the risk of debris flows in

the upper Minjiang River Basin.

Keywords：debris flow； susceptibility；random forest；spy technique；upper Minjiang River Basin

 

0    引言

泥石流主要是由强降雨或冰雪消融形成的高浓

度、宽级配的多相非均质流体，其物质组成级配跨 6
个数量级，形成及运动过程极为复杂，常以快速流动

性、强冲击性以及突发性不断侵蚀山区的环境，破坏作

用强烈，治理难度大 [1]。因此，通过对泥石流易发性

进行评估以预测其发生的空间概率，对于泥石流灾害

的监测与应对具有重要作用，也是该研究领域的难点和

热点问题。随着近年来极端天气的不断加剧，使得我国

本就严峻的泥石流灾害形势也变得愈发严峻。泥石流

易发性也更加难以用传统方法准确判断和评价，因此，

如何准确描述泥石流的易发性在此背景下则显得尤为

重要。

传统的泥石流易发性评价常用的方法有专家打分

法[2]、层次分析法[3 − 4]、模糊综合评判法[5 − 7]、加权信息

熵法和多元回归方法等[8 − 10]。从因子权重的确定角度，

主要可以分为两类：一类是依赖于专家的经验知识来分

配权重，另一类则是将专家的经验与数学统计分析方法

结合，以计算因子的权重。两种方法的核心都是通过确

定因子权重来评估泥石流易发性，然而由于专家经验的

区域性，使得这类方法的适用性有限，难以在不同地理

环境中广泛应用[11]。这种方法在相当长的时间内发挥

了重要作用，尤其在数据有限和技术手段相对落后的情

况下。然而，随着极端天气事件的频繁发生，泥石流的

突发性和快速性使得这些传统方法在应对实时灾害时

常显得滞后，无法提供足够的预测精确度和时效性。但

近年来，机器学习算法也在泥石流的易发性评估方面获

得了应用，包括人工神经网络、支持向量机、决策树、

随机森林和卷积式神经网络等都已经成功应用到了地

质灾害的分析中[12 − 17]。以机器学习为基础的统计分析

方法能够客观地揭示泥石流发生条件与易发性之间的

非线性映射关系，有效排除了人为主观因素的干扰，从

而提升了评估结果的精确度。通常机器学习方法的训

练集往往包含数量相等的泥石流点和非泥石流点。在

泥石流易发性评估的研究中，研究者往往只重视已发生

或可能发生的正样本，而对不会发生灾害的负样本则很少

给予关注[18]。在前人的研究中，建模所需的负样本通过

随机抽取未标记样本来获取[19 − 20]。这种方法将优质的

正样本与潜在的噪声负样本等同对待，从而使得不合理

的负样本采集方式成为数据集中噪声的主要来源之

一。这类噪声数据通常会导致模型出现异常学习等问

题 [21 − 22]。因此，如何优化样本库以提高模型性能成为

机器学习领域的关键研究方向之一。2024年，于海坤

等人为提高滑坡样本集的质量，采用了 4种采样策略：

随机采样、滑坡缓冲区采样、信息量约束采样和合成少

数类过采样，旨在为滑坡易发性评估中的样本挑选带来

新的方法[23]。2024年洪浩源等人通过比较某点与灾害

点正样本的地理环境相似度和不相似度，分别衡量正样

本和负样本的可信度，并基于互斥法设定可信度阈值以

收集训练样本，取得有效成果[24]。通过改进样本的选择

策略，可以显著降低噪音数据对模型的影响。这为泥石

流灾害的预测提供了更广泛的前景，并有助于提高模型
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的实际应用能力。

岷江上游地区的地质结构非常复杂，常常受到活跃

断层的影响。此外，山地生态环境的脆弱性使得该区域

泥石流灾害时有发生。2019年 8月 20日，岷江上游暴

发了危害性、破坏性极强的群发泥石流，都汶高速一

带、213国道及 30省道等多条干线公路受到严重破

坏[25]。2023年 6月 26日，位于岷江上游流域的绵虒镇

板子沟、威州镇新桥沟两处突发山洪泥石流灾害，造成

2人遇难、3人失联，紧急避险转移群众 900余人[26]。因

此，本文充分考虑研究区的复杂自然地理条件，结合实

际情况，选取面积、沟壑密度、圆度、Melton比率、岩

性、距道路距离、距断层距离、坡向、归一化植被指数、

水流强度指数、地形湿度指数、降雨、土地利用类型、

曲率 14个评价因子作为岷江上游流域区域泥石流易发

性评价指标，提出间谍技术（SPY）构建可靠非泥石流样

本，采用随机森林模型，基于流域单元作为评价单元对

岷江上游流域泥石流进行易发性评价，评价结果可为该

区域未来的泥石流灾害预警提供指导参照。 

1    研究区概况

岷江上游流域纵跨四川省阿坝藏族羌族自治州的

汶川县、茂县和松潘县。岷江上游流域位于四川盆地

与青藏高原的边缘区域，在 40～50 km水平范围内海拔

从 750 m陡变至 5 200 m，地表起伏变化显著，属于典型

的高山峡谷地带。同时，该地区位于川西地槽，历经多

次构造变动，导致地质结构破碎和基础不稳定。此外，

由于季风气候的影响，夏季经常出现强降雨，这种降水

分布的不均匀性使得泥石流等自然灾害的发生风险显

著增加。岷江是研究区内的主要河流，也是长江上游的

一条重要支流。研究区岷江上游干流全长约 295 km，

流域面积 7 326 km2，根据干流河道纵剖面特征可将干

流由上游向下游分为北段、中段和南段（图 1）。 

2    数据与研究方法
 

2.1    数据源 

2.1.1    泥石流数据集

泥石流数据集是建立泥石流易发性评估模型的关

键，能够帮助识别泥石流发生的地点，并阐明指标因子

与泥石流发生之间的联系。在遥感影像中，泥石流具有

显著的地貌特征，可以明确区分为形成区、流动区和堆

积区。研究主要以堆积区特征进行解译。根据沟口的

地貌特征，即发现沟口有明显的堆积扇，则判别其为泥

石流沟[27]。因此，本文根据岷江上游 2021年高分二号

卫星影像、实地考察等方法，结合从中国科学院资源环

境科学与数据中心（https://www.resdc.cn/）获取的分辨率

为 12.5 m×12.5 m的 DEM 数据及研究区地质灾害分布

数据分别对泥石流沟进行解译，最终在研究区内共解译

出 113个泥石流沟。 

2.1.2    评价因子

通过小流域形成泥石流的孕灾条件，从地形地貌、

降雨、地质、植被覆盖和人类活动 5个方面选取了 14
个评价因子。（1）地形地貌数据，以研究区空间分辨率

为 12.5 m的 DEM数据，通过 ArcGIS10.8提取得到流

域面积、沟壑密度、圆度、Melton比率、坡向、曲率，并

通过水文处理得到区域的水流强度指数（SPI）和地形

湿度指数（TWI）；（2）降雨数据，通过 ArcGIS10.8裁剪四

川省年均降雨量（国家气象科学数据中心获取）得到研

究区年均降雨量矢量数据；（3）地质: 从中国科学院资源

环境科学与数据中心（http://www.resdc.cn/）获取研究区

断层分布与地层岩体数据，经坐标转换得到距断层距

离、地层岩体数据；（4）植被覆盖数据，选取研究区时间

为 2024年 8月分辨率为 30 m的 Landsat8近红外和远

 

县城
岷江
流域单元

高程/m
高: 5 251

低: 752

0 20 40 km

一级河谷流域

岷江干流北段流域
岷江干流中段流域

岷江干流南段流域

N

图 1    岷江上游区域地理位置及泥石流流域分布图

Fig. 1    Geographic location of the upper Minjiang River Basin and
distribution of debris flow watersheds
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红外波段计算得到植被覆盖指数（NDVI）；通过裁剪全

球 30 m地表覆盖数据，得到研究区土地利用类型矢量

数 据 （http://www.globeland30.org/home/background.aspx）

（5）人类活动数据，从 2021年高分二号卫星影像提取研

究区道路信息，得到距道路距离。表 1说明了评价因子

的选取依据。
 
 

表 1    评价因子的选取与依据

Table 1    Selection and description of evaluation factors

孕灾条件 评价因子 选取依据

地形地貌

流域面积
在泥石流发育和形成的影响因素中沟道流域面积的大小，不仅影响沟道比降、主沟长度等其它地貌形态指标，还对强降雨的汇

集、松散物质的分布等地质、水文条件产生影响[28]

沟壑密度
Ds =

∑
L

A

∑
L

A

沟壑密度反映了地形起伏和切割程度以及岩土体的松散程度，是水流汇集能力的体现。沟壑密度越大，地表越破碎，地表物质

稳定性降低更易于发生泥石流灾害[29]；其公式为： ，式中：  表示每个流域单元的沟谷长度之和，

表示流域面积

圆度
R =

4πA
P2 A P

圆度为泥石流流域的重要形态特征之一，其指的是流域面积与其相同周长的圆的面积之比

其计算公式： ，其中 为流域面积； 代表的则为流域周长

Melton比率 M =
dH
√

S
dH S

Melton比率常用来描述流域单元内地势陡峻程度，Melton比率的值越大泥石流启动时具有的势能越强，其公式： ，其中

为流域内的高差； 表示流域面积大小[30]

坡向
不同坡向的坡面在太阳辐射、植被覆盖和水文条件上差异明显。阳坡因接受更多辐射，岩土风化较严重，水土流失加剧，土壤稳

定性差，容易引发泥石流[30 − 31]

曲率 曲率作为影响坡面稳定性和水流运动的关键因子之一，能直接影响泥石流的发生概率和分布模式

水流强度指数
水流强度指数（stream power index, SPI）是一个描述流水侵蚀能力的指标，在泥石流研究中，SPI不仅可以反映水流对滑坡体的冲

击和侵蚀作用，还可以帮助揭示水流在泥石流发生过程中的重要作用[32]

地形湿度指数
地形湿度指数（topographic wetness index, TWI）是评估地区水分条件的有效工具，它考虑了地表径流模式、地下水埋藏深度和地

形起伏等因素；较高的SPI通常意味着该区域水分积聚较多，增加了土壤饱和的风险，从而易引发泥石流[33]

降雨 年均降雨 降雨是公认的泥石流的主要诱发因素之一，大量的不稳定体会在降雨条件下进一步失稳而形成泥石流

地质
距断层距离

距断层距离是岩土体受构造运动影响程度的一个量化反映；通常情况下靠近断层的岩土体会更加破碎，也更有可能成为泥石流
的潜在物源

岩体 岩体构成了泥石流形成发育的物源基础，岩土体的岩性及其结构特征决定流域内斜坡岩土体的强度、变形破坏特征等条件

植被覆盖
数据

归一化植被
指数

本文选用归一化植被指数（normalized difference vegetation index, NDVI）来反映研究区的植被状况；植被稀疏的地区，基岩暴
露、水土流失现象严重，岩土体更容易失稳，从而引发泥石流

人类活动
数据

土地利用类型 土地利用类型通过影响水文条件、土壤稳定性和水流路径，进而对泥石流发生的风险产生直接或间接的作用

距道路距离
道路距离可以反映人类工程活动对岩土体的影响；过度开挖不仅会破坏边坡稳定，还可能导致废弃物堆积形成新的不稳定区

域，增加泥石流发生的风险
 
 

2.2    研究方法 

2.2.1    评价单元

在泥石流易发性评价模型中，合理的评价单元选择

至关重要，研究涵盖栅格单元、斜坡单元、特殊条件单

元及流域单元 [33 − 37]。其中，流域单元能够充分包含泥

石流的几何特性，并有效揭示其与相关指标之间的关

系 [38]。因此，本文以选择的流域单元为主要研究依据，

并利用 ArcGIS10.8的水文处理方法，对研究单元的

12.5 m DEM数据加以划分。在水文分析中，阈值的选

择对于流域单元的划分至关重要。阈值在水文处理方

法中通常用于确定流域内水流的积水区，即在特定的高

程差或面积范围内，水流是否能够汇集成流。通过设置

一个合适的阈值，可以确保水流积聚的区域得到正确划

分，从而避免过度细分或过度简化流域单元[39]。通过不

同阈值选择，研究结果显示 5 000是最佳的阈值。并根

据高分二号卫星图像，将最终的研究范围界定在 226个

小流域单元中（图 1）。
利用 ArcGIS10.8软件的区域统计功能依据确定的

流域单元对共 14个流域因子进行离散化处理，其中面

积、沟壑密度、圆度、Melton比率、距道路距离、距断层

距离、归一化植被指数、水流强度指数、地形湿度指

数、降雨、曲率取平均值作为流域单元中相对应因子

的值， 在流域单元内，地层岩体和土地利用类型的取值

采用频数最多的值进行确定。所有栅格图层通过自然

间断法重分类，最终实现了空间分辨率统一为 12.5 m×
12.5 m，如图 2所示。 

2.2.2    随机森林模型（RF）
随机森林（random forest，RF）是通过构建多个分类

器并综合它们的预测结果来提高整体预测准确性的算

法。从原始数据集随机抽取多个子集作为训练集，对于

每个训练集，使用随机特征子集构建一棵决策树，在构

建每棵决策树时，从可用特征中随机选择一个子集，这
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图 2    泥石流流域因子分级图

Fig. 2    Classification map of debris flow watershed factors
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有助于减少过拟合[40]。通过使用训练集训练每棵决策

树，直到达到停止条件。当对新数据进行预测时，采用

Bagging集成方法，将各棵决策树的训练结果整合在一

起，最终通过投票或均值计算的方式来决定预测值的分

类或回归结果[41]。 

2.2.3    间谍技术（SPY）

基于 SPY技术的负样本获取策略如下：首先，从泥

石流样本中抽取一定比例（本文参考前人研究设定为

15%）作为未标记样本，这部分样本被称为间谍样本[42]。

这些间谍样本与其他未标记样本一起被视为非泥石流

样本。在此基础上，采用随机森林（RF）算法训练分类

器，以对所有样本进行预测。以间谍样本的最低预测概

率为界，低于该阈值的样本将被视为可靠的负样本[43]。

通过间谍样本和未标记样本中的潜在泥石流样本在分

类器的预测结果上会表现出相似性的假定，评估间谍样

本的概率阈值，能够有效识别出可靠的负样本。 

2.2.4    模型精度评价

（1）准确率、精确率、召回率和 F1分数

泥石流易发性评估过程中的一个重要部分是模型

的验证和性能评估。通常，二分类模型的性能通过混淆

矩阵来评估[44]。混淆矩阵由 4个参数组成：真阳性（true
positive， TP）是模型预测为泥石流且实际为泥石流的数

量；假阴性（false negative， FN）是模型预测为非泥石流

但实际为泥石流的数量；假阳性（false positive， FP）是模

型预测为泥石流但实际为非泥石流的数量；真阴性（true
negative， TN）是模型预测为非泥石流且实际为泥石流

的数量。基于此，通过四个统计指标对每个模型的性能

进行评估：准确率、精确率、召回率和 F1分数。表 2显

示了每个指标的描述。
  

表 2    模型精度评价指标
Table 2    Model accuracy evaluation indicators

指标 公式 描述

准确率
T P+T N

T P+FP+T N +FN
计算准确预测的样本的百分比

精确率
T P

T P+FP
计算每个预测的阳性样本中的

TP 样本百分比

召回率
T P

T P+FN
计算每个真阳性样本中

TP 样本的百分比

F1 分数
2×精确率×召回率
精确率+召回率

表示准确率和召回率调和平均值，
值范围从 −1 到 1

 

（2）ROC值和 AUC 曲线

在 ROC曲线中，纵轴为真阳性率（true positive rate，
TPR），横轴为假阳性率（false positive rate，  FPR），它反

映了模型在各种分类阈值设置下的效果。假阳性率表

示被错误预测为阳性样本的比例，真阳性率表示被准确

预测为阳性样本的比例。ROC曲线越接近左上角，表

明模型性能越好[45]。ROC曲线下的面积称为曲线下面

积（area under the curve， AUC）值，它对模型性能提供了

全面的评估。当 AUC 值为 0时，表示模型的预测性能

与随机猜测相当；当 AUC 值为 1时，表示模型可以完美

区分阳性和阴性样本。AUC 值越接近 1，模型的预测能

力越强。 

2.2.5    研究流程

根据随机森林模型的分类要求，将经历泥石流事件

的流域标记为“1”，而未经历泥石流事件的流域则标记

为“0”，从而将泥石流易发性评价转化为二分类问题[46]。

在研究区的 226个小流域单元中，113个流域曾发生泥

石流，另 113个流域未发生泥石流，形成了正样本与负

样本数量相等的样本数据集。在将样本数据集构建为

训练集和测试集的过程中，合理的划分比例分配至关重

要，因为不合理的划分比例可能会显著影响模型的精度

和准确度。因此，参考相关文献的研究，基础数据集按

照 70% 用于训练集和 30% 用于测试集的比例进行划

分。这一划分策略不仅确保了样本的均衡性，还为随机

森林模型的泥石流易发性评估提供了可靠的训练与测

试基础，从而增强了模型的泛化能力和预测精度[47]。

基于前文提出的 SPY泥石流负样本选取方法，获

取基础数据集中的可靠负样本的获取过程可分为以

下两个步骤：（1）选取 15% 的泥石流样本作为间谍样本

与非泥石流样本组成负样本集，本文负样本集数量为

129，与剩下的 85% 作为泥石流正样本（数量为 97）一起

构建数据集，通过 RF模型对研究区域中的每个样本赋

予相应概率值；（2） 以间谍样本的最低概率作为界点，

概率值低于界点的样本即为可靠负样本。本文对间谍

样本预测的结果确定的概率界点为 0.294。在研究区域

中所有样本低于间谍样本的概率界点 0.294的样本数

量为 78，因此，生成了 78个可靠的负样本，并在正样本

中随机抽取了 78个正样本，从而以 1∶1的比例构建了

SPY-RF模型的基础数据集。

随机森林模型采用了 Python编程语言，在 Scikit-
learn架构下建立，并通过超参数调优，定义了随机森林

模型的最优配置：最大决策树数量为 1 273，最大特征数

设为 0.5，最大深度为 6，最小节点样本分割数为 5。基

于这些最优参数，分别构建了传统随机森林（RF）和改

进的随机森林（SPY-RF）泥石流易发性评价模型。计算

每个流域单元的泥石流易发性指数，并绘制了泥石流易

发性分级图，以便进行系统的易发性评估。技术路线图

如图 3所示。
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图 3    技术路线图

Fig. 3    Technology roadmap
 
 

3    泥石流易发性分析
 

3.1    泥石流易发性评价指标相关性分析

为选择最具预测能力的评价因子，提升模型预测的

准确性，对初步所选择的 14个因子进行相关性分析。

使用 Origin绘图软件的 Correlation Plot插件，可以得到

14个评价指标之间的相关系数矩阵，并可视化得到图 4。
正相关在图中以红色标识，负相关以蓝色标识。相关系

数的大小与图像的大小直接相关。由图可知，所有评价

因子的相关系数均小于 0.48，相关系数较弱，表明因子

交互作用较小，选择的评价因子较为合理。 

3.2    易发性模型制图分析

在 RF和 SPY-RF模型的泥石流易发性模型建立

后，利用模型计算了研究区各流域单元的泥石流易发性

指数。基于 ArcGIS10.8软件中的自然断点法，将泥石

流易发性指数划分为五个等级，依次为极低易发区、低

易发区、中易发区、高易发区和极高易发区，如图 5所

示。通过研究区泥石流易发性分级图显示，基于 SPY-

RF模型得到的泥石流易发性区域与实际发生的极高易

发区范围大致一致。这一结果进一步验证了模型的有

效性，并为泥石流风险管理提供了重要依据。

泥石流易发性评价结果亦可通过统计方法进行分

析。表 3分析了各模型泥石流易发性等级的流域单元

数量、各等级所占的面积以及对应的泥石流点，并统计

每个易发性等级的泥石流点占总数的比例与相应面积

占比之间的比率，得出各易发性等级的泥石流密度。统

计图如图 6所示。从表 3和图 6可以观察到各易发性

等级内泥石流的分布特点与密度差异。RF模型中高易

发和极高易发区域分别占比 29.15% 和 24.97%，这两个

等级的泥石流个数合计为 91个，占泥石流总数的 80%
以上。然而，RF模型在低易发和极低易发等级的预测

结果较为保守，例如极低易发区域没有泥石流发生。相

比之下，SPY-RF模型在极高易发等级覆盖了 40.86% 的

面积，流域个数达到 74个，并识别了 72个泥石流点，表

明它对高风险区域更敏感。此外，SPY-RF模型在极低

易发和低易发区域的泥石流密度分别为 0.46×10−2 个/km2
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和 0.85×10−2 个/km2，表明它在低风险区域也能识别泥

石流灾害。综合来看，SPY-RF模型比 RF模型在不同

风险等级上表现得更好，该模型能够更全面地反映不同

易发性等级的泥石流，适合更广泛的应用场景。不仅适

合聚焦于高风险区域的精确预测，也能在低风险区域显

示出更高的敏感性和预测能力。 

3.3    模型精度验证

根据前文研究方法，本研究将样本数据集按照 7：
3的比例，构建 70% 的训练数据集以及 30% 的测试数

据集。分别统计 TP、FN、FP、TN值，并计算模型性能

指标准确率、精确率、召回率和 F1分数，如图 7所示。

在泥石流易发性评价中，SPY-RF 的整体表现优于 RF。
尽管 RF 在召回率上表现最佳，SPY-RF 的高准确率、高

精确率和高 F1分数使其在实际应用中更具优势。虽然

RF 能识别所有易发区域，但 SPY-RF 的综合优势表明

其在实际应用中能够提供更平衡、更可靠的评估结果。

本文基于 RF和 SPY-RF的泥石流易发性评价模型

的 ROC曲线如图 8所示。本文 SPY-RF模型的 AUC
值为 0.98略高于 RF模型的 AUC 值 0.93。在泥石流易

发性评估中，SPY-RF模型表现最为优越。因此，接下来
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Fig. 4    Correlation analysis of debris flow catchment factors
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的分析将围绕 SPY-RF模型的评估结果，探讨泥石流易

发性及各评价因子的贡献率。 

3.4    泥石流评价指标贡献率分析

基于随机森林模型，根据 Python软件中 feature_

importances函数计算泥石流易发性各评价指标的贡献

率，计算式见式（1）：

IP =
IPi

N∑
i=1

IPi

（1）

IPi i式中： ——第 个因子的贡献率。

 

表 3    不同模型泥石流易发性等级及泥石流分布特点

Table 3    Debris flow distribution across susceptibility classes and characteristics predicted by different models

模型 易发性等级 流域个数 面积/km2 面积占比/% 泥石流个数 泥石流占比/% 泥石流密度/（10−2个/km2）

RF

极低易发 51 747.28 10.20 0 0.00 0.00
低易发 40 1 236.98 16.88 6 5.31 0.49
中易发 41 1 376.40 18.79 16 14.16 1.16
高易发 50 2 135.76 29.15 47 41.59 2.20

极高易发 44 1 829.57 24.97 44 38.94 2.40

SPY-RF

极低易发 70 1 305.84 16.46 6 5.31 0.46
低易发 22 943.89 12.88 8 7.08 0.85
中易发 28 808.26 11.03 8 7.08 0.99
高易发 30 1 374.51 18.76 19 16.81 1.38

极高易发 74 2 893.5 40.86 72 63.72 2.49
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Fig. 6    Statistical comparison of debris flow susceptibility levels across different models
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对研究区泥石流评价指标贡献率的分析结果表明，

如图 9所示，水流强度指数 （SPI）、降雨量、曲率和流域

面积是影响泥石流易发性的重要因素，其中 SPI的贡献

率最大。
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图 9    泥石流流域因子贡献率

Fig. 9    Contribution rates of debris flow susceptibility factors [47]

  

4    讨论

在泥石流易发性评价的研究中，研究者们通常将重

点放在分析已经发生或有可能发生泥石流灾害的正样

本上，而对未发生灾害的负样本关注较少。然而，忽视

负样本的研究可能导致模型在灾害预测中的过度拟合，

从而降低预测的准确性。负样本不仅能帮助识别灾害

发生的潜在风险区，还能为评估灾害未发生的因素提供

重要的参考，进而提升泥石流易发性评价的全面性和可

靠性。本文采用间谍技术选择可靠负样本，构建泥石流

易发性评价的基础数据集。如表 3和图 6所示，SPY-
RF模型相比于 RF模型能更准确地识别极高易发性区

域的泥石流事件，显著降低非易发区域被误判为易发区

域的概率，增强了风险评估的可靠性。此外，基于间谍

技术的模型在准确率、精确率、召回率和 AUC值等指

标上均高于原模型。这一性能提升归因于间谍技术在

负样本选择和特征提取中的优势，使得模型更精准地识

别易发与非易发区域。这些结果进一步验证了采用间

谍技术进行泥石流易发性评估的有效性，为未来的研究

提供了重要的理论支持。

在本文泥石流评价指标贡献率分析中，水流强度指

数的贡献率最大，表明水流强度在泥石流发生中起到了

关键作用，因为强水流可以加剧土壤侵蚀和泥石流的形

成。从图 2和图 5可以看出，松潘等地区水流强度较

弱，水流对地表的侵蚀作用有限；该区域属于高原气候，

年降水量相较四川盆地其他地区较少；地形上，许多区

域呈现较为平缓的曲率，如山脊和平原地带；同时，松潘

地区流域面积较小，尤其在一些分散的山谷区域，流域

面积相对有限。这些因素共同作用，有效抑制了泥石流

灾害的发生。然而，在汶川等下游深切河谷区域，地势

陡峭，部分地区呈现较为明显的负曲率，流域面积相对

较大，水流能够在较大范围内汇聚并增加冲刷强度；此

外，汶川地区夏季降水量集中，进一步增强了水流的侵

蚀作用。这些综合因素导致汶川地区泥石流灾害的发

生风险显著增加。贡献率较小的因素包括土地利用类

型、坡向、距断层距离和岩体，其中土地利用类型和坡

向的贡献较低，可能与研究区域的土地利用类型和坡向

相对均匀或者影响泥石流发生的其他因素更加突出有

关；距断层距离和岩体的贡献率最低，说明在特定研究

区，断层和岩体的空间分布可能没有形成显著的泥石流

易发性模式。若研究区的泥石流主要受降雨、地形等

因素影响，而断层和岩体的分布未能形成明显的影响特

征，则其贡献率自然较低。这一分析结果为未来研究中

选择和应用影响因子提供了重要依据。 

5    结果

（1）本文通过建立 RF和 SPY-RF模型对岷江上游

流域泥石流进行易发性评价，通过对模型进行参数调优

以及负样本优化，SPY-RF模型和 RF模型的 AUC 值分

别为 0.98、0.93，且 SPY-RF模型性能指标整体优于 RF
模型。表明在负样本获取和筛选策略上，采用 SPY技

术显著提高了负样本的质量，从而提升了模型的精确度

和稳定性。

（2）分析模型的预测结果发现，RF模型主要集中在

高易发和极高易发区域，分别占比 29.15% 和 24.97%，

这两个等级的泥石流个数合计为 91个，占泥石流总数

的 80% 以上。相比之下，SPY-RF模型在极高易发等级

覆盖了 40.86% 的面积，流域个数达到 74个，并识别了

72个泥石流点，表明它对极高易发区域更敏感。SPY-
RF模型通过优化负样本的选择，使得模型在各个易发

性等级上表现更加全面，尤其是在高风险区域的预测准

确性显著提高。

（3）对研究区泥石流评价指标贡献率进行分析发

现，贡献率最大的 4个因子分别是水流强度指数、降

雨、曲率和面积，贡献率最小的 4个因子分别是土地利

用类型、坡向、距断层距离和岩体。在制定岷江上游流

域泥石流地质灾害风险管控措施时，应着重考虑区内受

降雨和地形等因素。这些主要因素对泥石流的爆发具

有重要的作用，而其他因子的作用则相对较小，因此针
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对性地优化降雨管理和地形改造措施将是提升流域泥

石流防治效果的关键。
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