ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
Jianping PAN, Fujiang DENG, Zhengxuan XU, Qiwen XIANG, Wenli TU, Zhanbao FU. Time series InSAR surface deformation monitoring in extremely difficult area based on track refining control points selection[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 98-104. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-12
Citation: Jianping PAN, Fujiang DENG, Zhengxuan XU, Qiwen XIANG, Wenli TU, Zhanbao FU. Time series InSAR surface deformation monitoring in extremely difficult area based on track refining control points selection[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 98-104. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-12

Time series InSAR surface deformation monitoring in extremely difficult area based on track refining control points selection

More Information
  • Received Date: September 17, 2020
  • Revised Date: November 25, 2020
  • Available Online: August 29, 2021
  • The extremely difficult area has the characteristics of extremely rugged terrain, complex geographical environment and sparse permanent scatterers. Therefore, an improved SBAS-InSAR technology is designed to monitor the surface deformation. In this paper, the candidate permanent scatterers are obtained from the coherence, amplitude dispersion index and deformation rate, and then the final permanent scatterers are selected by optical images, which are introduced into the SBAS-InSAR calculation process as orbit refining control points, and finally the surface deformation monitoring in the study area is completed. By comparing and analyzing the conventional PS-InSAR technology and SBAS-InSAR technology, the technology has good application value in extremely difficult areas.
  • [1]
    王如意. 基于SBAS-InSAR的高分辨率地面沉降监测技术研究[D]. 北京: 中国地质大学(北京), 2015.

    WANG Ruyi. The study of land subsidence monitoring technology based on SBAS-InSAR with high resolution[D]. Beijing: China University of Geosciences, 2015. (in Chinese with English abstract)
    [2]
    李达, 邓喀中, 高晓雄, 等. 基于SBAS-InSAR的矿区地表沉降监测与分析[J]. 武汉大学学报(信息科学版),2018,43(10):1531 − 1537. [LI Da, DENG Kazhong, GAO Xiaoxiong, et al. Monitoring and analysis of surface subsidence in mining area based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University,2018,43(10):1531 − 1537. (in Chinese with English abstract)
    [3]
    ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE,2000,88(3):333 − 382. DOI: 10.1109/5.838084
    [4]
    SIMONS M, ROSEN P A. Interferometric synthetic aperture radar geodesy[M]//Treatise on Geophysics. Amsterdam: Elsevier, 2007: 391-446.
    [5]
    周超. 集成时间序列InSAR技术的滑坡早期识别与预测研究[D]. 武汉: 中国地质大学, 2018.

    ZHOU Chao. Landslide identification and prediction with the application of time series InSAR[D]. Wuhan: China University of Geosciences, 2018. (in Chinese with English abstract)
    [6]
    FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2202 − 2212. DOI: 10.1109/36.868878
    [7]
    BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375 − 2383. DOI: 10.1109/TGRS.2002.803792
    [8]
    白泽朝, 靳国旺, 张红敏, 等. 天津地区Sentinel-1A雷达影像PSInSAR地面沉降监测[J]. 测绘科学技术学报,2017,34(3):283 − 288. [BAI Zechao, JIN Guowang, ZHANG Hongmin, et al. Subsidence monitoring of Tianjin using PSIn SAR technique with sentinel-1A[J]. Journal of Geomatics Science and Technology,2017,34(3):283 − 288. (in Chinese with English abstract)
    [9]
    何平. 时序InSAR的误差分析及应用研究[D]. 武汉: 武汉大学, 2014.

    HE Ping. Error analysis and surface deformation application of time series InSAR[D]. Wuhan: Wuhan University, 2014. (in Chinese with English abstract)
    [10]
    陈玺. SBAS-InSAR技术在秦州区地表形变监测与滑坡敏感性评价中的应用研究[D]. 兰州: 兰州大学, 2018.

    CHEN Xi. Detecting ground deformation and assessing landslide susceptibility in Qinzhou district based on SBAS-InSAR technique[D]. Lanzhou: Lanzhou University, 2018. (in Chinese with English abstract)
    [11]
    LIU X J, ZHAO C Y, ZHANG Q, et al. Characterizing and monitoring ground settlement of marine reclamation land of Xiamen new airport, China with sentinel-1 SAR datasets[J]. Remote Sensing,2019,11(5):585. DOI: 10.3390/rs11050585
    [12]
    潘光永, 陶秋香, 陈洋, 等. 基于SBAS-InSAR的山东济阳矿区沉降监测与分析[J]. 中国地质灾害与防治学报,2020,31(4):100 − 106. [PAN Guangyong, TAO Qiuxiang, CHEN Yang, et al. Monitoring and analysis of sedimentation in Jiyang mining area of Shandong Province based on SBAS-InSAR[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):100 − 106. (in Chinese with English abstract)
    [13]
    王舜瑶, 卢小平, 刘晓帮, 等. 一种顾及永久散射体的SBAS InSAR时序地表沉降提取方法[J]. 测绘通报,2019(2):58 − 62. [WANG Shunyao, LU Xiaoping, LIU Xiaobang, et al. A SBAS InSAR time series ground deformation extraction approach considering permanent scatterers[J]. Bulletin of Surveying and Mapping,2019(2):58 − 62. (in Chinese with English abstract)
    [14]
    FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(1):8 − 20. DOI: 10.1109/36.898661
    [15]
    丁伟. PSInSAR点目标提取及相位解缠技术研究[D]. 长沙: 中南大学, 2011.

    DING Wei. Study of PSInSAR on the technique of points selection and phase unwrapping[D]. Changsha: Central South University, 2011. (in Chinese with English abstract)
    [16]
    刘路遥. 基于分布式目标雷达干涉测量的滑坡形变监测[D]. 成都: 西南交通大学, 2018.

    LIU Luyao. Deformation monitoring of landslide based on distributed scatter interferometric synthetic aperture radar[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese with English abstract)
  • Related Articles

    [1]Haiming YU, Yibin ZHANG, Xianghui FANG, Siyu XU, Yuwei XU, Xuqing ZHANG. Application of multiple InSAR techniques and SAR data from multi-sources to landslide deformation monitoring: A case study of the Zhixincun landslide in Jilin Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 155-162. DOI: 10.16031/j.cnki.issn.1003-8035.202209021
    [2]Qing HE, Lu WEI, Yonghong XIAO. Analysis of spatial-temporal distribution characteristics and influencing factors of land subsidence in Bozhou City, Anhui Province based on SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 81-90. DOI: 10.16031/j.cnki.issn.1003-8035.202304004
    [3]Huihui JIA, Jianzhi XUE, Lizhao GUO, Jiangtao SONG, Yucong ZHANG. Application of combined space, arial and ground based multiple technologies in deformation monitoring of mining areas[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 69-82. DOI: 10.16031/j.cnki.issn.1003-8035.202202015
    [4]Wei LU, Bin YANG, Kun YANG. Surface deformation monitoring and analysis of Southwest University of Science and Technology based on time series InSAR[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 61-72. DOI: 10.16031/j.cnki.issn.1003-8035.202202060
    [5]Zhenyin DAI, Yuelin LIU, Liping ZHANG, Xian ZHANG. Spatial-temporal evolution characteristics of land subsidence in Dongguan City based on improved InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 58-67. DOI: 10.16031/j.cnki.issn.1003-8035.202112028
    [6]Zhengrong YANG, Wenfei XI, Zhengtao SHI, Bo XIAO, Dingyi ZHOU. Deformation analysis in the bank slopes in the reservoir area of Baihetan Hydropower Station based on SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 83-92. DOI: 10.16031/j.cnki.issn.1003-8035.202202056
    [7]Kaixiang ZHANG, Zhanrong ZHANG, Xianyu YU. Application of SBAS-InSAR and PS-InSAR technologies in analysis of landslide subsidence along a linear infrastructure in Southwestern Shandong[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 65-76. DOI: 10.16031/j.cnki.issn.1003-8035.202108016
    [8]Chengye YANG, Tao ZHANG, Gui GAO, Chongyang BU, Hua WU. Application of SBAS-InSAR technology in monitoring of ground deformation of representative giant landslides in Jinsha river basin, Jiangda County, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 94-105. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-11
    [9]Hongming WANG, Ruren LI, Yiting QIN, Zhuqing LIU, Jun GU. Application of time series InSAR technology in monitoring ground deformation of mining area:A case study at Huolinhe open pit mining area in Inner Mongolia[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 71-78. DOI: 10.16031/j.cnki.issn.1003-8035.2022.02-09
    [10]LIU Xiaoyu, FAN Zhiyong, WU Jiang. Evolution of deformation and monitoring techniques of surface tilt for soil landslides using MEMS technique[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 69-77. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.09
  • Cited by

    Periodical cited type(8)

    1. 李华蓉,戴双璘,郑嘉欣. 基于InSAR监测和PSO-SVR模型的高填方区沉降预测. 中国地质灾害与防治学报. 2024(02): 127-136 . 本站查看
    2. 陈媛媛,彭舒琪,赵钢,王茂枚,马文萱,方伟. 基于时序InSAR的沿江地面形变监测与精度分析. 测绘工程. 2024(05): 62-68 .
    3. 莫莉,王贤能. 基于PS-InSAR技术的后海深槽地面及建筑物形变监测分析. 中国地质灾害与防治学报. 2023(01): 68-74 . 本站查看
    4. 鲁魏,杨斌,杨坤. 基于时序InSAR的西南科技大学地表形变监测与分析. 中国地质灾害与防治学报. 2023(02): 61-72 . 本站查看
    5. 方刚,叶波,纪振付,张明亮,李建颖,李晓淳. 基于InSAR技术对汕头潮阳区地质灾害体识别分析. 云南地质. 2023(02): 263-269 .
    6. 何清,魏路,肖永红. 基于SBAS-InSAR技术的安徽亳州市地面沉降时空分布特征与影响因素分析. 中国地质灾害与防治学报. 2023(05): 81-90 . 本站查看
    7. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    8. 郭富赟,周小龙,火飞飙,张毅. 舟曲断裂带滑坡灾害效应与防治对策研究. 中国地质灾害与防治学报. 2022(06): 80-89 . 本站查看

    Other cited types(5)

Catalog

    Article views (363) PDF downloads (174) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return