ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
Tianlun ZHOU, Chao ZENG, Chen FAN, Hongji BI, Enhui GONG, Xiao LIU. Landslide susceptibility assessment based on K-means cluster information model in Wenchuan and two neighboring counties, China[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 137-150. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-17
Citation: Tianlun ZHOU, Chao ZENG, Chen FAN, Hongji BI, Enhui GONG, Xiao LIU. Landslide susceptibility assessment based on K-means cluster information model in Wenchuan and two neighboring counties, China[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 137-150. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-17

Landslide susceptibility assessment based on K-means cluster information model in Wenchuan and two neighboring counties, China

More Information
  • Received Date: December 11, 2020
  • Revised Date: June 02, 2021
  • Available Online: August 17, 2021
  • The study of landslide susceptibility evaluation is of great significance to both zoning of geological disasters and disaster prevention strategies. Taking Wenchuan and two surrounding counties (Li County and Mao County), which are prone to landslides, as an example, K-means cluster information model for landslide susceptibility mapping is proposed. After seven impact factors, i.e., slope angle, elevation, aspect, distance from the structure, distance from the water system, formation lithology and the land usage, are selected, the secondary classification for factors is carried out. The former five impact factors mentioned above were classified separately by K-means cluster analysis according to 159 landslide samples. At the sametime, the traditional isometric classification was also presented to compare with the K-means clustering method. The latter two impact factors were classified qualitatively. According to the differences of the above secondary classification methods and whether the landslide sample considers the area factor, the information model is subdivided into four categories (model a: K-means clustering quantitative model, model b: isometric classification quantitative model, model c: K-means clustering area model, and model d: isometric classification area model). The information of each secondary index was calculated separately, and the information distribution of the study area was obtained through spatial overlay analysis of ArcGIS. Then, the landslide susceptibility of the study area was divided into five grades by natural breakpoint method. Taking the principle of increasing susceptibility and Area Under Curve (AUC) as the accuracy evaluation indicators, three results were obtained. First, the overall effect of K-means clustering models (model a and model c) is better than that of isometric classification models (model b and model d). Second, the area models (model c and model d) are generally better than the quantitative models (model a and model b) under the same classification method. Third, With the above two advantages, the evaluation accuracy of model c is significantly improved compared with model b, and its AUC value is increased from 80.46% to 87.25%.
  • [1]
    高华喜. 滑坡灾害风险区划与预测研究综述[J]. 灾害学,2010,25(2):124 − 128. [GAO Huaxi. Overview on landslide risk zoning and prediction research[J]. Journal of Catastrophology,2010,25(2):124 − 128. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2010.02.025
    [2]
    LEE S, PRADHAN B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models[J]. Landslides,2007,4(1):33 − 41. DOI: 10.1007/s10346-006-0047-y
    [3]
    POURGHASEMI H R, JIRANDEH A G, PRADHAN B, et al. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran[J]. Journal of Earth System Science,2013,122(2):349 − 369. DOI: 10.1007/s12040-013-0282-2
    [4]
    DU J, GLADE T, WOLDAI T, et al. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet, Chinese Himalayas[J]. Engineering Geology,2020,270:105572. DOI: 10.1016/j.enggeo.2020.105572
    [5]
    高克昌, 崔鹏, 赵纯勇, 等. 基于地理信息系统和信息量模型的滑坡危险性评价: 以重庆万州为例[J]. 岩石力学与工程学报,2006,25(5):991 − 996. [GAO Kechang, CUI Peng, ZHAO Chunyong, et al. Landslide hazard evaluation of Wanzhou based on GIS information value method in the Three Gorges reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(5):991 − 996. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2006.05.020
    [6]
    刘艺梁, 殷坤龙, 刘斌. 逻辑回归和人工神经网络模型在滑坡灾害空间预测中的应用[J]. 水文地质工程地质,2010,37(5):92 − 96. [LIU Yiliang, YIN Kunlong, LIU Bin. Application of logistic regression and artificial neural networks in spatial assessment of landslide hazards[J]. Hydrogeology & Engineering Geology,2010,37(5):92 − 96. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2010.05.017
    [7]
    JIANG L, LIU D S, JIANG Y H, et al. Landside susceptibility assessment based on weighted information value model: A case study of Wenchuan earthquake 10 degree region[C]//2014 The Third International Conference on Agro-Geoinformatics. Beijing: IEEE, 2014: 1-4.
    [8]
    马国超. 强震区汶川县地质灾害危险性评价研究[D]. 成都: 成都理工大学, 2015.

    MA Guochao. The geological hazard assessment and mapping study of Wenchuan in meizoseismal area[D]. Chengdu: Chengdu University of Technology, 2015. (in Chinese with English abstract)
    [9]
    王磊. 基于GIS的理县滑坡地质灾害风险性评价[D]. 成都: 成都理工大学, 2013.

    WANG Lei. Risk assessment of landslide in Li County based on GIS[D]. Chengdu: Chengdu University of Technology, 2013. (in Chinese with English abstract)
    [10]
    崔志超, 王俊豪, 崔传峰, 等. 基于层次分析法和模糊数学相结合的甘肃东乡八丹沟泥石流易发性评价[J]. 中国地质灾害与防治学报,2020,31(1):44 − 50. [CUI Zhichao, WANG Junhao, CUI Chuanfeng, et al. Evaluation of the susceptibility of debris flow in Badan gully of Dongxiang County of Gansu based on AHP and fuzzy mathematics[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):44 − 50. (in Chinese with English abstract)
    [11]
    孙长明, 马润勇, 尚合欣, 等. 基于滑坡分类的西宁市滑坡易发性评价[J]. 水文地质工程地质,2020,47(3):173 − 181. [SUN Changming, MA Runyong, SHANG Hexin, et al. Landslide susceptibility assessment in Xining based on landslide classification[J]. Hydrogeology & Engineering Geology,2020,47(3):173 − 181. (in Chinese with English abstract)
    [12]
    方然可, 刘艳辉, 苏永超, 等. 基于逻辑回归的四川青川县区域滑坡灾害预警模型[J]. 水文地质工程地质,2021,48(1):181 − 187. [FANG Ranke, LIU Yanhui, SU Yongchao, et al. A early warning model of regional landslide in Qingchuan County,Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology,2021,48(1):181 − 187. (in Chinese with English abstract)
    [13]
    韩蓓. 基于GIS的岷江上游汶川—叠溪河段滑坡灾害危险性评价[D]. 成都: 成都理工大学, 2014.

    HAN Bei. Landslide geological disaster hazard assessment in Minjiang river from Wenchuan to diexi based on GIS[D]. Chengdu: Chengdu University of Technology, 2014. (in Chinese with English abstract)
    [14]
    王雷, 吴君平, 赵冰雪, 等. 基于GIS和信息量模型的安徽池州地质灾害易发性评价[J]. 中国地质灾害与防治学报,2020,31(3):96 − 103. [WANG Lei, WU Junping, ZHAO Bingxue, et al. Susceptibility assessment of geohazards in Chizhou City of Anhui Province based on GIS and informative model[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):96 − 103. (in Chinese with English abstract)
    [15]
    冯超. K-means聚类算法的研究[D]. 大连: 大连理工大学, 2007.

    FENG Chao. Research of K-means clustering algorithm[D]. Dalian: Dalian University of Technology, 2007. (in Chinese with English abstract)
    [16]
    吴夙慧, 成颖, 郑彦宁, 等. K-means算法研究综述[J]. 现代图书情报技术,2011(5):28 − 35. [WU Suhui, CHENG Ying, ZHENG Yanning, et al. Survey on K-means algorithm[J]. New Technology of Library and Information Service,2011(5):28 − 35. (in Chinese with English abstract)
    [17]
    李军, 周成虎. 基于栅格GIS滑坡风险评价方法中格网大小选取分析[J]. 遥感学报,2003,7(2):86 − 92. [LI Jun, ZHOU Chenghu. Appropriate grid size for terrain based landslide risk assessment in lantau island, Hong Kong[J]. Journal of Remote Sensing,2003,7(2):86 − 92. (in Chinese with English abstract) DOI: 10.11834/jrs.20030202
    [18]
    王帅永. 县域地质灾害风险评价研究: 以四川省汶川县为例[D]. 成都: 成都理工大学, 2016.

    WANG Shuaiyong. Geohazard risk assessment at the county-level: A case study of Wenchuan County, Sichuan Province[D]. Chengdu: Chengdu University of Technology, 2016. (in Chinese with English abstract)
    [19]
    YANG J T, SONG C, YANG Y, et al. New method for landslide susceptibility mapping supported by spatial logistic regression and GeoDetector: A case study of Duwen Highway Basin, Sichuan Province, China[J]. Geomorphology,2019,324:62 − 71. DOI: 10.1016/j.geomorph.2018.09.019
    [20]
    吴志宇, 刘齐建. SH波作用下边坡地形的地面运动分析[J]. 公路工程,2019,44(3):80 − 84. [WU Zhiyu, LIU Qijian. Surface motion of a slope on half space to SH waves[J]. Highway Engineering,2019,44(3):80 − 84. (in Chinese with English abstract)
    [21]
    王智伟, 王利, 黄观文, 等. 基于BP神经网络的滑坡监测多源异构数据融合算法研究[J]. 地质力学学报,2020,26(4):575 − 582. [WANG Zhiwei, WANG Li, HUANG Guanwen, et al. Research on multi-source heterogeneous data fusion algorithm of landslide monitoring based on BP neural network[J]. Journal of Geomechanics,2020,26(4):575 − 582. (in Chinese with English abstract)
    [22]
    樊晓一, 张睿骁, 胡晓波. 沟谷地形参数对滑坡运动距离的影响研究[J]. 地质力学学报,2020,26(1):106 − 114. [FAN Xiaoyi, ZHANG Ruixiao, HU Xiaobo. Study on the influence of valley topographic parameter on the moving distance of landslide[J]. Journal of Geomechanics,2020,26(1):106 − 114. (in Chinese with English abstract)
  • Related Articles

    [1]Jianping CHEN, Yabo XIN, Zepeng WANG, Wei CHEN, Changyuan WAN, Yunyan LIU, Junjie HUANG. Effect of sample selection on the susceptibility assessment of geological hazards: A case study in Liulin County, Shanxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 152-162. DOI: 10.16031/j.cnki.issn.1003-8035.202210037
    [2]Boju ZHAO, Ning LI, Fucheng XING, Han XIANG. Landslide geological hazard assessment based on the I-CF model of Dege County in Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 32-42. DOI: 10.16031/j.cnki.issn.1003-8035.202302030
    [3]Xiangyuan ZHANG. Construction and implementation of an automatic algorithm for generating information of geological disaster floor risk warning products based on GIS and GDAL[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 76-82. DOI: 10.16031/j.cnki.issn.1003-8035.202205036
    [4]Shuiyun TU, Zhongyuan ZHANG, Hongliu FU, Shiguang XU, Mingguo DENG, Lichun HE, Jinyu LIU. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 96-104. DOI: 10.16031/j.cnki.issn.1003-8035.2022.02-12
    [5]Yang WAN, Jie GUO, Fengshan MA, Jia LIU, Yewei SONG. Landslide susceptibility assessment based on MaxEnt model of along Sino-Nepal traffic corridor[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 88-95. DOI: 10.16031/j.cnki.issn.1003-8035.2022.02-11
    [6]Hongji BI, Lei NIE, Chao ZENG, Chen FAN, Tianlun ZHOU, Xiao LIU. Geological hazard susceptibility evaluation in Wenchuan area based on three models of multivariate instability index analysis[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 123-131. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-15
    [7]Fuzhen LIU, Ling WANG, Dongsheng XIAO. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 98-106. DOI: 10.16031/j.cnki.issn.1003-8035.2021.06-12
    [10]TANShu-cheng, JINYan-zhu, HUXiong-gang, JIANGShun-de, FENGLong. Geo-hazard danger evaluation of construction project based on GIS[J]. The Chinese Journal of Geological Hazard and Control, 2012, (4): 47-52.
  • Cited by

    Periodical cited type(16)

    1. 龚屿, 刘晓. 非滑坡样本选择对滑坡易发性评价的影响研究——以汶川县、理县和茂县为例. 中国地质灾害与防治学报. 2025(03) 本站查看
    2. 崔成涛,李丽敏,符振涛,任瑞斌,王莲霞,封青青. 基于博弈论赋权信息量模型的滑坡易发性评价. 人民珠江. 2024(02): 9-17 .
    3. 申玉松,张宸,王艺杰,张迪. 基于CF-LR模型的河南省信阳市地质灾害易发性评价. 地质与资源. 2024(01): 74-81+134 .
    4. 张蕊,郭荣昌,贺攀,余岭燕. 基于改进突变理论的滑坡危险性评价. 中国地质灾害与防治学报. 2023(01): 121-128 . 本站查看
    5. 刘铁铭,郭有金,刘艳领. 基于聚类算法优化样本的地质灾害易发性评价. 人民长江. 2023(03): 117-124 .
    6. 朱宇航,黄海峰,殷坤龙,郭子正,郭飞,赖鹏. 基于滑坡破坏模式分析的易发性评价——以三峡库区首段泄滩河左岸为例. 中国地质灾害与防治学报. 2023(02): 156-166 . 本站查看
    7. 覃茂刚,龙根元,李海云,黄海波,陈万利,陈文. 基于K-means聚类层次分析模型的中沙环礁地质环境稳定性定量分析. 热带海洋学报. 2023(02): 113-123 .
    8. 黄永坚,陈科玚,闫茂华,王景辉,张学虎. 基于CA模型的土地利用模拟研究. 安徽农学通报. 2023(12): 84-89 .
    9. 覃茂刚,曾维特,龙根元,陈波,汪贵锋,杨朝云,张匡华,邓思迪. 三亚崖州湾海域开发建设适宜性定量分析评价. 地震工程学报. 2023(05): 1035-1045 .
    10. 茹曼,郑燕,张斌,常勤慧. 基于SVM-RF模型的地质灾害易发性评价——以河南省博爱县青天河景区为例. 地质与资源. 2023(05): 633-641 .
    11. 赵伯驹,李宁,幸夫诚,向晗. 基于I-CF模型的四川德格县滑坡危险性评价与区划. 中国地质灾害与防治学报. 2023(05): 32-42 . 本站查看
    12. 杨得虎,朱杰勇,刘帅,马博,代旭升. 基于信息量、加权信息量与逻辑回归耦合模型的云南罗平县崩滑灾害易发性评价对比分析. 中国地质灾害与防治学报. 2023(05): 43-53 . 本站查看
    13. 杨得虎,朱杰勇,刘帅,马博,代旭升. 罗平县崩滑易发性评价模型对比研究. 地质灾害与环境保护. 2023(04): 41-49 .
    14. 万洋,郭捷,马凤山,刘佳,宋烨炜. 基于最大熵模型的中尼交通廊道滑坡易发性分析. 中国地质灾害与防治学报. 2022(02): 88-95 . 本站查看
    15. 李光辉,铁永波,白永建,熊晓辉. 则木河断裂带(普格段)地质灾害发育规律及易发性评价. 中国地质灾害与防治学报. 2022(03): 123-133 . 本站查看
    16. 熊小辉,汪长林,白永健,铁永波,高延超,李光辉. 基于不同耦合模型的县域滑坡易发性评价对比分析——以四川普格县为例. 中国地质灾害与防治学报. 2022(04): 114-124 . 本站查看

    Other cited types(11)

Catalog

    Article views (354) PDF downloads (268) Cited by(27)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return