Probing into the techniques recognizing potential debris flow formation regions
-
摘要: 提前对泥石流可能发生和造成影响的区域进行预测和防范,一直是地质灾害预测中的重要课题。为充分发挥国产高分影像的空间分辨率优势,利用NNDiffuse和Gram-Schmidt两种融合方法实现多光谱和全色波段的融合并作为研究数据,结合常用的支持向量机(SVM)和基于土壤亮度指数特征的动态聚类(ISODATA)两种分类方法对泥石流潜在形成区的自然地表覆盖和人类影响区域进行识别和提取,再利用泥石流隐患沟和集水区的空间和属性关系预测泥石流形成区。研究表明,不同融合方法会对泥石流形成区的预测产生影响,本文基于NNDiffuse融合方法进行预测的总体效果最好;SVM方法有最好的效果,表明先验知识对预测形成区的重要意义,但无先验知识的ISODATA方法结合有效的指数特征在泥石流形成区识别和预测中有较好的表现,预期未来能在测绘部门有很大的应用潜力。Abstract: It is an important task to predict and prevent debris flow and its impacted areas in advance. In this paper, RS and GIS technology were adopted to predict the potential debris flow. Taking advantage of the spatial resolution of domestic high-resolution images, using NNDiffuse and Gram-Schmidt methods to realize the fusion of remote sensing images into research data, combining with support vector machine (SVM) and dynamic clustering based on soil brightness index (ISODATA), the natural surface coverage and human impact area of debris flow formation region are identified and extracted, and then the formation region of debris flow is predicted by using the spatial and attribute relationship of hidden gully and catchment. The experiment shows that different fusion methods will affect the result of debris flow extraction. NNDiffuse fusion method has the best overall effect in this paper; SVM method has the best effect, the prior knowledge has the significance in the prediction of forming region, ISODATA method without prior knowledge has better performance in the identification and prediction of debris flow, there is potential application prospect in the future.
-
-
[1] 李椷, 罗德富. 中国泥石流的特征及防治工程[J]. 水土保持通报, 1985(2):15-19.[LI J,LUO D F. Characteristics of debris flow in China and its prevention and control engineering[J]. Bulletin of Soil and Water Conservation,1985 (2):15-19.(in Chinese)]
[2] A M Johnson, Rahn P H.Mobilization of debris flows. Zeitschrift fur Geomorphologie, 1970, 9(Sup1):168-186.
[3] HUNGR O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Canadian Geotechnical Journal, 1995, 32(4):610-623.
[4] IVERSON R M, REID M E, LAHUSEN R G. Debris-flow mobilization from landslides[J]. Annual Review of Earth and Planetary Sciences, 1997, 25(1):85-138.
[5] SASSA K. Mechanisms of landslide triggered debris flows[M]Environmental Forest Science. 1998.
[6] 罗德富, 杨庆溪, 李椷. 泥石流的基本特征[J]. 中国水土保持, 1985(8):13-16.[LUO D F,YANG Q X,LI J. Basic characteristics of debris flow[J]. Soil and Water Conservation in China, 1985 (8):13-16.(in Chinese)]
[7] 杜榕桓. 泥石流成因、特点及防治意见[J]. 中国水土保持, 1985(10):20-23.[DU R H. Causes, characteristics and prevention of debris flow[J]. Soil and Water Conservation in China, 1985 (10):20-23.(in Chinese)]
[8] NILSEN T H, BRABB E E. 18 Slope-stability studies in the San Francisco Bay region, California. Reviews in Engineering Geology, 1977, 3:233-244.
[9] 张沅. 遥感技术在泥石流预报中的作用[J]. 铁路航测, 1982(3):19-22.[ZHANG Y. The role of remote sensing technology in debris flow prediction[J]. Railway Aerial Survey, 1982 (3):19-22.(in Chinese)]
[10] PRADHAN B, LEE S. Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models[J]. Environmental Earth Sciences, 2010, 60(5):1037-1054.
[11] PELFINI M, SANTILLI M. Frequency of debris flows and their relation with precipitation:a case study in the Central Alps, Italy[J]. Geomorphology, 2008, 101(4):721-730.
[12] CHANG M, TANG C, VAN ASCH T W J, et al. Hazard assessment of debris flows in the Wenchuan earthquake-stricken area, South West China[J]. Landslides, 2017, 14(5):1783-1792.
[13] 熊俊楠,刘志奇,苏鹏程,等.基于GF-1卫星影像的金川县泥石流沟空间分布特征研究[J].自然灾害学报,2019,28(2):160-168. [XIONG J N,LIU Z Q,SU P C, et al. Research on debris flow gully spatial distribution characteristicsin Jinchuan County based on GF-1 satellite image[J]. Journal of Natural Disasters,2019,28(2):160-168.(in Chinese)]
[14] 周伟, 邓玖林. 基于Fisher判别法的台风暴雨泥石流预测模型[J]. 水科学进展, 2019, 30(3):392-400. [ZHOU W, DENG J L. Predictive model of typhoon-induced debris flow based on Fisher discriminant analysis[J]. Advances in Water Science, 2019, 30(3):392-400.(in Chinese)]
[15] 王晨晖, 张超. 基于主成分分析法和遗传算法优化支持向量机模型的泥石流危险度预测[J]. 河北地质大学学报, 2017(2):20-24.[WANG C H, ZHANG C. Debris flow risk prediction based on PCA-GA-SVM model[J]. Journal of Shijiazhuang University of Economics, 2017 (2):20-24.(in Chinese)]
[16] 何超. 基于GF-2卫星数据的泥石流自动提取及评价模拟研究[D]. 北京:中国地质大学(北京), 2018.[HE C. Debris flow automatic extraction and evaluation simulation based on GF-2 satellite data[D]. Beijing:China University of Geosciences, 2018.(in Chinese)] [17] 李春霖. 基于高分辨率国产遥感影像的泥石流自动提取方法研究[D]. 北京:中国地质大学(北京), 2016.[LI C L. Research on Automatic Extraction of Debris Flows with Domestic High-resolution Remote Sensing Images[D]. Beijing:China University of Geosciences, 2016.(in Chinese)] [18] 李丽敏, 程少康, 温宗周, 等. 基于改进KPCA与混合核函数LSSVR的泥石流预测[J]. 信息与控制, 2019, 48(5):536-544. [LI L M, CHENG S K, WEN Z Z, et al. A debris flow prediction model based on the improved KPCA and mixed kernel function LSSVR[J]. Information and Control, 2019, 48(5):536-544.(in Chinese)]
[19] 邵亚奎, 朱长明, 张新, 等. 国产高分卫星遥感影像融合方法比较与评价[J]. 测绘通报, 2019(6):5-10.[SHAO Y K, ZHU C M, ZHANG X, et al. Comparison of diffirent fusion methods and their performance evaluation tohigh spatial resolution remote sensing data of GF[J]. Bulletin of Surveying and Mapping, 2019 (6):5-10.(in Chinese)]
[20] 邵河顺, 窦富国, 于壮, 等. 高分二号影像融合方法比较研究[J]. 黑龙江工程学院学报, 2019, 33(2):9-12. [SHAO H S, DOU F G, YU Z, et al. Comparison of the image fusion methods for GF-2[J]. Journal of Heilongjiang Institute of Technology, 2019, 33(2):9-12.(in Chinese)]
[21] 赵文驰,宋伟东,陈敏.国产高分辨率遥感卫星融合方法比较[J].测绘与空间地理信息,2019,42(11):154-158. [ZHAO W C,SONG W D,CHEN M. Comparison of fusion methods in domestic high resolution remote sensing[J].Geomati&Spatial INFO Rmation Technology,2019,42(11):154-158.(in Chinese)]
[22] 刘锟, 付晶莹, 李飞. 高分一号卫星4种融合方法评价[J]. 遥感技术与应用, 2015, 30(5):980-986. [LIU K, FU J Y, LI F. Evaluation study of four fusion methods of GF-1 PAN and multi-spectral images[J]. Remote Sensing Technology and Application, 2015, 30(5):980-986.(in Chinese)]
[23] 丁杨,王闯,张银凤.基于同源和异源的高分影像融合及质量评价[J].测绘与空间地理信息,2019,42(6):122-125. [DING Y,WANG C,ZHANG Y F. High-resolution image fusion and quality evaluation based on homology and heterogeneity.[J]. Geomati&Spatial INFO Rmation Technology,2019,42(6):122-125.(in Chinese)]
[24] 王华斌, 李国元, 张本奎, 等. 资源三号卫星影像融合算法对比分析[J]. 测绘科学, 2015, 40(1):47-51. [WANG H B, LI G Y, ZHANG B K, et al. Contrast and analysis of different fusion algorithms for ZY-3 satellite images[J]. Science of Surveying and Mapping, 2015, 40(1):47-51.(in Chinese)]
[25] 王杨科, 李楠, 何琼. 山区泥石流特点及其防治[J]. 科技信息, 2013(25):498-499.[WANG Y K, LI N, HE Q. Characteristics and prevention of debris flow in mountainous areas[J]. Scientific and technological information, 2013 (25):498-499.(in Chinese)]
[26] 于潇. 北京洪水峪泥石流形成条件探讨[J]. 矿产勘查, 2019, 10(11):2721-2727. [YU X. Discussion on debris flow formation conditions in Hongshuiyu area, Beijing[J]. Mineral Exploration, 2019, 10(11):2721-2727.(in Chinese)]
[27] 刘德玉, 贾贵义, 李松, 等. 地形因素对白龙江流域甘肃段泥石流灾害的影响及权重分析[J]. 水文地质工程地质, 2019, 46(3):33-39. [LIU D Y, JIA G Y, LI S, et al. Impacts of topographical factors on debris flows and weight analysis at the Gansu segment of the Bailongjiang River Basin[J]. Hydrogeology & Engineering Geology, 2019, 46(3):33-39.(in Chinese)]
[28] 董文, 潘建平, 阳振宇, 等. 高分二号卫星数据在地质灾害调查中的应用——以重庆万州区为例[J]. 中国地质灾害与防治学报, 2019, 30(1):106-111. [DONG W, PAN J P, YANG Z Y, et al. Application of GF-2 satellite data in geological hazard survey:a case study in Wanzhou District of Chongqing City[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(1):106-111.(in Chinese)]
[29] 杜培军, 林卉, 孙敦新. 基于支持向量机的高光谱遥感分类进展[J]. 测绘通报, 2006(12):37-40.[DU P J, LIN H, SUN D X. On progress of support vector machine based hyperspectral RS classification[J]. Bulletin of Surveying and Mapping, 2006 (12):37-40.(in Chinese)]
[30] 韩洁, 郭擎, 李安. 结合非监督分类和几何一纹理-光谱特征的高分影像道路提取[J]. 中国图象图形学报, 2017(12):1788-1797.[HAN J, GUO Q, LI A. Road extraction based on unsupervised classification and geometric-texture-spectral features for high-resolution remote sensing images[J]. Journal of Image and Graphics, 2017 (12):1788-1797.(in Chinese)]
[31] 骆剑承, 周成虎, 梁怡, 等. 支撑向量机及其遥感影像空间特征提取和分类的应用研究[J]. 遥感学报, 2002, 6(1):50-55. [LUO J C, ZHOU C H, LIANG Y, et al. Support vector machine for spatial feature extraction and classification of remotely sensed imagery[J]. Journal of Remote Sensing, 2002, 6(1):50-55.(in Chinese)]
[32] FOODY G M, MATHUR A. Toward intelligent training of supervised image classifications:directing training data acquisition for SVM classification[J]. Remote Sensing of Environment, 2004, 93(1):107-117.
[33] 廖东, 戴洪宝, 许继影. 基于Landsat-8监督分类与非监督分类的土地利用分类方法比较[J]. 河南科技, 2019(8):14-16.[LIAO D, DAI H B, XU J Y. Comparison of land use classification methods based on landsat-8 supervised classification and unsupervised classification[J]. Henan Science & Technology, 2019(8):14-16.(in Chinese)]
[34] 赵书河. 高分辨率遥感数据处理方法实验研究[J]. 地学前缘, 2006, 13(3):60-68. [ZHAO S H. Experimental study of methods for high spatial resolution remote sensing data processing[J]. Earth Science Frontiers, 2006, 13(3):60-68.(in Chinese)]
[35] 泥石灾害防治工程勘查规范(试行):T/ACGHP 006-2018[S].[Code for investigation of debris disaster prevention and Control Engineering (Trial):T/ACGHP 006-2018[S].(in Chinese)] -
期刊类型引用(6)
1. 马明明,伍尚前,谢猛,童鹏,袁晓波. 决策树分类在铁路沿线桉树提取及滑坡隐患识别中的应用——以贵广高铁广西段为例. 中国地质灾害与防治学报. 2025(01): 37-45 . 本站查看
2. 周静,刘敦龙,桑学佳,张少杰,杨红娟. 基于CNN-KAN的汶川地震灾区潜势泥石流流域识别方法. 计算机与现代化. 2025(04): 70-76 . 百度学术
3. 徐根祺,曹宁,李璐,谢国坤,党文博. 基于KPCA-TFPSO-BL的泥石流预测研究. 国外电子测量技术. 2024(10): 81-90 . 百度学术
4. 吴明辕,罗明,刘岁海. 基于光学遥感与InSAR技术的潜在滑坡与老滑坡综合识别——以滇西北地区为例. 中国地质灾害与防治学报. 2022(03): 84-93 . 本站查看
5. 徐繁树,王保云. 基于残差网络的泥石流孕灾沟谷快速识别. 现代计算机. 2022(12): 75-80 . 百度学术
6. 武珊. 融合聚类算法与YOLO-v3网络在果蔬种植防虫害中的应用研究. 江西农业学报. 2022(10): 108-115 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 301
- HTML全文浏览量: 195
- PDF下载量: 586
- 被引次数: 8