Kinematic characteristics and emergency response model of loess landslide drived by snowmelt: take the Zeketai Landslide in Yili, Xinjiang as an example
-
摘要: 2019年4月30日,在新疆的伊犁地区一个高位黄土滑坡复活启动,并远距离掩埋公路和阻塞河道。大约5.04×105 m3黄土体高位滑移剪出冲击铲刮沟道及两侧岸坡。滑坡不定时复活启动机理难以琢磨。本文基于实地详细调查、遥感影像判识、气象数据分析和黄土特征试验等方法,以试图确定黄土滑坡的演变历史、运动过程和复活机理。研究表明,该滑坡曾发生两次大规模滑动破坏,且伴随着坡体地裂缝发展,每年黄土坡体发生不同程度的累积变形破坏。春季温度升高导致积雪快速消融入渗是黄土滑坡变形演化的最重要影响因素,春季融水和暴雨的耦合是控制黄土滑坡发生的根本原因。基于本次灾害发生后成功灾害应急响应过程,提出一种基于早期预警多部门联动的公路灾害应急响应模式。随着区域放牧活动增加和气候变暖加剧,该黄土滑坡将具有极大潜在复活滑动风险。研究可为寒冻区滑坡形成演化和破坏机理提供了新的视野,为服务新疆一带一路区域交通建设具有重要意义。Abstract: One high loess landslide, which was located in Yili Region of Xinjiang, reactivated and caused long-distance road burying and river blocking on April 30, 2019. About 5.04×105 m3 of loess body was cut out along the high sliding position, and impacted shovel scraping ditch and bank slopes on both sides. However, so far it is difficult to understand the mechanism of unscheduled landslide reactivation. Based on detailed field investigation, remote sensing image identification, meteorological data analysis and loess characteristic test, this paper attempts to determine the formation and evolution history, movement process and reactivation mechanism of loess landslide.The results indicated that in the past this landslide had experienced two large-scale sliding failures, and in the meantime showed different degrees of inherited cumulative deformation failure annually with the development of slope ground fissures and cracks. The rapid snow ablation and infiltration drived by the abnormal temperature rising in spring was the most important influencing factor on deformation evolution of the loess landslide, and the coupling of thawing water and rainstorm in spring was the fundamental reason controlling the occurrence of loess landslides.Based on the successful disaster emergency response process after the disaster occurrence, a multi-department linkage highway disaster emergency response model based on early warning is proposed. Accompanying with the increase of regional grazing activities and climate warming, this loess landslide will have a great potential risk of reactivation sliding in the future. The study can provide a new perspective for researching the formation,evolution and failure mechanism of landslides in frozen regions, and have great significance for serving the traffic construction of One Belt and One Road in Xinjiang.
-
-
[1] XU L, DAI F C, GONG Q M, et al. Irrigation-induced loess flow failure in Heifangtai Platform,2012.
[2] PENG J B,WANG S K,WANG Q Y,et al. Distribution and genetic types of loess landlisdes in China[J]. Journal of Asian Earth Sciences,2018.
[3] TRANDAFIR A C, ERTUGRUL O L, GIRAUD R E, et al. Geomechanics of a snowmelt-induced slope failure in glacial till[J]. Environmental Earth Sciences, 2015, 73(7):3709-3716.
[4] CARDINALI M, ARDIZZONE F, GALLI M, et al. Landslides triggered by rapid snow melting:the December 1996-January 1997 event in Central Italy. Proceedings 1st Plinius Conference on Mediterranean Storms. Claps P, Siccardi F (eds). Bios:Cosenza; 2000,439-448.
[5] SAEZ J L, CORONA C, STOFFEL M, et al. Climate change increases frequency of shallow spring landslides in the French Alps[J]. Geology, 2013, 41(5):619-622.
[6] SHAN W, GUO Y, WANG F W, et al. Landslides in cold regions in the context of climate change[M]. Cham:Springer International Publishing, 2014.
[7] SIVA SUBRAMANIAN S, ISHIKAWA T, TOKORO T. An early warning criterion for the prediction of snowmelt-induced soil slope failures in seasonally cold regions[J]. Soils and Foundations, 2018, 58(3):582-601.
[8] KAWAMURA S, MIURA S. Rainfall-induced failures of volcanic slopes subjected to freezing and thawing[J]. Soils and Foundations, 2013, 53(3):443-461.
[9] SIVA SUBRAMANIAN S, ISHIKAWA T, TOKORO T. Stability assessment approach for soil slopes in seasonal cold regions[J]. Engineering Geology, 2017, 221:154-169.
[10] SIVA SUBRAMANIAN S, FAN X, YUNUS A P, et al. A sequentially coupled catchment-scale numerical model for snowmelt-induced soil slope instabilities[J]. Journal of Geophysical Research:Earth Surface, 2020, 125(5).
[11] 李传想, 宋友桂, 王乐民. 伊犁盆地黄土分布、年代及粉尘来源分析[J]. 地球与环境, 2012, 40(3):314-320. [LI C X, SONG Y G, WANG L M. Distribution, age and dust sources of loess in the Ili basin[J]. Earth and Environment, 2012, 40(3):314-320.(in Chinese)]
[12] 叶玮,靳鹤龄,赵兴有,等. 新疆伊犁地区黄土的粒度特征与物质来源[J]. 干旱区地理, 1998, 21(4):1-8. [YE W, JIN H L, ZHAO X Y, et al.Depositional features and material sources of loess in Yili region, Xinjiang[J]. Arid Land Geography, 1998, 21(4):1-8.(in Chinese)]
[13] 伊犁哈萨克自治州统计局. 伊犁哈萨克自治州统计年鉴[C].2017.[Statistics Bureau of Ili Kazak Autonomous Prefecture. Statistical Yearbook of Ili Kazak Autonomous Prefecture[C].2017.(in Chinese)] [14] 张茂省, 胡炜, 孙萍萍, 等. 黄土水敏性及水致黄土滑坡研究现状与展望[J]. 地球环境学报, 2016, 7(4):323-334. [ZHANG M S, HU W, SUN P P, et al. Advances and prospects of water sensitivity of loess and the induced loess landslides[J]. Journal of Earth Environment, 2016, 7(4):323-334.(in Chinese)]
[15] 袁志辉,唐春,杨普济,等. 干湿循环下原状黄土抗压强度试验研究[C]//中国地质学会.2018年全国工程地质学术年会论文集.工程地质学报,2018:164-170.[YUAN Z H, TANG C, YANG P J, et al. Experimental study on compressive strength of undisturbed loess under wet and dry cycles[C]//China Geological Society. Proceedings of the 2018 National Engineering Geology Annual Conference. Journal of Engineering Geology,2018 :164-170.(in Chinese)]
[16] 王恭先.日本的滑坡防治措施[J].中国水土保持,1988(6):67.[WANG G X.Landslide control measures in Japan[J]. China Soil and Water Conservation,1988(6 ):67.(in Chinese)]
[17] WANG G H, ZHANG D X, FURUYA G, et al. Pore-pressure generation and fluidization in a loess landslide triggered by the 1920 Haiyuan earthquake, China:a case study[J]. Engineering Geology, 2014, 174:36-45.
[18] COE J A, ELLIS W L, GODT J W, et al. Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation, July 1998-March 2002[J]. Engineering Geology, 2003, 68(1/2):67-101.
[19] SCHULZ W H, MCKENNA J P, KIBLER J D, et al. Relations between hydrology and velocity of a continuously moving landslide-evidence of pore-pressure feedback regulating landslide motion[J]. Landslides, 2009, 6(3):181-190.
[20] SCHULZ W H, KEAN J W, WANG G H. Landslide movement in southwest Colorado triggered by atmospheric tides[J]. Nature Geoscience, 2009, 2(12):863-866.
[21] NADIM F, KJEKSTAD O, PEDUZZI P, et al. Global landslide and avalanche hotspots[J]. Landslides, 2006, 3(2):159-173.
[22] HINDS E, LU N, MIRUS B, et al. Effects of infiltration characteristics on spatial-temporal evolution of stability of an interstate highway embankment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9):05019008.
[23] CAMPBELL R H. 1975. Soil slip, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California. Professional Paper No. 851. Washington, DC:USGS, US Dept. of the Interior.
[24] FLAGEOLLET J C, MAQUAIRE O, MARTIN B, et al. Landslides and climatic conditions in the Barcelonnette and Vars basins (Southern French Alps, France)[J]. Geomorphology, 1999, 30(1/2):65-78.
[25] JONGMANS D, BIèVRE G, RENALIER F, et al. Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps)[J]. Engineering Geology, 2009, 109(1/2):45-56.
[26] 徐辉, 刘海知. 诱发滑坡的多尺度降雨特征[J]. 山地学报, 2019, 37(6):858-867. [XU H, LIU H Z. Multi-scale rainfall characteristics of rainfall-induced landslides[J]. Mountain Research, 2019, 37(6):858-867.(in Chinese)]
[27] JIAN Q Z, JIAN B P,GONG H W,et al. Distribution and characteristics of landslide in Loess Plateau:A case study in Shaanxi province[J]. Engineering Geology, 2018(236):89-96.
[28] HUGGEL C, CLAGUE J J, KORUP O. Is climate change responsible for changing landslide activity in high mountains[J]. Earth Surface Processes and Landforms, 2012, 37(1):77-91.
[29] LOPEZ SAEZ J, CORONA C, STOFFEL M, et al. Probability maps of landslide reactivation derived from tree-ring records:Pra Bellon landslide, southern French Alps[J]. Geomorphology, 2012, 138(1):189-202.
-
期刊类型引用(10)
1. 孔雅茜,肖正辉,黄炜敏,罗伟奇,肖巍峰,曹运江,罗路广,唐豪. 极端降雨背景下滑坡易发性评估模型集成及关键因素分析. 国土资源导刊. 2025(01): 89-97 . 百度学术
2. 伊学涛,尚彦军,孟庆森,孟和,崔振东,贺强. 不同吸力下伊犁河谷原状非饱和黄土强度特性试验研究. 工程地质学报. 2024(03): 760-771 . 百度学术
3. 李双村,梁志超,任文渊,张爱军,范明辉. 易溶盐含量对伊犁黄土未冻水含量影响研究. 水电能源科学. 2024(10): 92-95+32 . 百度学术
4. 马莉,叶尔哈力·胡斯曼,刘学军,石开欣,胡扬阳. 大温差环境下新疆伊犁黄土变形特性. 应用基础与工程科学学报. 2024(06): 1630-1647 . 百度学术
5. 曹小红,尚彦军,李巧学,许涛,杨成,春坚超. 伊犁萨尔布拉克南岸黄土斜坡稳定性分析. 新疆地质. 2023(02): 251-255 . 百度学术
6. 阿里木·吐木尔. 恰拉水文站自动观测仪器对比分析. 海河水利. 2023(06): 113-116+124 . 百度学术
7. 凌松耀,蹇永明,张智勇,李卓,黄翀垚,郭兴会,张奇. 融雪-降雨型滑坡失稳机理. 科学技术与工程. 2023(21): 8980-8987 . 百度学术
8. 张磊,陈德斌,史光明,张紫昭,付晶. 伊犁种蜂场降雨型滑坡成因及防治效能评价. 工程地质学报. 2023(04): 1293-1306 . 百度学术
9. 魏刚,殷志强,罗银飞,万利勤,李春孝. 黄河上游康杨滑坡堆积体特征及形成机理分析. 中国地质灾害与防治学报. 2022(02): 1-8 . 本站查看
10. 黄志义,张永辉. 土-页岩结构边坡建模分析与失稳规律研究. 工程建设. 2022(04): 38-42 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 496
- HTML全文浏览量: 247
- PDF下载量: 574
- 被引次数: 14