Research progress on the evolution and utilization of the barrier dam accumulations
-
摘要: 堰塞坝险情的形成演化与综合开发治理是防灾减灾领域研究的焦点问题,因坝体形成过程特殊、内部结构复杂、组成材料不均且堆积形态迥异,导致其与人工坝体差异较大,目前仍缺乏有效的安全性评估方法及科学的开发治理措施。本文列举了国内外典型的堰塞坝事件,从堰塞坝的形成、类型和结构特征等方面,总结了已有的研究成果,阐述了堰塞坝的形成机理,重点分析了崩塌、滑坡、泥石流堰塞坝的堆积演化过程研究。归纳了目前堰塞坝应急处置和综合治理的工程措施与非工程措施,列举了堰塞坝蓄水发电、引水灌溉、环境旅游等开发利用的成功案例。通过文献和案例汇编,建立了堰塞坝事件研究的文献资料库。鉴于堰塞坝较高的溃决风险和开发潜能,提出当前研究存在的主要问题和继续努力的研究方向,为堰塞坝的风险预测及开发利用提供有益参考。Abstract: The formation mechanism and utilization of barrier dam are the research hotspots in the field of disaster prevention and reduction. Due to the special formation process, complex internal structure, uneven composition materials and different accumulation patterns, there is still a lack of effective stability evaluation methods and development and control measures. In this paper, from the formation process, types, and structural characteristics, we have summarized the formation mechanism and process of barrier dam formed by mountain collapse, landslides and mud-rock flows. Meanwhile, we have summarized the engineering and non-engineering measures for emergency treatment of dams, and have introduced the successful cases of barrier dams in hydroelectric power generation, diversion irrigation and environmental tourism. Through the literature and case compilation, a literature database for the study of barrier dam is established. Finally, due to the high risk and development potential of barrier dam, we pointed out the main problems and the further research direction, which provides a useful reference for the risk prediction, development and utilization of barrier dam.
-
0. 引言
强震是人类所面临的最危险的自然灾害之一[1]。在强切割山区,山体在地震作用下往往发生震裂松动,其完整性、强度大幅度降低,诱发一系列的崩、滑灾害[2-3]。崩滑灾害堆积物又会为泥石流的发生提供物源[4-5]。上述“崩滑流”灾害造成的人员伤亡和财产损失往往不亚于地震本身[6]。随着对地震滑坡研究的深入,一些学者认为,山体在地震作用的失稳机理与山体的地震放大效应存在耦合关系。罗永红等[7]对汶川地震次生地质灾害展开调查后,结合灾害区域地貌单元,认为特殊地形尺寸与地震波长的耦合作用导致地震放大效应。范刚[8]基于自贡西山公园台站记录的地震数据,分析了地形对峰值加速度、峰值位移等地震动参数的影响规律,认为地形因素仅对水平向的地震响施加影响,而在垂直向不明显。VALAGUSSA等[9]通过对1993年Papua New Guinea地震、1999年ChiChi地震、1994年Northridge地震、2004年Niigata–Chuetsu地震、2008年Iwate–Miyagi Nairiku地震和2008年汶川地震后造成的地貌改观展开分析,探讨了地震震级和震中距与山体失稳规模的耦合关系。CROISSANT等[10]通过2D数值模拟,发现地震作用下断层作为一种不稳定结构面会对山体的稳定性产生不利影响。GUAN等[11]通过物理模拟,发现隧道深处即山体内部的水平向峰值加速度要小于同一高程山体表面处。HARZTEL等[12]对1989年Loma Prieta地震展开研究后表明,体波在山脊内的多向反射和散射以及瑞利波与勒夫波的相互作用是导致Robinwood山脊受震灾破坏严重的重要原因。CELEBI[13]通过对1976年Guatemala地震和1989年Loma Prieta地震数据展开分析,发现山脊处的地震放大效应与地震波入射角度存在耦合关系。SU等[14]通过对地震波进行小波变换,讨论了地震波不同频率段的地面运动属性。2014年康定地震后,王运生等[15]对冷竹关地震台阵所记录到的数据进行分析,发现山体内部的地震动放大效应要弱于同高程山体表面,且山体表面傅立页谱图较山体内部,成分更为复杂。刘峡等[16]利用小波变换的方法,对地震信号进行了时域特征上的分析。
地震波是一种复杂的非稳定波型,其携带的能量在时域上和频率域上分布极不均匀[16],一旦某时刻能量突然集中会对受震物体的结构稳定产生不利影响。目前针对地震动响应的研究多侧重于傅立页谱分析,而傅立页谱仅能表明频率域上能量分布,而忽略掉了相应频率出现的时间。小波分析作为数学放大镜,突破了傅立页变换和短时傅立页变换局限,可以清楚地表明地震波能量、时域、频率域之间的关系,以及地震波成分的演变。因此基于连续小波变换深入探讨地震在特殊山地单元下的地震动响应规律,对揭示地震致灾机理和开展防灾减灾工作意义重大。
1. 监测数据来源与地震动响应分析
1.1 强震监测点概况
据中国地震台网,2019年6月17日22时55分,四川省宜宾市长宁县发生Ms6.0级地震,震中位于长宁县双河镇附近,震源深度16 km。云南,四川和重庆等多地均有明显震感。成都理工大学地质灾害防治与地质环境保护国家重点实验室依托中国地震局“川西深切河谷斜坡地震动评价技术研究”项目,在雅安市石棉县南桠河两岸设立的3个地震监测点记录到了此次Ms6.0级地震。其中南桠河右岸鸡公山上放置有两台强震监测仪,左岸陈家包山上放置有一台强震监测仪器,其监测点分布位置如图1所示。鸡公山上两台站置于前震旦纪晋宁期具碎裂结构的弱风化花岗岩平硐内,陈家包台站置于坡残积厚覆盖层之上,下伏前震旦纪晋宁期花岗岩,在南桠河左岸坡脚有部分出露。红色剖面线所代表的地质剖面图见图2。三台站仪器放置场地稳定,无外界因素干扰。其场地属性如表1所示。用于地震监测的仪器则由中国地震局工程力学研究所研制的G01NET-3结构与斜坡震动监测仪,采样时间间隔为0.00512 s。同时,四川省地震局也提供了石棉县先锋台阵记录到Ms6.0级地震监测数据作为参照基准。
表 1 各监测点所在位置场地属性Table 1. Properties of monitoring sites监测点编号 绝对高程/m 震中距/km 监测点所在部位 场地类型 1# 1150 265 山体平坡处 基岩(花岗岩) 2# 1060 265 山脊处 基岩(花岗岩) 3# 1102 267 山脊处 厚覆盖层 参照点(石棉先锋) × × × 薄覆盖层 1.2 石棉县南桠河两岸山体地震动响应综述
山体的地震动响应主要表现在峰值加速度(Peak Ground Acceleration, PGA)和阿里亚斯强度(Arias Intensity, AI)的放大[17]。对3个监测点以及1个参照点所记录到Ms6.0级地震的数据进行低通30 Hz滤波处理后,通过软件SeismoSignal处理后可以读出其地震动响应的基本参数属性。其4个点的峰值加速度、阿里亚斯强度以及峰值加速度放大倍数如表2所示。
表 2 各监测点地震动响应参数Table 2. Ground motion response parameters at each monitoring site监测点编号 峰值加速度/gal 阿里亚斯强度/(cm·s−1) EW SN UD EW SN UD 1# 1.22 2.94 2.23 0.36 1.22 0.89 2# 2.13 3.64 2.35 0.55 1.80 0.81 3# 7.42 10.18 2.94 15.09 13.26 2.75 *参照点 1.74 3.36 1.88 0.88 2.70 0.87 注:1 gal=1 cm/s2 罗永红[17]、贺建先等[18]、祁生文等[19]结合大量实测地震数据分析发现,山体的山脊处,山体转折部位以及第四纪覆盖层会对山体的地震动响应起控制作用,具体表现为上述部位的峰值加速度放大,在地震来临时候更加强烈的震动响应会导致山体发生失稳。由表2可见,同位于鸡公山上的1#及2#监测点,位于山脊处的2#监测点其峰值加速度要大于1#监测点。而3#监测点场地类型为厚覆盖层,其水平向峰值加速度远远大于1#和2#监测点,而垂直向峰值加速度放大效应则弱于水平向,但也有一定程度的放大。可以明显看出,峰值加速度的放大效应在水平和垂直方向上具有显著的差异。
2. 地震信号的时频分析
傅立页变换作为一种良好的信号分析手段,在世界范围内被广泛应用[16]。但对于非稳定信号,傅立页变换只能体现出信号的频域特性,而隐略了随机信号中的时域特性。小波变换自1986年被发明以来,因其具有良好的时频分析能力,在信号处理领域内发展迅速[20]。小波变换分析不仅可以描述非稳定信号的局部变化特征,而且可以通过尺度变换,从不同频域上观察信号的演变特征。因此,相较于使用传统手段傅立页变换对地震信号频率域上展开解析,利用小波变换分析地震信号,可以反映地震信号的时频特性,明确地震时频演变规律。
2.1 连续小波变换
将四台强震监测仪记录到的地震数据做小波变换处理。所选用的变换方式为连续小波变换(Continuous Wavelet Transform),小波基函数为Mexh,其中心频率(Centre Frequency)为0.25。选择矢量尺度为1至140,由140至1作公差为−0.5的递减。由尺度-频率换算公式计算可得,其覆盖频率范围0.35~50 Hz。
地震数据进行连续小波变换后,可以三维的方式呈现,其中x轴表示时间,单位为s;y轴表示频率,单位为Hz;z轴表示地震加速度幅值,单位为20 gal。3个监测点的地震时频图如表3所示。地震信号经过连续小波变换之后,透过传统时程图增加了频率信息,做到了时域和频率域上的结合。
表 3 监测点3分量连续小波分解图Table 3. Three-component continuous wavelet decomposition东西方向 南北方向 垂直方向 2.2 地震信号时频成分统计
地震信号经过连续小波变换后,其时域频域的结合有助与对地震信号成分的分析。4处监测点的3分量地震信号时频图中,随着时间增加,有两个波峰,其中峰值较低先到达的为P波,而后到达的峰值较大的则为S波。在S波后面则为一段由体波激发的面波。S波在到达受震地表后,分异为高频和低频两种成分:形状尖锐、变化剧烈的低频成分与光滑平顺、平稳降低的高频成分。地震发生时,受震物体的破坏主要依靠S波和体波交会激发的面波[21]。P波主要为垂直方向上的振动,且幅值小于S波,对受震物体结构破坏较小[6],因此本文分析重点为S波成分变化。现对各监测点三分量上P波和S波波峰空间坐标进行测量,其结果如表4所示,其中第一行表示波峰出现的时间位置,第二行表示波峰出现的频率位置,第三行表示波峰幅值绝对值。
表 4 监测点波峰成分统计表Table 4. Statistical table of signal peak at each site方向 S波高频波峰 S波低频波峰 1# 2# 3# 参照点 1# 2# 3# 参照点 东西 27.23 s 37.67 s × 32.02 s 27.00 s 37.76 s 36.03 s 31.70 s 2.8 Hz 3.9 Hz × 3.2 Hz 1.4 Hz 1.4 Hz 1.3 Hz 1.1 Hz 0.045 0.078 × 0.076 0.063 0.072 0.630 0.068 南北 26.50 s 36.52 s × 32.00 s 27.09 s 36.41 s 35.09 s 32.27 s 2.8 Hz 3.5 Hz × 2.5 Hz 1.1 Hz 1.1 Hz 1.1 Hz 1.1 Hz 0.120 0.183 × 0.188 0.110 0.115 0.656 0.138 垂直 26.77 s 37.73 s 34.85 s 32.88 s 27.19 s 38.13 s 35.28 s 32.36 s 3.5 Hz 3.5 Hz 2.8 Hz 3.2 Hz 1.1 Hz 1.1 Hz 1.1 Hz 1.1 Hz 0.086 0.107 0.150 0.076 0.090 0.068 0.089 0.068 3. 放大效应分析
3.1 山脊部位放大效应分析
历史地震监测表明,地震作用下山脊部位往往放大效应更为显著[17-18]。根据表2的时程数据分析结果来看,2#监测点所处的山脊部位,其水平向上PGA和AI数值要高于同在山腰部位的1#监测点。其中PGA放大系数(2#/1#)在东西南北和垂直向上分别为1.74、1.23和1.05;AI放大系数(2#/1#)在三个方向上则分别为1.52、1.47和0.91。这说明2#监测点所在山体部位地震动力响应更为强烈。由表4可以看到地震成分的演变,1#与2#监测点的S波低频部分,其波峰在频域上的发生位置完全相同,这可能与两处监测点位于一座山体有关。相较于1#监测点,2#监测点的东西向、南北向和垂直向S波高频成分,波峰幅值放大倍数分别为1.73、1.53和1.16,而S波低频部分的放大倍数则分别为1.14、1.04和0.76。2#监测点三分量S波高频波峰幅值全部高于低频部分,而1#监测点则相反。即在基岩场地下,山脊相较于山腰,地震放大效应主要体现为高频成分能量的增加,低频部分有小幅增大,但远不如高频部分。此外,放大效应还存在显著的方向性,无论是在PGA、AI放大系数上还是地震波峰成分演变上,水平方向的放大效应要更为显著。受地震作用,在2#点所在的山脊处,落石与斜坡变形较其他地方更为发育(图3)。
3.2 覆盖层场地放大效应分析
3#监测点的场地条件为厚覆盖层,下伏同晋宁期花岗岩,仅在南桠河左岸边坡支护剖面上有所出露。通过表3可以看到,3#监测点水平向时频三维图上高频成分衰减剧烈,其低频波峰幅值在东西向和南北向更是分别高达0.630和0.656,相较于同在山脊部位的2#监测点S波最大幅值,其放大倍数达8.08和3.53。但在垂直向,依然可以清楚地看到S波的高频和低频成分,低频成分在时间序列上出现的次数更多。此外,参照点场地条件为薄覆盖层,下伏同套岩组。同样可以看到,薄覆盖层场地的低频部分相较于基岩场地,其低频部分已经有所发育。而PGA放大系数(3#/2#)在东西、南北和垂直向上的放大系数为3.48、2.79和1.25;AI放大系数(3#/2#)则分别为27.4、7.36和3.39。地震时,震感更加强烈。
现有研究表明,当成层厚覆盖层接收来自基岩传来的剪切波时,在地震波向地表传播的过程中,会发生多次反射与折射,波能量发生叠加而进一步增强,尤其为长周期波更为显著,这与表征能量的AI显著放大相吻合[21-22]。此外,覆盖层土体对入射剪切波具有吸收和放大作用。当剪切波由基岩入射到覆盖层后,其中短周期成分被吸收,而长周期成分由于与土体自身振动周期相近,极易发生共振作用[22]。为了探究3#厚覆盖层场地的S波低频部分剧烈变化是否为共振效应引起,现在对3#监测数据进行加速度反应谱分析。加速度反应谱即在某一阻尼比的作用下,反应一系列单质点在振动时,其最大响应绝对值与场地结构周期的关系的频谱图。现采用0.05,0.1,0.2的阻尼比[20],对3#监测点三分量加速度反应谱展开计算,用于评价场地的特征周期。其三分量反应谱图如表5所示。加速度反应谱中有多个波峰,表明覆盖层成分不均匀。其最高点所代表的时间即为场地的特征周期[20],分析后其特征周期如表6。同时,由同样方法求得基岩场地特征周期如表7。
表 5 3#监测点场地3分量反应图谱Table 5. Three-component response spectrum of monitoring site No.3东西向 南北向 垂直向 表 6 3#监测点三分量特征周期/频率表Table 6. Dominant period / frequency of site 3#东西向 南北向 垂直向 特征周期/s 0.74 0.88 0.36 特征频率/Hz 1.35 1.13 2.77 表 7 1#与2#监测点三分量特征周期Table 7. Dominant period of site 1# and 2#监测点编号 特征周期/s 东西向 南北向 垂直向 1# 0.26 0.26 0.25 2# 0.26 0.26 0.28 由表6和表7可知,基岩场地特征周期远小于厚覆盖层场地。3#监测点东西向和南北向特征频率分别为1.35 Hz和1.13 Hz,即场地的特征频率十分接近于S波低频成分波峰峰值处频率,频率差值分别为0.05 Hz和0.03 Hz。而垂直向特征频率则与水平向有较大差异。在水平方向上,由于频率接近,地震发生时,S波中低频成分振动与场地自振交汇,产生强烈的共振效应,导致频率域上其特征周期附近区间内振动峰值显著增加。加之厚覆盖层土体对短周期波成分的吸收效应和长周期波成分的折射叠加效应,3#监测点的S波高频部分衰减显著[21-22]。厚覆盖层对地震波显著放大,地震时其震感更加强烈,加重震害损失,这一现象在震中长宁灾害调查中得以体现。3#点所在村落多为刚度大,结合性差的低矮砖混结构房屋和土坯房,此次地震由于震中距较大,震级较小,未对3#点所在村落建筑物造成严重损害。但如果震级加大,受到山脊放大效应和覆盖层放大效应的双重影响,震感强烈,相较于基岩场地这里会遭受更加严重地表震害。
4. 结论
基于连续小波变换的信号处理手段,对石棉县城南桠河两岸强震监测点所记录到的长宁Ms6.0级地震数据,作三维时频图谱,并结合时域和频域对地震信号成分进行分析。现有结论如下:
(1)通过连续小波变换所呈的三维时频图,可以清楚看到S波到达地表时分为高频和低频两种成分。其中高频成分主频在3.5 Hz附近,而低频成分主频在1.1 Hz附近,两种成分在时域上近乎同时出现。
(2)地震时山脊部分的地震动响应更加强烈。山脊部位场地类型为基岩,通过时频分析结果可知,放大效应主要体现为S波高频成分能量的增加,而低频部分则无明显变化。
(3)覆盖层场地对S波具有显著的低频放大和高频衰减效应。S波在厚覆盖层的折射和反射作用,以及3#覆盖层场地水平方向的自振与S波低频成分交汇产生共振效应,是导致覆盖层场地低频放大效应显著的原因。地震发生时,3#场地震感强烈,地表震害将更加严重。
(4)地震动响应规律具有极强的方向差异性,从时程分析结果和时频分析结果可以看出,其差异性主要体现在水平向和垂直向上,其水平向的放大效应相较于垂直向要更为显著。
-
图 1 堰塞坝形成的诱发因素[21]
Figure 1. Triggering factors of barrier dam
图 2 堰塞坝形成的成因[22]
Figure 2. Causes of barrier dam
表 1 堰塞坝稳定性分析方法
Table 1 Stability analysis methods of barrier dam
分类 方法 定性分析 工程类比法、历史分析法、图解法、数据库、
专家系统法等非确定性分析 可靠性分析方法、模糊评判法、灰色系统理论评价法、人工神经网络分析法、区间分析法 定量分析 极限平衡法、数值分析法、统计学法 试验分析 水槽试验、振动台试验、离心机试验 -
[1] 严祖文, 魏迎奇, 蔡红. 堰塞坝形成机理及稳定性分析[J]. 中国地质灾害与防治学报,2009,20(4):55 − 59. [YAN Zuwen, WEI Yingqi, CAI Hong. Formation mechanism and stability analysis of barrier dam[J]. The Chinese Journal of Geological Hazard and Control,2009,20(4):55 − 59. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2009.04.012 [2] 聂高众, 高建国, 邓砚. 地震诱发的堰塞湖初步研究[J]. 第四纪研究,2004,24(3):293 − 301. [NIE Gaozhong, GAO Jianguo, DENG Yan. Preliminary study on earthquake-induced dammed lake[J]. Quaternary Sciences,2004,24(3):293 − 301. (in Chinese with English abstract) DOI: 10.3321/j.issn:1001-7410.2004.03.008 [3] 黄润秋, 许强. 中国典型灾难性滑坡[M]. 北京: 科学出版社, 2008. HUANG Runqiu, XU Qiang. Catastrophic landslides in China[M]. Beijing: Science Press, 2008. (in Chinese)
[4] 费杰, 何洪鸣, 杨帅, 等. 公元前221年—公元1911年陕甘地区堰塞湖成因浅析[J]. 中国地质灾害与防治学报,2019,30(6):117 − 125. [FEI Jie, HE Hongming, YANG Shuai, et al. Landslide lakes in Shaanxi and Gansu Provinces in the period between BC 221 and AD 1911[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):117 − 125. (in Chinese with English abstract) [5] COSTA J E, SCHUSTER R L. Documented historical landslide dams from around the world[J]. Open-File Report,1991:91 − 239.
[6] 刘蒨. 日本2004年中越地震堰塞湖的治理[J]. 水利水电技术,2008,39(7):100 − 102. [LIU Qian. Treatment of barrier lake in 2004 Sino Vietnam earthquake in Japan[J]. Water Resources and Hydropower Engineering,2008,39(7):100 − 102. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0860.2008.07.027 [7] KONAGAI K, SATTAR A. Partial breaching of hattian bala landslide dam formed in the 8th October 2005 Kashmir earthquake, Pakistan[J]. Landslides,2012,9(1):1 − 11. DOI: 10.1007/s10346-011-0280-x
[8] A. 帕尔米耶里. 塔吉克斯坦萨雷兹堰塞湖减灾工程及其发展机遇[J]. 水利水电快报,2017,38(10):28 − 32. [A PARMIERI. Disaster reduction project and development opportunity of sarez barrier lake in Tajikistan[J]. Express Water Resources & Hydropower Information,2017,38(10):28 − 32. (in Chinese with English abstract) [9] 殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质,2000,27(4):8 − 11. [YIN Yueping. Study on the characteristics and disaster reduction of the giant landslide of Yigong Expressway in Bomi, Tibet[J]. Hydrogeology & Engineering Geology,2000,27(4):8 − 11. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2000.04.003 [10] 殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报,2008,16(4):433 − 444. [YIN Yueping. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology,2008,16(4):433 − 444. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2008.04.001 [11] 张宗亮, 张天明, 杨再宏, 等. 牛栏江红石岩堰塞湖整治工程[J]. 水力发电,2016,42(9):83 − 86. [ZHANG Zongliang, ZHANG Tianming, YANG Zaihong, et al. Remediation project of hongshiyan dammed lake in niulan river[J]. Water Power,2016,42(9):83 − 86. (in Chinese with English abstract) DOI: 10.3969/j.issn.0559-9342.2016.09.021 [12] 王立朝, 温铭生, 冯振, 等. 中国西藏金沙江白格滑坡灾害研究[J]. 中国地质灾害与防治学报,2019,30(1):1 − 9. [WANG Lichao, WEN Mingsheng, FENG Zhen, et al. Researches on the Baige Landslide at Jinshajiang River, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):1 − 9. (in Chinese with English abstract) [13] COSTA J E, SCHUSTER R L. The formation and failure of natural dams[J]. Geological Society of America Bulletin,1988,100(7):1054 − 1068. DOI: 10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2
[14] 匡尚富. 斜面崩塌引起的天然坝形成机理和形状预测[J]. 泥沙研究,1994(3):50 − 59. [KUANG Shangfu. Formation mechanism and shape prediction of natural dam due to slope failure[J]. Journal of Sediment Research,1994(3):50 − 59. (in Chinese with English abstract) [15] 柴贺军, 刘汉超, 张倬元. 滑坡堵江的基本条件[J]. 地质灾害与环境保护,1996,7(1):41 − 46. [CHAI Hejun, LIU Hanchao, ZHANG Zhuoyuan,. The main conditions of landslide dam[J]. Journal of Geological Hazards and Enveronment Preservation,1996,7(1):41 − 46. (in Chinese with English abstract) [16] SWANSON F J, OYAGI N, TOMINAGA M. Landslide dams in Japan[C]. Landslide Dams, 1986: 131-145.
[17] FAN X M, VAN WESTEN C J, XU Q, et al. Analysis of landslide dams induced by the 2008 Wenchuan earthquake[J]. Journal of Asian Earth Sciences,2012,57:25 − 37. DOI: 10.1016/j.jseaes.2012.06.002
[18] ZHAO T, DAI F, XU N W. Coupled DEM-CFD investigation on the formation of landslide dams in narrow rivers[J]. Landslides,2017,14(1):189 − 201. DOI: 10.1007/s10346-015-0675-1
[19] COTECCHIA V. Systematic reconnaissance mapping and registration of slope movements[J]. Bulletin of the International Association of Engineering Geology - Bulletin de l'Association Internationale de Geologie de l'Ingenieur,1978,17(1):5 − 37.
[20] 徐方军, 韩丽宇. 部分国家和地区地震诱发堰塞湖及其抢险概况[J]. 水利发展研究,2008,8(6):7 − 9. [XU Fangjun, HAN Liyu. Earthquake induced dammed lakes in some countries and regions[J]. Water Resources Development Research,2008,8(6):7 − 9. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1408.2008.06.002 [21] 范天印, 汪小刚. 堰塞坝险情特征与应急处置[M]. 北京: 中国水利水电出版社, 2016. FAN Tianyin, WANG Xiaogang. Characteristics and emergency treatment of barrier dam [M]. Beijing: China Water Power Press, 2016. (in Chinese)
[22] 年廷凯, 吴昊, 陈光齐, 等. 堰塞坝稳定性评价方法及灾害链效应研究进展[J]. 岩石力学与工程学报,2018,37(8):1796 − 1812. [NIAN Tingkai, WU Hao, CHEN Guangqi, et al. Research progress on stability evaluation method and disaster chain effect of landslide dam[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(8):1796 − 1812. (in Chinese with English abstract) [23] PENG M, ZHANG L M. Breaching parameters of landslide dams[J]. Landslides,2012,9(1):13 − 31. DOI: 10.1007/s10346-011-0271-y
[24] ERMINI L, CASAGLI N. Prediction of the behaviour of landslide dams using a geomorphological dimensionless index[J]. Earth Surface Processes and Landforms,2003,28(1):31 − 47. DOI: 10.1002/esp.424
[25] 柴贺军, 刘汉超, 张倬元, 等. 天然土石坝稳定性初步研究[J]. 地质科技情报,2001,20(1):77 − 81. [CHAI Hejun, LIU Hanchao, ZHANG Zhuoyuan, et al. Preliminarily stability analysis of natural rock field dam resulting from damming landslide[J]. Geological Science and Technology Information,2001,20(1):77 − 81. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7849.2001.01.017 [26] 黄润秋. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报,2009,28(6):1239 − 1249. [HUANG Runqiu. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1239 − 1249. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2009.06.021 [27] 程谦恭, 彭建兵, 胡广韬. 高速岩质滑坡动力学[M]. 成都: 西南交通大学出版社, 1999. CHENG Qiangong, PENG Jianbing, HU Guangtao. Dynamics of high-speed rock landslide [M]. Chengdu: Southwest Jiaotong University Press, 1999. (in Chinese)
[28] ADAMS J. Earthquake-dammed lakes in New Zealand[J]. Geology,1981,9(5):215. DOI: 10.1130/0091-7613(1981)9<215:ELINZ>2.0.CO;2
[29] 胡卸文, 黄润秋, 施裕兵, 等. 唐家山滑坡堵江机制及堰塞坝溃坝模式分析[J]. 岩石力学与工程学报,2009,28(1):181 − 189. [HU Xiewen, HUANG Runqiu, SHI Yubing, et al. Analysis of blocking river mechanism of Tangjiashan Landslide and dam-breaking mode of its barrier dam[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(1):181 − 189. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2009.01.024 [30] 徐文杰, 陈祖煜, 何秉顺, 等. 肖家桥滑坡堵江机制及灾害链效应研究[J]. 岩石力学与工程学报,2010,29(5):933 − 942. [XU Wenjie, CHEN Zuyu, HE Binshun, et al. Research on river-blocking mechanism of xiaojiaqiao landslide and disasters of chain effects[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):933 − 942. (in Chinese with English abstract) [31] 黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报,2008,16(6):730 − 741. [HUANG Runqiu, PEI Xiangjun, LI Tianbin. Basic characteristics and formation mechanism of the largest scale landslide at dagungbao occurred during the Wenchuan Earthquake[J]. Journal of Engineering Geology,2008,16(6):730 − 741. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2008.06.002 [32] 赵允辉. 危岩崩塌地质灾害调查评价与防治[J]. 中国地质灾害与防治学报,2004,15(增刊1):33 − 38. [ZHAO Yunhui. Investigation evaluation and control of dangerous-rock slumping geological hazard[J]. The Chinese Journal of Geological Hazard and Control,2004,15(Sup1):33 − 38. (in Chinese with English abstract) [33] 张梁, 张业成, 罗元华. 地质灾害灾情评估理论与实践[M]. 北京: 地质出版社, 1998. ZHANG Liang, ZHANG Yecheng, LUO Yuanhua. Theory and practice assessment of geological disaster [M]. Beijing: Geological Publishing House, 1998. (in Chinese)
[34] 葛永刚, 陈兴长, 方华, 等. 汉源县大渡河“8•.6”崩塌堵河灾害研究[J]. 山地学报,2010,28(1):123 − 128. [GE Yonggang, CHEN Xingchang,FANG Hua, et al. Study on the disaster of Dadu river block induced by the rock fall occurred at Hanyuan County on August 6th, 2009[J]. Journal of Mountain Science,2010,28(1):123 − 128. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2010.01.015 [35] 余国安, 王兆印, 黄河清, 等. 崩滑堰塞坝(湖)的地貌环境效应[J]. 地球科学进展,2010,25(9):934 − 940. [YU Guoan, WANG Zhaoyin, HUANG Heqing, et al. Geomorphology and environment effects of landslide dams (dammed lakes)[J]. Advances in Earth Science,2010,25(9):934 − 940. (in Chinese with English abstract) [36] 王滨, 王维早, 于开宁, 等. 平山县泥石流的形成特征和机理分析[J]. 地质灾害与环境保护,2008,19(4):59 − 62. [WANG Bin, WANG Weizao, YU Kaining, et al. Forming characteristics and mechanism of debris flows in Pingshan County[J]. Journal of Geological Hazards and Environment Preservation,2008,19(4):59 − 62. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-4362.2008.04.013 [37] BRUNSDEN D, PRIOR D B. SLOPE INSTABILITY[J]. Journal of Geology,1984:257 − 361.
[38] 胡凯衡, 葛永刚, 崔鹏, 等. 对甘肃舟曲特大泥石流灾害的初步认识[J]. 山地学报,2010,28(5):628 − 634. [HU Kaiheng, GE Yonggang, CUI Peng, et al. Preliminary analysis of extra-large-scale debris flow disaster in Zhouqu County of Gansu Province[J]. Journal of Mountain Science,2010,28(5):628 − 634. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2010.05.017 [39] 高波, 张佳佳, 王军朝, 等. 西藏天摩沟泥石流形成机制与成灾特征[J]. 水文地质工程地质,2019,46(5):144 − 153. [GAO Bo, ZHANG Jiajia, WANG Junchao, et al. Formation mechanism and disaster characteristics of debris flow in the Tianmo gully in Tibet[J]. Hydrogeology & Engineering Geology,2019,46(5):144 − 153. (in Chinese with English abstract) [40] 赵高文, 王萌, 杨宗佶, 等. 震后泥石流沟内滑坡堰塞坝的侵蚀特征分析—以银洞子堰塞坝为例[J]. 工程科学与技术,2019,51(5):68 − 77. [ZHAO Gaowen, WANG Meng, YANG Zongji, et al. Eroding characteristics of landslide dams in debris flow gullies after earthquakes—case study of yindongzi landslide dam[J]. Advanced Engineering Sciences,2019,51(5):68 − 77. (in Chinese with English abstract) [41] OKURA Y, KITAHARA H, SAMMORI T, et al. The effects of rockfall volume on runout distance[J]. Engineering Geology,2000,58(2):109 − 124. DOI: 10.1016/S0013-7952(00)00049-1
[42] QUECEDO M, PASTOR M, HERREROS M, et al. Numerical modelling of the propagation of fast landslides using the finite element method[J]. International Journal for Numerical Methods in Engineering,2004,59(6):755 − 794. DOI: 10.1002/nme.841
[43] SASSA K, NAGAI O, SOLIDUM R, et al. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide[J]. Landslides,2010,7(3):219 − 236. DOI: 10.1007/s10346-010-0230-z
[44] HUNGR O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches: O. Hungr, Canadian Geotechnical Journal, 32(4), 1995, pp 610–623[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,1995,33(2):88.
[45] 钟登华, 安娜, 李明超. 库岸滑坡体失稳三维动态模拟与分析研究[J]. 岩石力学与工程学报,2007,26(2):360 − 367. [ZHONG Denghua, AN Na, LI Mingchao. 3D dynamic simulation and analysis of slope instability of reservoir banks[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(2):360 − 367. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2007.02.018 [46] SUN H W. Review of fill slope failures in Hong Kong[R].Geotechnical Engineering Office, Civil Engineering Department, 1999.
[47] 李欣泽. 马湖滑坡群发育特征与形成、演化过程研究[D]. 成都: 成都理工大学, 2015. LI Xinze. Research on development characteristics and the formation and evolution process of Mahu landslide group[D]. Chengdu: Chengdu University of Technology, 2015.(in Chinese)
[48] 冯文凯, 何川, 石豫川, 等. 复杂巨型滑坡形成机制三维离散元模拟分析[J]. 岩土力学,2009,30(4):1122 − 1126. [FENG Wenkai, HE Chuan, SHI Yuchuan, et al. Simulation analysis of formation mechanism of some complex and giant landslides using three-dimensional discrete elements[J]. Rock and Soil Mechanics,2009,30(4):1122 − 1126. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2009.04.045 [49] 王宇, 李晓, 王声星, 等. 滑坡渐进破坏运动过程的颗粒流仿真模拟[J]. 长江科学院院报,2012,29(12):46 − 52. [WANG Yu, LI Xiao, WANG Shengxing, et al. PFC simulation of progressive failure process of landslide[J]. Journal of Yangtze River Scientific Research Institute,2012,29(12):46 − 52. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-5485.2012.12.010 [50] 曹文. 红石岩地震滑坡的运动过程离散元模拟分析[D]. 北京: 中国地质大学(北京), 2017. CAO Wen. Discrete element modelling of earthquake-induced red rock landslide[D]. Beijing: China University of Geosciences, 2017.(in Chinese with English abstract)
[51] 王志超, 李大鸣. 基于SPH-DEM流-固耦合算法的滑坡涌浪模拟[J]. 岩土力学,2017,38(4):1226 − 1232. [WANG Zhichao, LI Daming. Fluid-structure coupling algorithm based on SPH-DEM and application to simulate landslide surge[J]. Rock and Soil Mechanics,2017,38(4):1226 − 1232. (in Chinese with English abstract) [52] 殷坤龙, 姜清辉, 汪洋. 滑坡运动过程仿真分析[J]. 地球科学,2002,27(5):632 − 636. [YIN Kunlong, JIANG Qinghui, WANG Yang. Simulation of landslide movement process by discontinuous deformation analysis[J]. Earth Science,2002,27(5):632 − 636. (in Chinese with English abstract) [53] 邬爱清, 林绍忠, 马贵生, 等. 唐家山堰塞坝形成机制DDA模拟研究[J]. 人民长江,2008,39(22):91 − 95. [WU Aiqing, LIN Shaozhong, MA Guisheng, et al. Simulation of formation mechanism of Tangjiashan barrier dam using the DDA method[J]. Yangtze River,2008,39(22):91 − 95. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4179.2008.22.033 [54] HATZOR Y H, ARZI A, ZASLAVSKY Y, et al. Dynamic stability analysis of jointed rock slopes using the DDA method: King Herod's Palace, Masada, Israel[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(5):813 − 832. DOI: 10.1016/j.ijrmms.2004.02.002
[55] SITAR N, MACLAUGHLIN M M, DOOLIN D M. Influence of kinematics on landslide mobility and failure mode[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(6):716 − 728. DOI: 10.1061/(ASCE)1090-0241(2005)131:6(716)
[56] 张菖, 陈志文, 韦猛, 等. 基于BIM的三维滑坡地质灾害监测方法及应用[J]. 成都理工大学学报(自然科学版),2017,44(3):377 − 384. [ZHANG Chang, CHEN Zhiwen, WEI Meng, et al. 3D monitoring of landslide geological disaster and its application based on BIM[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2017,44(3):377 − 384. (in Chinese with English abstract) [57] CROSTA G B, CHEN H, FRATTINI P. Forecasting hazard scenarios and implications for the evaluation of countermeasure efficiency for large debris avalanches[J]. Engineering Geology,2006,83(1/2/3):236 − 253.
[58] 戴兴建, 殷跃平, 邢爱国. 易贡滑坡-碎屑流-堰塞坝溃坝链生灾害全过程模拟与动态特征分析[J]. 中国地质灾害与防治学报,2019,30(5):1 − 8. [DAI Xingjian, YIN Yueping, XING Aiguo. Simulation and dynamic analysis of Yigong rockslide-debris avalanche-dam breaking disaster chain[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):1 − 8. (in Chinese with English abstract) [59] 杨秀明. 滑坡失稳后运动过程三维分析模型及其应用[D]. 重庆: 重庆大学, 2014. YANG Xiuming. The three-dimensional analysis model of runout of landslide instability and its application[D]. Chongqing: Chongqing University, 2014.(in Chinese with English abstract)
[60] 杨克俭, 刘舒燕, 陈定方, 等. 三峡滑坡仿真系统中的关键技术[J]. 计算机仿真,1999,16(2):1 − 5. [YANG Kejian, LIU Shuyan, CHEN Dingfang, et al. The key technology of Three Gorges landslide emulation system[J]. Computer Simulation,1999,16(2):1 − 5. (in Chinese with English abstract) [61] MORIWAKI H, INOKUCHI T, HATTANJI T, et al. Failure processes in a full-scale landslide experiment using a rainfall simulator[J]. Landslides,2004,1(4):277 − 288. DOI: 10.1007/s10346-004-0034-0
[62] OCHIAIHIROTAKA, SAMMORI TOSHIAKI, OKADA YASUHIKO. Landslide Experiments on Artificial and Natural Slopes[M].2007.
[63] 胡明鉴, 汪稔, 张平仓. 斜坡稳定性及降雨条件下激发滑坡的试验研究—以蒋家沟流域滑坡堆积角砾土坡地为例[J]. 岩土工程学报,2001,23(4):454 − 457. [HU Mingjian, WANG Ren, ZHANG Pingcang. Primary research on the effect of rainfall on landslide—take the slope piled by old landslide in Jiangjiagou valley as example[J]. Chinese Journal of Geotechnical Engineering,2001,23(4):454 − 457. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2001.04.015 [64] 罗先启, 陈海玉, 沈辉, 等. 自动网格法在大型滑坡模型试验位移测试中的应用[J]. 岩土力学,2005,26(2):231 − 234. [LUO Xianqi, CHEN Haiyu, SHEN Hui, et al. Application of automatic mesh methods to landslide model test[J]. Rock and Soil Mechanics,2005,26(2):231 − 234. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2005.02.012 [65] 郝明辉, 许强, 杨磊, 等. 滑坡-碎屑流物理模型试验及运动机制探讨[J]. 岩土力学,2014,35(增刊1):127 − 132. [HAO Minghui, XU Qiang, YANG Lei, et al. Physical modeling and movement mechanism of landslide-debris avalanches[J]. Rock and Soil Mechanics,2014,35(Sup1):127 − 132. (in Chinese with English abstract) [66] 刘翠容, 姚令侃, 杜翠, 等. 震后灾区泥石流阻塞大河判据与成灾模式试验研究[J]. 土木工程学报,2013,46(增刊1):146 − 152. [LIU Cuirong, YAO Lingkai, DU Cui, et al. Experimental research on criteria and disaster-forming patterns of damming large river by debris flow in earthquake disaster areas[J]. China Civil Engineering Journal,2013,46(Sup1):146 − 152. (in Chinese with English abstract) [67] 董金玉, 杨继红, 伍法权, 等. 顺层岩质边坡加速度响应规律和滑动堵江机制大型振动台试验研究[J]. 岩石力学与工程学报,2013,32(增刊2):3861 − 3867. [DONG Jinyu, YANG Jihong, WU Faquan, et al. Large-scale shaking table test research on acceleration response rules of bedding layered rock slope and its blocking mechanism of river[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(Sup2):3861 − 3867. (in Chinese with English abstract) [68] 黄小福. 地震条件下崩塌落石运动特性研究[D]. 成都: 西南交通大学, 2016. HUANG Xiaofu. Mobility character of earthquake-induced rockfall[D]. Chengdu: Southwest Jiaotong University, 2016.(in Chinese with English abstract)
[69] 陈家兴. 甘肃舟曲锁儿头滑坡失稳机制离心模型试验研究[D]. 成都: 成都理工大学, 2013. CHEN Jiaxing. The centrifuge model test for the sliding mechanism of the suo’ertou landslide in Zhouqu County Gansu Province[D]. Chengdu: Chengdu University of Technology, 2013.(in Chinese with English abstract)
[70] WISHART JEREMY SCOTT. Overtopping Breaching of Rock-Avalanche Dams[D]. University of Canterbury, 2007.
[71] CHEN S C, LIN T W, CHEN C Y. Modeling of natural dam failure modes and downstream riverbed morphological changes with different dam materials in a flume test[J]. Engineering Geology,2015,188:148 − 158. DOI: 10.1016/j.enggeo.2015.01.016
[72] 陈华勇, 崔鹏, 唐金波, 等. 堵塞坝溃决对上游来流及堵塞模式的响应[J]. 水利学报,2013,44(10):1148 − 1157. [CHEN Huayong, CUI Peng, TANG Jinbo, et al. The response of upstream flow and blockage patterns to the failure of landslide dam[J]. Journal of Hydraulic Engineering,2013,44(10):1148 − 1157. (in Chinese with English abstract) [73] 杨阳, 曹叔尤. 堰塞坝漫顶溃决与演变水槽试验指标初探[J]. 四川大学学报(工程科学版),2015,47(2):1 − 7. [YANG Yang, CAO Shuyou. Preliminary study on similarity criteria of the flume experiment on the breach process of the landslide dams by overtopping[J]. Journal of Sichuan University (Engineering Science Edition),2015,47(2):1 − 7. (in Chinese with English abstract) [74] 彭铭, 蒋明子. 滑坡涌浪作用下堰塞坝稳定性研究[C]//2017中国地球科学联合学术年会, 中国, 北京: 2017: 3. PENG Ming, JIANG Mingzi. Study on the stability of barrier dam under the action of landslide surge[C]//China Geoscience Union Annual meeting. Beijing, China: 2017: 3. (in Chinese with English abstract)
[75] 石振明, 王友权, 彭铭, 等. 堰塞湖坝体动力特性及加速度分布规律大型振动台模型试验研究[J]. 岩石力学与工程学报,2014,33(4):707 − 719. [SHI Zhenming, WANG Youquan, PENG Ming, et al. Large-scale shaking table model tests on dynamic characteristics and acceleration distribution of landslide dams[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(4):707 − 719. (in Chinese with English abstract) [76] 艾洪舟. 地震涌浪机理及冰碛堰塞湖溃决风险研究[D]. 成都: 西南交通大学, 2017. AI Hongzhou. Study of Seismic surge mechanism and Glacierlake outburst risk[D]. Chengdu: Southwest Jiaotong University, 2017.(in Chinese with English abstract)
[77] 周亦良, 姚令侃, 艾洪舟, 等. 地震力与共振动水压力综合作用下冰碛堰塞坝失稳机制研究[J]. 岩石力学与工程学报,2017,36(7):1726 − 1735. [ZHOU Yiliang, YAO Lingkan, AI Hongzhou, et al. Instability of moraine dams under the combined action of seismic forces and resonant hydrodynamic pressures[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(7):1726 − 1735. (in Chinese with English abstract) [78] 陈生水, 徐光明, 钟启明, 等. 土石坝溃坝离心模型试验系统研制及应用[J]. 水利学报,2012,43(2):241 − 245. [CHEN Shengshui, XU Guangming, ZHONG Qiming, et al. Development and application of centrifugal model test system for break of earth-rock dams[J]. Journal of Hydraulic Engineering,2012,43(2):241 − 245. (in Chinese with English abstract) [79] 陈浩平, 苑鹏飞. 基于BIM技术的土石坝溃坝仿真模拟研究[J]. 陕西水利,2019(8):10 − 11. [CHEN Haoping, YUAN Pengfei. Simulation study of earth-rock dam failure based on BIM technology[J]. Shaanxi Water Resources,2019(8):10 − 11. (in Chinese with English abstract) [80] 邓宏艳, 孔纪名, 王成华. 不同成因类型堰塞湖的应急处置措施比较[J]. 山地学报,2011,29(4):505 − 510. [DENG Hongyan, KONG Jiming, WANG Chenghua. The comparison of emergency treatment on dammed lakes caused by different types geologic hazards[J]. Journal of Mountain Science,2011,29(4):505 − 510. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2011.04.016 [81] 杨启贵. 唐家山堰塞湖应急疏通工程关键技术[J]. 中国水利,2008(16):8 − 11. [YANG Qigui. Key technologies of emergency treatment of Tangjiashan Dammed Lake[J]. China Water Resources,2008(16):8 − 11. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-1123.2008.16.003 [82] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报,2018,26(6):1534 − 1551. [XU Qiang, ZHENG Guang, LI Weile, et al. Study on successive landslide damming events of Jinsha river in baige village on octorber 11 and November 3, 2018[J]. Journal of Engineering Geology,2018,26(6):1534 − 1551. (in Chinese with English abstract) [83] 赵元弘. 小南海水库地震堰塞坝体防渗处理[J]. 水利水电科技进展,2008,28(5):39 − 44. [ZHAO Yuanhong. Seepage control of the earthquake-induced barrier bar of Xiaonanhai Reservoir[J]. Advances in Science and Technology of Water Resources,2008,28(5):39 − 44. (in Chinese with English abstract) DOI: 10.3880/j.issn.1006-7647.2008.05.011 [84] 燕乔, 王立彬, 毕明亮. 地震堰塞湖的综合治理与开发利用[J]. 湖北水力发电,2009(4):33 − 35. [YAN Qiao, WANG Libin, BI Mingliang. Comprehensive harnessing and development utilization of seismic choked lake[J]. Hubei Water Power,2009(4):33 − 35. (in Chinese with English abstract) [85] A READ S, D BEETHAM R. Lake Waikaremoana barrier-a large landslide dam in New Zealand, Landslide News[J]. 1991, 1(54):1481-1487.
[86] 何宁, 娄炎, 何斌. 堰塞体的加固与开发利用技术[J]. 中国水利,2008(16):26 − 28. [HE Ning, LOU Yan, HE Bin. Technologies of dammed lake strengthen and utilization[J]. China Water Resources,2008(16):26 − 28. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-1123.2008.16.008 [87] 吕艳, 董颖, 张茂省, 等. 陕西翠华山山崩地质遗迹特征、成因及景观价值[J]. 地球学报,2015,36(2):220 − 228. [LYU Yan, DONG Ying, ZHANG Maosheng, et al. Characteristics, genetic mechanism and landscape value of the rock avalanche in Cuihua mountain area, Shannxi Province[J]. Acta Geoscientica Sinica,2015,36(2):220 − 228. (in Chinese with English abstract) DOI: 10.3975/cagsb.2015.02.11 [88] 曹晓娟. 地质灾害遗迹与科学利用[J]. 城市与减灾,2019(3):46 − 49. [CAO Xiaojuan. The relics of geological disaster and their scientific utilization[J]. City and Disaster Reduction,2019(3):46 − 49. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-0495.2019.03.011 [89] 陈献耘. 美国蒙大拿州堰塞湖的旅游开发[J]. 水利水电快报,2008,29(7):4 − 5. [CHEN Xianyun. Tourism development of barrier lake in Montana, USA[J]. Express Water Resources & Hydropower Information,2008,29(7):4 − 5. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-0081.2008.07.002 [90] SCHUSTER R L. Usoi landslide dam and lake sarez, Pamir mountains, Tajikistan[J]. Environmental and Engineering Geoscience,2004,10(2):151 − 168. DOI: 10.2113/10.2.151
-
期刊类型引用(3)
1. 唐涛,王运生,刘世成,冯卓,詹明斌. 基于希尔伯特-黄变换的地震加速度时频分析——以泸定M_S6.8级地震为例. 地球物理学进展. 2024(01): 1-9 . 百度学术
2. 唐涛,王运生,吴昊宸,刘世成,冯卓,詹明斌. 冷竹关沟高陡斜坡地震动响应特征. 地震学报. 2024(03): 502-513 . 百度学术
3. 孙巍锋,兰恒星,包含,田朝阳,晏长根. M_S6.8级泸定地震作用下大渡河工程边坡变形响应分析. 工程地质学报. 2024(05): 1654-1668 . 百度学术
其他类型引用(2)