A review on loess subsurface-erosion mechanism and it’s hazard effects
-
摘要: 黄土潜蚀指地表水沿黄土大孔隙、节理裂隙等优势渗流通道饱水入渗时对黄土产生的渗透潜蚀、冲刷搬运及浸水湿陷作用。黄土由于水敏性、结构面发育、优势渗流等特点,导致黄土地区潜蚀广泛发育,且黄土潜蚀具有显著的致灾效应,使得潜蚀诱发的黄土地质灾害的成因机理及防治研究愈发复杂。文章首先梳理了黄土潜蚀的基本概念,在总结黄土潜蚀主控因素的基础上,阐述了黄土潜蚀的成因机理,延伸了黄土潜蚀致灾效应的基本内涵。最后根据黄土潜蚀研究现状,对未来黄土潜蚀研究作了简要展望,指出今后需更加重视黄土潜蚀在黄土地质灾害链中关键链接作用方面的研究。文章针对黄土地区潜蚀研究中若干问题的初步思考,旨在为后续的黄土潜蚀致灾效应研究提供科学建议。Abstract: Loess subsurface-erosion refers to the erosion, transport and subsidence of loess caused by surface water infiltration along the dominant seepage channels such as loess macropore joints and fissures. Due to the characteristics of water sensitivity, structural surface development, dominant seepage, etc., loess subsurface-erosion has developed extensively in the loess area, and loess subsurface-erosion has a significant disaster effect, making the mechanism and prevention of loess disasters induced by erosion more complicated. This article first combed the basic concepts of loess subsurface-erosion, based on summarizing the main controlling factors of loess subsurface-erosion, expounded the formation mechanism of loess subsurface-erosion, and expanded the basic connotation of loess subsurface-erosion disaster effect. Finally, according to the current research status of loess submergence, a brief prospect is made for the future research of loess subsurface-erosion, and it is pointed out that more attention should be paid to the research on the key linking role of loess subsurface erosion in the loess disaster chain. This article focuses on the preliminary thinking of several problems in the study of loess subsurface-erosion, and aims to provide scientific suggestions for the subsequent study of loess subsurface-erosion hazard effects.
-
0. 引言
随着全球气候变暖和极端天气事件的增多,暴雨引发的地质灾害在全球范围内发生频率显著提升,并造成了严重后果[1 − 4]。尤其是在山地和丘陵地区,降雨诱发的浅层滑坡不仅频率增加,其破坏性也日益显著[5 − 8]。这类滑坡通常具有较高流动性,在短时间内沿坡面快速滑移扩展,造成大面积地表破坏,对区域环境和人类活动构成了重大威胁。浅层滑坡不仅常导致道路阻断和基础设施受损,甚至直接危及人类生命安全[9 − 12]。目前,研究者主要围绕滑坡的编目建立[13 − 14]、空间分布[15]、滑坡评价[16 − 19]、诱发机制[20 − 24]和监测预警[25 − 30]等方向开展了广泛研究。其中,详细且精确的滑坡数据编目是所有研究的重要基础。滑坡数据编目的主要方法包括基于遥感影像的目视解译法、自动化提取法以及基于地面调查的人工标注法等。目视解译法具有精度高的优势,但耗时较长,且对解译者经验依赖较大[31 − 33];自动化提取法则能够处理大范围区域的滑坡识别,但在复杂地形条件下容易受到误差干扰[34 − 36];地面调查法虽然精确,但难以覆盖大范围区域,因此在时效性上存在较大局限性。
2024年4月发生在中国广东省韶关市的极端暴雨事件在短时间内引发了大量浅层滑坡,并造成区域内广泛的基础设施破坏[37]。尽管已有研究关注到了这次事件并初步对滑坡分布进行了解译,但是受限于时效性,滑坡编目的完整性和精确度有待进一步提高。因此,本研究利用降雨前后的高分辨率卫星影像,结合GIS平台进行目视解译,同时辅以实地调查数据进行验证,最终构建了此次事件诱发的详细滑坡编目库。考虑到降雨型滑坡的失稳过程不仅由单一因素决定,而是多种因素综合作用的结果,本研究在分析滑坡分布时,纳入了地形、地质构造等9类环境控制因素。此外,还通过数理统计分析探索了各个控制因素与滑坡分布的关系。研究结果不仅为强降雨诱发滑坡的易发性研究提供了重要参考,也为区域内滑坡防治措施的制定提供了科学依据。
1. 研究区及事件概况
2024年4月中旬以来,广东省大部分地区遭受持续性暴雨侵袭,特别是在4月16—22日期间,暴雨和特大暴雨覆盖了包括韶关在内的多个区域,极端降水过程给当地造成了严重影响。据广东省气象服务中心发布,2024年4月1—30日,广东全省平均雨量497.4 mm,打破4月雨量历史纪录,较常年同期(176.8 mm)显著偏多181%。其中韶关市4月平均雨量是常年3.96倍,为增幅最大(https://weibo.com/2015316631/OcokI8rmB)。图1展示了4月以来韶关市区气象站点数据,其中多日降雨量超过100 mm,最大单日降雨量接近200 mm,累计降雨量更是接近
1000 mm,4月20日降雨达到峰值。广东省韶关市武江区江湾镇位于粤北地区,地处华南褶皱系的南岭构造带内,区域地形以山地和丘陵为主(图2),整体呈现四周高、中间低的地貌特征。区域内河网发育,水系分布广泛。地质构造复杂,基岩主要由花岗岩和片麻岩组成,上覆地层则以第四纪松散堆积物和风化残积土为主[38 − 39]。受长期构造活动和强降水影响,该地区成为地质灾害高发区,特别是在暴雨等极端天气条件下,滑坡和泥石流等灾害频率显著增加[40]。在2024年4月的极端暴雨事件中,江湾镇作为粤北暴雨中心之一,降雨量远超常年均值,极端降水引发了大量山体滑坡灾害,导致多条道路中断,房屋倒塌,基础设施严重受损,给区域经济和居民生活带来了巨大影响。
2. 数据与方法
已有研究表明,降雨诱发的浅层滑坡在遥感影像上通常表现为显著的色调变化和纹理特征差异。本研究利用高分辨率光学遥感卫星影像,采用人工目视解译的方法提取滑坡数据。具体而言,基于Planet卫星3月和4月的月度合成影像(空间分辨率为3 m),通过对比降雨前后多时相影像,能够精准识别此次暴雨触发的滑坡位置与边界,同时有效剔除非此次降雨事件引发的滑坡,从而确保数据的高精度和时效性。
如图3所示,图3(a)(b)展示了同一区域在降雨前后的遥感影像,滑坡区域在降雨后显现出明显的地表裸露特征,其边界以黄色线条标注。类似地,图3(c)(d)为另一处区域的影像对比,也清晰反映了降雨导致的滑坡发生范围。为进一步验证遥感解译结果,本研究结合了灾害发生后的现场调查,如图3(e)(f)所示。图3(e)拍摄于现场滑坡点,图3(f)记录了另一处滑坡现场,照片显示了滑坡坡面破坏和周边环境的具体情况。通过实地观测的滑坡特征,对遥感影像上降雨滑坡的解译标准进行调整优化,尽可能保证数据的可靠性和准确性。
影响因子的选择方面,考虑了相关的研究成果和经验,包括已有文献中对降雨触发滑坡分布规律和易发性的分析[41 − 45],同时也参考了研究区域的具体情况[41, 46 − 48]。对所选因子进行了相关性分析,参考Pearson相关系数和统计意义对高度相关且冗余的因子进行剔除。例如研究区范围较小,所涉及的岩性较为单一(花岗岩残积土为主),就本研究范围而言,其统计价值相对有限,因此后续未进一步分析。值得一提的是,尽管岩性在统计分析层面暂未凸显关键作用,但鉴于具有较强代表性,因此该区域是开展物理模型试验的理想研究区。最终选取高程、坡度、坡向、剖面曲率、相对坡位指数、地形湿度指数、土地利用类型、距离道路距离和距离河流距离纳入分析范围。
对于影响因子的计算,本研究采用了30 m分辨率的数字高程模型(digital elevation model,DEM)数据,其具体来源为Copernicus DEM(https://doi.org/10.5270/ESA-c5d3d65),直接反映了高程信息。基于GIS软件的表面分析功能计算DEM中的坡度、坡向和剖面曲率。基于地形分析功能,计算获得相对坡位指数和地形湿度指数。土地利用类型数据来源于中国科学院发布的30 m分辨率GLC_FCS30D数据(https://zenodo.org/records/8239305),本文对其进行了分类和重分类,以方便后续分析。水系和道路数据则基于自然资源部发布的全国1∶100万基础地理信息(https://www.webmap.cn/)。本文对水系和道路进行距离分析,确定各研究区各点位置到水体及道路的实际距离,得到距离数据。上述因子最终均以30 m分辨率的栅格TIFF 格式导出并进行后续分析。具体研究区的因子分布如图4所示,其中图4(g)的土地利用类型在表1中具体列出,提供了各影响因子的地理位置和分布情况。
表 1 土地利用类型编号Table 1. Land use type codes编号 具体类型 10 雨养耕地 11 草本植被覆盖 20 灌溉耕地 51 开阔常绿阔叶林 52 封闭常绿阔叶林 61 开阔落叶阔叶林 62 封闭落叶阔叶林 71 开阔常绿针叶林 72 封闭常绿针叶林 120 灌木地 121 常青灌木地 180 湿地 190 不透水面 210 水体 尽管部分因子分辨率与遥感影像分辨率(3 m)存在差异,但二者的适用目的并不相同:高分辨率影像用于精准解译滑坡边界与位置,确定滑坡区域。而因子数据旨在提取区域尺度的控制因素(如坡度、地形湿度指数等),揭示滑坡分布与地形因子的普遍规律。因子分辨率的精度可能会在一定程度上导致结果的偏差。但受限于数据获取限制与难度,文中所采用的数据已是目前研究区公开可获取的高分辨率的因子数据。此外,本研究关注的是区域尺度滑坡分布与地形因子的统计规律,而非单点精度,因此分析结果仍具有代表性和可靠性。
3. 结果与分析
3.1 滑坡数据库及空间分布
解译结果表明,此次降雨事件在研究区范围内共计触发
6310 处浅层滑坡。图5展示了2024年4月韶关暴雨事件后,在研究区内解译的滑坡分布与密度情况。滑坡密度图以栅格单元为统计单元,1 km为搜索半径,计算得到滑坡的数量密度。直观呈现了滑坡的空间分布特征和密集区域。从滑坡数量地理分布来看,呈现显著的空间聚集性。在图5标注的1—4四个区域,滑坡密度明显高于周围区域,达到了每平方千米分布有近150个滑坡。这些高密度区域整体呈现北东—南西的趋势。图5(b)(c)子图为图5(a)中标注的1和2区域的放大图,图3(b)(d)为图5(a)中标注的3和4区域的放大图,展示了滑坡在遥感影像上的具体形态特征。结合实地调查发现,上述高密度区域均位于省道S520(江湾段)两侧。
此次降雨事件触发的滑坡的总面积达到5.85 km2,其中最大面积为
22368.6 m2。图6展示了滑坡面积-滑坡密度图。并用对数正态分布函数进行拟合。随着滑坡面积的增加,滑坡密度先增加然后逐渐减少。这意味着小型规模的滑坡更为常见,集中在102~103 m2,而大型滑坡则相对较少。具体的统计结果表明,有3853 处滑坡面积在102~103 m2,占总滑坡数量的66.7%,这些滑坡的总面积达到1.72 km2,占滑坡总面积的29.9%。3.2 几何形态特征分析
在滑坡流动性分析中,滑坡的几何形态参数是反映其运动特征的关键指标[49 − 51]。根据国际工程地质与环境协会(IAEG)滑坡术语专委会(C37-Landslide Nomenclature)工作组的研究成果,选择开源测量工具ALPA对滑坡几何形态参数进行提取[52]。图7(a)展示了降雨滑坡面积与滑行距离之间的关系。通过频率直方图显示,最大滑行距离为311.62 m,大部分滑坡的滑行距离在75 m以下,占比80.84%,共有
4672 处。其中,滑行距离在25~50 m之间的滑坡有2137 处,占比37%。散点图的横坐标为滑坡面积(A)纵坐标(L),数据点通过颜色变化表示密度。采用幂律拟合模型得到的曲线(式1),其R2值为0.78,清晰地展示了滑坡面积与滑行距离之间的正相关趋势,并提供95%置信区间和预测区间。直方图的纵坐标与散点图保持一致,进一步支持所观察到的趋势。(1) 式中:L——滑行距离/m;
A——滑坡面积/m2。
图7(b)显示了滑坡面积(A)与滑坡长宽比(ε)之间的关系。直方图表明,ε值最高可达16.49,主要集中在1~4,占比67.23%,共有3 885处滑坡。尽管两者之间存在一定相关性,但由于数据复杂性,无法用单一数学模型准确拟合。因此,研究采用包络线(式2)描述总体趋势,绝大多数滑坡散点位于包络线以下,高密度区域集中在面积102~103 m2,ε值在1~4,表明这类滑坡更为常见。随着面积增大,长宽比通常增高,这反映出较大滑坡往往形状更为延展;同时,数据的高度分散性提示,不同滑坡之间的几何变异性源自多种因素,如地形特征、地质构造和环境条件。
(2) 式中:ε——滑坡长宽比;
A——滑坡面积/m2。
图7(c)展示了滑坡(L)与高差(H)之间的关系。大部分滑坡的高差为20 m以下,包括
3183 处滑坡,占比55.08%,最大滑坡高程达到132.49 m。采取线性模型得到的拟合线表明滑行距离与高差呈显著正相关,见式(3),拟合模型的R2=0.63。这表明随着高差的增加,滑坡的滑行距离也趋于增加。这意味着,较高的滑坡起始点往往导致更远的滑行距离。这种关系与滑坡的动力学过程相关,其中高差提供了更多的势能,从而增加了滑坡体的动能和流动性。(3) 式中:H——滑坡高差/m;
L——滑行距离/m。
图7(d)展示了滑坡的H/L与滑坡面积(A)之间的关系。在滑坡动力学研究中,H/L是衡量滑坡能量转化与运动特性的重要指标之一。从理论上讲,当H/L值较小时,意味着在相对较小的高差下能够实现较长的滑行距离,这表明滑坡体在运动过程中能够更有效地将重力势能转化为动能,并且在运动过程中受到的阻力相对较小。因此在一些研究中,该指标也被用于反映滑坡的流动性[53 − 56]。此次事件触发的滑坡的H/L主要分布在0.2~0.6,包括
3563 处滑坡,占比61.65%,呈现出区域浅层滑坡的强流动性特征。在散点图中,大部分滑坡均位于我们得到的包络线之下,见式(4)。在这之中,滑坡的H/L与面积之间存在一定的负相关关系。这意味着,随着滑坡面积的增加,H/L有减小的趋势。
(4) 式中:H——滑坡高差/m;
L——滑行距离/m;
A——滑坡面积/m2。
3.3 控制因素分析
3.3.1 滑坡数量和滑坡面积
滑坡数量和滑坡总面积在不同高程区间内的分布存在显著差异,见图8(a)。滑坡主要集中在海拔150~350 m,其中200~250 m区间内的滑坡数量(
1369 个)和滑坡总面积(约1.446 3×106 m2)达到峰值。从总体趋势来看,滑坡数量和总面积在150~350 m呈现快速增加,随后在350 m以上逐渐减少。在500 m以上的高海拔区域,滑坡数量和总面积显著下降。坡度是影响滑坡发生的重要地形因子,直接决定了地表重力分量、降雨汇流速度以及土壤稳定性等关键特性。一般来说,坡度较大的区域更容易因降雨诱发滑坡,因为陡峭的坡面使得抗剪力不足以抵抗重力和孔隙水压力的增大[57 − 58]。从统计分析结果来看,见图8(b),滑坡主要集中在坡度16°~28°,其中20°~24°区间的滑坡数量(
1228 个)和滑坡总面积(约1.183 1×106 m2)均达到峰值。本文分析该现象主要由以下原因导致:从图4(b)可以看出,在研究区范围内,高坡度区间面积占比非常小,尽管在理论上应存在更高的滑坡概率,但实际的滑坡数量和面积受限于其实际面积的局限。此外,在其他广东省区域的降雨滑坡研究中,包括韶关市[37]、揭西县[14]、陆河县[59]、龙川县[10, 60]的研究中,都存在滑坡主要分布于坡度45°以下范围的结论。综合现有研究,研究区基岩主要由花岗岩和片麻岩组成,上覆地层以第四纪松散堆积物和风化残积土为主,其他区域具有相似的岩性组成。关于此类岩性的滑坡失稳机制研究中提到,降雨过程中,由于降雨强度远高于花岗岩残土渗透系数,强降雨主要影响边坡浅表层,未入渗的雨水产生地表径流,通过浅表面滑动破坏。在斜坡浅表饱和区产生饱和渗流场,并演变成分布不均匀的特征,即在斜坡中下部饱和区厚度大于上部饱和区的厚度,因此坡体中下部变形破坏较多,对应坡度较缓的区域[60 − 61]。此外广东省对坡度大于25°的区域规定了林木采伐限制,也是该现象的支持原因之一[7]。已有研究表明,山区迎风坡地带往往具有更高的降雨量[62 − 64],因此能够接收更多降雨的水动力影响以及其坡面汇水能力增强,因此相对其他坡向,迎风坡滑坡分布更为集中[33, 65]。本研究中,滑坡数量和面积在东坡(E)和东南坡(SE)上达到峰值,其中东坡滑坡数量为
1082 个,总面积为96.78×104 m2,东南坡滑坡数量为1026 个,总面积为95.97×104 m2。此外,南坡(S)滑坡数量为976个,总面积略高于东坡和东南坡,达到97.20×104 m2。相较之下,北坡(N)、西北坡(NW)和东北坡(NE)的滑坡数量和总面积显著较少,见图8(c)。这同样与周边其他地区的研究具有相似的趋势[10, 14]。广东省属于亚热带季风气候,副热带高压、暖湿夏季风、北方冷空气和台风是影响广东省整体降雨情况的关键因素[64]。4月为华南前汛期阶段[66],南海夏季风还未暴发,因此偏南的暖湿气流是该地区的主导风向[67 − 68]。因此该现象符合暴雨期间山体迎风坡向滑坡分布远多于背风坡向的规律。3.3.2 剖面曲率
剖面曲率用于描述地表在沿坡面垂直于坡度方向的曲率特征。它反映了地表在沿坡面的切线方向上的弯曲程度,通常用此曲率来表征流体在重力作用下在表面上的向下加速和减速,因此可以反映降雨地表径流的汇集或分散程度[69 − 70]。剖面曲率为0~0.005内滑坡总面积最大,约为200.65×104 m2,而滑坡数量在−0.005~0区间最高,为2 057个,见图8(d)。在更典型的凹形地形中(剖面曲率为−0.01~−0.005)中,滑坡数量较多,共计904个,但其滑坡总面积较小,约66.92×104 m2。这表明凹形地形更易形成小规模滑坡,可能是由于汇水作用增强了局部水动力条件,导致坡体局部失稳而触发较多小型滑坡。而在典型凸形地形(剖面曲率为0.005~0.01)中,滑坡数量减少,为734个,但滑坡总面积更大,约为94.54×104 m2,说明凸形地形虽然滑坡数量较少,但倾向于形成规模更大的滑坡。这可能是因为凸形地形的水分分散条件较好,土壤水分更易沿坡体流失,从而需要更大的外界触发条件(如强降雨或高坡度)才能导致滑坡,而一旦触发,滑坡的规模则更大。
3.3.3 地形湿度指数
地形湿度指数主要用于评估土壤湿度的空间分布影响[71 − 72]。从统计结果来看,见图8(e),地形湿度指数值在4~5的区间内,滑坡数量和总面积均达到峰值,分别为2 695个和约283.64×104m2。这表明该区间是滑坡的高发区。
3.3.4 相对坡位指数
相对坡位指数通常是滑坡发生的起点位置。图8(f)表明,滑坡主要集中在相对坡位指数值接近0的区间(−0.2~0.2),对应斜坡中部区域。其中相对坡位指数为0~0.2的区间滑坡总面积最大,约为1.338 2×106 m2,滑坡数量为
1301 个;而在相对坡位指数为−0.2~0的区间滑坡数量最多,为1340 个,总面积为1.181 5×106 m2。3.3.5 距河流距离
河流在降水诱发滑坡中扮演着重要角色,其主要影响机制包括水动力侵蚀作用、地下水位变化以及河流汇流对边坡稳定性的影响。距离河流的远近直接决定了河流对坡体侵蚀和潜在滑坡影响的强弱[73 − 74]。从统计结果来看,见图8(g),滑坡数量和滑坡总面积随距离河流的增加而呈现显著递减趋势。距离河流100 m以内的区域内滑坡最为集中,滑坡数量为
1396 个,总面积约为1.277 8×106 m2。这表明河流附近的边坡因受侵蚀和冲刷作用影响较大,坡体稳定性显著降低,成为滑坡的高发区域。3.3.6 距道路距离
道路是影响滑坡发生的重要人为因素,其主要作用包括对坡体的直接切割、排水系统的改变以及地质结构的扰动。道路施工和交通荷载会显著降低坡体的稳定性。图8(h)显示,在距离道路100 m内的区域,滑坡数量为904个,总面积约为78.16×104 m2,距离道路100~200 m的区域滑坡数量有所减少,为740个,但滑坡总面积略有增加,达到约81.71×104 m2。随着距离的增加,滑坡数量和面积逐步减少。尽管研究区土地利用类型丰富,但是实际上滑坡主要集中分布的土地利用类型较少。因此我们对原有细分的类型进行了合并。图8(i)显示,阔叶林区域滑坡最多,数量达到
4102 个,总面积约为3.802 9×106 m2,占总滑坡分布的绝大多数。此外耕地区域滑坡数量为378个,总面积约为32.36×104 m2。这也反映了此次降雨时间对农业经济的严重影响。4. 讨论
近年来,随着全球气候变暖和极端天气事件的日益频繁,强降雨诱发的地质灾害正呈现出更高的发生频率和更大的破坏性[3, 75 − 76]。相关研究中,滑坡编目数据库的完善与标准化是未来的重要研究方向。在我国西南山区,研究者对2017年6月8日,重庆西部平行岭谷地区的暴雨事件进行分析,得到滑坡487处[15]。得到2023年7月4日重庆万州暴雨触发滑坡946处[77]。在黄土高原地区,研究表明2013年天水地区强降雨过程中触发黄土滑坡
54000 处[78 − 79]。在东南沿海地区,相关研究区域涉及了福建[80 − 81]、广东[10, 14, 37]、浙江[65, 82 − 83]和安徽[84 − 85]多省。图9展示了部分具有明确滑坡数量和面积的研究。降雨滑坡的规模效应在本研究中有所体现,但尚需更广泛的数据支撑。图9中的拟合趋势线表明,滑坡数量与滑坡面积之间存在明显的线性正相关关系。但是区域之间的差异性依然存在。这种差异可能与区域降雨强度、地形地貌特征以及土地利用类型等控制因素密切相关。未来研究应结合遥感解译与地质调查,进一步揭示不同区域滑坡触发的主控因素及其对滑坡规模的影响。例如量化降雨强度-历时与滑坡规模的关系,将是下一步研究的重要方向。气候变化对极端降雨事件的驱动作用需要更多关注。近年来,东南沿海地区受台风和梅雨季节的影响,极端降雨事件愈发频繁[87 − 88]。台风-暴雨-滑坡灾害链效应也逐步加剧,图中多个东南沿海省份的事件的时间分布也体现了这一趋势。这表明未来可能需要更多地将气象预报与滑坡灾害防控相结合,构建动态监测和实时预警体系,从而减少极端天气带来的损失。此外,尽管当前降雨触发滑坡数据库的研究逐步丰富,但在滑坡定义、编目精度和分类方法上可能存在一定的差异。为提高研究的对比性和适用性,未来应推动滑坡数据库的标准化和开放共享,从而为更高效的滑坡灾害预测模型提供基础。
5. 结论
(1)本次暴雨诱发的浅层滑坡总计
6310 处,滑坡分布密度在北东—南西向的某些区域显著升高,表现出强烈的空间聚集性。滑坡总面积达5.85 km2,单个滑坡面积以102~103 m2的小规模为主,占比66.7%。大面积滑坡相对较少,主要分布在局部高坡度区域。(2)滑坡的几何形态特征表明,滑行距离与滑坡面积呈幂律相关,滑坡长宽比主要集中在1~4,占比67.23%。滑坡高差大多数小于20 m,但高差较大的滑坡通常具有更长的滑行距离。滑坡的H/L主要分布在0.2~0.6,反映了浅层滑坡的高流动性特征,且滑坡规模增大时H/L呈下降趋势。
(3)滑坡的发生受到多种地形因子和环境条件的综合影响。高程(150~350 m)和坡度(16°~28°)是滑坡的高发区间,其中高程200~250 m和坡度20°~24°的滑坡数量和面积均达到峰值。东坡和东南坡的滑坡数量和面积显著高于其他坡向,这与坡面的降雨汇水能力和水动力条件密切相关。地形湿度指数在4—5区间时滑坡最为集中,表明中等湿度条件下坡体更易失稳。滑坡数量随距离河流和道路的增加显著递减。距河流100 m以内区域滑坡数量最多,为
1396 处,显示出河流侵蚀作用对边坡稳定性的影响显著。距道路100 m以内的滑坡数量为904处,表明道路施工引发的边坡失稳问题需特别关注。本研究通过目视精确解译构建了此次降雨事件触发的详细滑坡编目,统计并揭示了自然因素和人为活动对滑坡触发的影响,为滑坡灾害风险评估提供了重要支持。未来研究需进一步结合动态降雨强度—历时模型与地质条件,深入揭示极端天气背景下滑坡的触发机制与空间规律。同时,建议加强区域性滑坡数据库的标准化建设,并发展基于气象数据的实时监测与预警系统,以应对气候变化带来的地质灾害挑战。
-
表 1 黄土优势渗流通道分类及特征表
Table 1 Classification and characteristic table of dominant seepage channels in loess
作者 分类依据 类别 渗流特征 卢全中等[58] 闭合状态、水在裂隙
中的渗透运移闭合结构面 水在裂隙中渗透的速度与两侧土体中接近,此时土体可视为连续介质或不均匀连续介质 裂开结构面 水在裂缝中渗漏,可视为不连续介质,但在压力作用下两侧土体可相互影响 张开结构面 将两侧黄土分成互不影响的两部分,水在裂缝中可以自由流动,此时水对土体产生侵蚀,
对土体的性质起着决定性作用张珊珊等[59,60] 水分入渗规律 Ⅰ类优势渗流通道 微小节理(裂隙)、孔隙类,由于水分快速运移的通道不发育,所以水分在这类优势通道中
基本呈现出均匀入渗的模式Ⅱ类优势渗流通道 中宽节理(裂隙)、大孔隙及近地表微小洞穴类,这类优势通道为黄土体中的水分运移
发挥着重要作用,水分运移呈现出快速入渗的模式Ⅲ类优势渗流通道 宽大节理(裂隙)及黄土洞穴类,这类优势通道发育及其明显,尤其是对于落水洞而言,
容易形成水分汇集区并呈现出灌入渗透的模式彭建兵等[18] 微细宏观
不同尺度微观尺度通道 黄土中的大孔隙,表现为均匀入渗 细观尺度通道 具有强渗透性的节理裂隙、断层以及黄土中的虫孔、根孔,具有优势渗流特性 宏观尺度通道 水可以自由出入的、开放性的裂缝和落水洞 张宇[42] 湿润锋迁移形态、
深度和宽度小张开度
(0 mm<a<1.50 mm)由于节理壁面的水—土互馈作用,导致裂隙壁面细颗粒随水流运移,最终堵塞节理,
演变成特殊的大孔隙流中等张开度
(1.50 mm≤a≤2.50 mm)处于小开度和大开度之间 大张开度
(a>2.50 mm)水流会直接穿过裂隙铅直入渗,几乎不与裂隙面发生作用 -
[1] 陈永宗, 景可, 蔡强国. 黄土高原现代侵蚀与治理[M]. 北京: 科学技术出版社, 1988. CHEN Yongzong, JING Ke, CAI Qiangguo. Modern erosion and control of the loess plateau [M]. Beijing: Science Press, 1988. (in Chinese)
[2] 李喜安, 宋焱勋, 叶万军. 黄土洞穴潜蚀工程地质[M]. 上海: 同济大学出版社, 2010. LI Xi'an, SONG Yanxun, YE Wanjun. Engineering geological research on tunnel-erosion in loess[M]. Shanghai: Tongji University Press, 2010. (in Chinese)
[3] 彭建兵, 李庆春, 陈志新. 黄土洞穴灾害[M]. 北京: 科学出版社, 2008. PENG Jianbing, LI Qingchun, CHEN Zhixin. Loess cave disaster [M]. Beijing: Science Press, 2008. (in Chinese)
[4] 彭建兵, 李喜安, 孙萍, 等. 黄土洞穴的环境灾害效应[J]. 地球与环境,2005,33(4):1 − 7. [PENG Jianbing, LI Xi’an, SUN Ping, et al. Environmental and disaster effects of loess caves[J]. Earth and Environment,2005,33(4):1 − 7. (in Chinese with English abstract) [5] HU S, QIU H J, WANG N L, et al. The influence of loess cave development upon landslides and geomorphologic evolution: A case study from the northwest loess plateau, China[J]. Geomorphology,2020,359:107167. DOI: 10.1016/j.geomorph.2020.107167
[6] 朱显谟. 黄土区的洞穴侵蚀[J]. 黄河建设,1958(3):43 − 44. [ZHU Xianmo. Cave Erosion in Loess Area[J]. Yellow River Construction,1958(3):43 − 44. (in Chinese) [7] 李喜安. 黄土暗穴的成因及其公路工程灾害效应研究[D]. 西安: 长安大学, 2004. LI Xi'an. Research on the causes of the dark hole in the loess and the disaster effects of highway engineering[D]. Xi'an: Chang'an University, 2004.(in Chinese with English abstract)
[8] 李喜安, 彭建兵, 郑书彦, 等. 公路黄土洞穴灾害与水土流失研究[J]. 公路,2004,49(12):70 − 73. [LI Xi’an, PENG Jianbing, ZHENG Shuyan, et al. Loess cave hazard in highways and water and soil loss[J]. Highway,2004,49(12):70 − 73. (in Chinese with English abstract) DOI: 10.3969/j.issn.0451-0712.2004.12.016 [9] 李喜安, 彭建兵, 陈志新, 等. 黄土洞穴潜蚀地貌及其利弊综合分析[J]. 西安科技大学学报,2009,29(1):78 − 84. [LI Xi’an, PENG Jianbing, CHEN Zhixin, et al. Benefits and hazards of subground erosional geomorphy of loess tunnels[J]. Journal of Xi'an University of Science and Technology,2009,29(1):78 − 84. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-9315.2009.01.017 [10] 刘林, 李金峰, 王小平. 黄土高原沟壑丘陵区沟道侵蚀与洞穴侵蚀特征[J]. 水土保持通报,2015,35(1):14 − 19. [LIU Lin, LI Jinfeng, WANG Xiaoping. Features on gully erosion and tunnel erosion in loess hilly and gully region[J]. Bulletin of Soil and Water Conservation,2015,35(1):14 − 19. (in Chinese with English abstract) [11] 郑鹏飞, 胡江洋, 刘晓京. 黄土边坡落水洞的形成演化机理研究[J]. 灾害学, 2019, 34(增刊1): 224 − 227. ZHENG Pengfei, HU Jiangyang, LIU Xiaojing. Formation and evolution mechanism of waterfall tunnel on loess slope[J]. Journal of Catastrophology, 2019, 34(Sup 1): 224 − 227. (in Chinese with English abstract)
[12] 张焱, 邱海军, 胡胜, 等. 黄土洞穴发育条件下滑坡土体性质及其稳定性分析[J]. 自然灾害学报,2020,29(2):64 − 75. [ZHANG Yan, QIU Haijun, HU Sheng, et al. Analysis of the properties and stability of landslide soil under the development conditions of loess caves[J]. Journal of Natural Disasters,2020,29(2):64 − 75. (in Chinese with English abstract) [13] 徐张建, 林在贯, 张茂省. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报,2007,26(7):1297 − 1312. [XU Zhangjian, LIN Zaiguan, ZHANG Maosheng. Loess in China and loess landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(7):1297 − 1312. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2007.07.001 [14] 雷祥义, 魏青珂. 陕北伤亡性黄土崩塌成因与对策研究[J]. 岩土工程学报,1998,20(1):64 − 69. [LEI Xiangyi, WEI Qingke. Study on the origin and countermeasure of the casualty loess landfalls in the Northern Shaanxi[J]. Chinese Journal of Geotechnical Engineering,1998,20(1):64 − 69. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.1998.01.016 [15] 武彩霞, 许领, 戴福初, 等. 黑方台黄土泥流滑坡及发生机制研究[J]. 岩土力学,2011,32(6):1767 − 1773. [WU Caixia, XU Ling, DAI Fuchu, et al. Topographic features and initiation of earth flows on Heifangtai loess plateau[J]. Rock and Soil Mechanics,2011,32(6):1767 − 1773. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2011.06.028 [16] 彭建兵, 林鸿州, 王启耀, 等. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报,2014,22(4):684 − 691. [PENG Jianbing, LIN Hongzhou, WANG Qiyao, et al. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology,2014,22(4):684 − 691. (in Chinese with English abstract) [17] 乔建伟, 彭建兵, 郑建国, 等. 中国地裂缝发育规律与运动特征研究[J]. 工程地质学报,2020,28(5):1016 − 1027. [QIAO Jianwei, PENG Jianbing, ZHENG Jianguo, et al. Development rules and movement characteristics of earth fissures in China[J]. Journal of Engineering Geology,2020,28(5):1016 − 1027. (in Chinese with English abstract) [18] 彭建兵, 王启耀, 庄建琦, 等. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报,2020,26(5):714 − 730. [PENG Jianbing, WANG Qiyao, ZHUANG Jianqi, et al. Dynamic formation mechanism of landslide disaster on the loess plateau[J]. Journal of Geomechanics,2020,26(5):714 − 730. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2020.26.05.059 [19] 王斌科. 土壤的洞穴侵蚀研究综述[J]. 土壤学进展,1989,17(1):9 − 14. [WANG Binke. A review of soil cave erosion research[J]. Advances in Soil Science,1989,17(1):9 − 14. (in Chinese) [20] 张倬元, 王士天, 王兰生. 工程地质分析原理[M]. 4版. 北京: 地质出版社, 2016: 393 − 440. ZHANG Zhuoyuan, WANG Shitian, WANG Lansheng. Principles of engineering geology analysis (Fourth Edition) [M]. Beijing: Geological Publishing House, 2016: 393 − 440. (in Chinese)
[21] 王景明. 黄土构造节理的理论及其应用[M]. 北京: 中国水利电力出版社, 1996: 1-225. WANG Jingming. Loess structural joint theory and its application [M]. Beijing: China Water Power Press, 1996: 1 − 225. (in Chinese)
[22] 王斌科. 引起洞穴侵蚀的主要因素的探索[J]. 水土保持学报,1989,3(3):84 − 90. [WANG Binke. A study on main factors affecting tunnel erosion[J]. Journal of Soil and Water Conservation,1989,3(3):84 − 90. (in Chinese with English abstract) [23] 王玉涛, 刘小平, 曹晓毅. 基于主成分分析法的Q2黄土湿陷特性研究[J]. 水文地质工程地质,2020,47(4):141 − 148. [WANG Yutao, LIU Xiaoping, CAO Xiaoyi. A study of the collapsibility of Q2 loess based on principal component analysis[J]. Hydrogeology & Engineering Geology,2020,47(4):141 − 148. (in Chinese with English abstract) [24] 唐小明, 李长安, 黄长生, 等. 兰州西部地区的黄土潜蚀作用[J]. 甘肃地质学报,1999,8(1):3 − 5. [TANG Xiaoming, LI Chang'an, HUANG Changsheng, et al. A primary study on the loess suffosion erosion in the area to west of Lanzhou, Gansu Province[J]. Acta Geologica Gansu,1999,8(1):3 − 5. (in Chinese with English abstract) [25] 赵永伟. 黄土洞穴形成环境与分布规律研究[D]. 西安: 长安大学, 2004. ZHAO Yongwei. Research on the formation environment and distribution law of loess caves[D]. Xi'an: Changan University, 2004. (in Chinese with English abstract)
[26] 彭建兵, 李喜安, 范文, 等. 黄土高原地区黄土洞穴的分类及发育规律[J]. 地学前缘,2007,14(6):234 − 244. [Peng Jianbing, Li Xi'an, Fan Wen, et al. Classification and development pattern of caves in the loess plateau[J]. Earth Science Frontiers,2007,14(6):234 − 244. (in Chinese with English abstract) DOI: 10.3321/j.issn:1005-2321.2007.06.030 [27] 王斌科, 朱显谟, 唐克丽. 黄土高原的洞穴侵蚀与防治[J]. 中国科学院西北水土保持研究所集刊,1988(1):26 − 39. [WANG Binke, ZHU Xianmo, TANG Keli. Tunnel erosion and its control in the loess plateau[J]. Memoir of Northwestern Institute of Soil and Water Conservation Academia Sinica,1988(1):26 − 39. (in Chinese with English abstract) [28] 张世武, 韩庆宪, 白晓华. 黄土落水洞初步研究[J]. 中国水土保持,1992(6):26 − 27. [ZHANG Shiwu, HAN Qingxian, BAI Xiaohua. Preliminary study on loess doline[J]. Soil and Water Conservation in China,1992(6):26 − 27. (in Chinese with English abstract) [29] 刘东生. 黄土与环境[M]. 北京: 科学出版社, 1986. LIU Dongsheng. Loess and environment[M]. Beijing: Science Press, 1986. (in Chinese)
[30] 张宗祜, 姚足金, 王开申. 中国黄土的主要工程地质问题[J]. 地质学报,1973,47(2):255 − 269. [ZHANG Zonghu, YAO Zujin, WANG Kaishen. Main engineering geological problems of Chinese loess[J]. Acta Geological Sinica,1973,47(2):255 − 269. (in Chinese) [31] 杨柳悦. 黄土中渗流水运动及其对土体的潜蚀特征研究[D]. 杨凌: 西北农林科技大学, 2014. YANG Liuyue. Research on movement and erosion characteristics of seepage water in the loess[D]. Yangling: Northwest A & F University, 2014. (in Chinese with English abstract)
[32] 赵跃中, 杨柳悦, 穆兴民, 等. 黄土中渗流水潜蚀特征研究[J]. 灌溉排水学报,2015,34(10):37 − 39. [ZHAO Yuezhong, YANG Liuyue, MU Xingmin, et al. Characteristic of sub-ground erosion in the loess[J]. Journal of Irrigation and Drainage,2015,34(10):37 − 39. (in Chinese with English abstract) [33] 邹锡云, 许强, 彭大雷, 等. 黑方台典型黄土洞穴形成的影响因素[J]. 科学技术与工程,2018,18(28):58 − 64. [ZOU Xiyun, XU Qiang, PENG Dalei, et al. Influencing factors of formation of typical loess sinkhole in Heifangtai[J]. Science Technology and Engineering,2018,18(28):58 − 64. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2018.28.007 [34] 张风亮, 罗扬, 朱武卫, 等. 垂直节理对黄土渗透性的影响研究[J]. 工业建筑,2019,49(1):14 − 20. [ZHANG Fengliang, LUO Yang, ZHU Wuwei, et al. Research on the influence of vertical joints on the permeability of loess[J]. Industrial Construction,2019,49(1):14 − 20. (in Chinese with English abstract) [35] 李亮. 地裂缝带黄土的渗透变形试验研究[D]. 西安: 长安大学, 2007. LI Liang. Seepage deformation experimental research of fissured loess[D]. Xi'an: Changan University, 2007. (in Chinese with English abstract)
[36] 房江锋. 黄土节理抗剪强度和渗透性试验研究及工程应用[D]. 西安: 西安建筑科技大学, 2010. FANG Jiangfeng. Experimental research on shear strength and loess permeability of the intact loess joints and engineering application[D]. Xi'an: Xi'an University of Architecture and Technology, 2010. (in Chinese with English abstract)
[37] 杨华. 裂隙性黄土渗透特性试验研究[D]. 西安: 长安大学, 2016. YANG Hua. Experimental research on the permeation properties of fissured loess[D]. Xi'an: Changan University, 2016. (in Chinese with English abstract)
[38] 洪勃, 杜少少, 李喜安, 等. 泾河南塬黄土的渗透特征及孕灾机制[J]. 水土保持通报,2019,39(3):75 − 79. [HONG Bo, DU Shaoshao, LI Xi'an, et al. Infiltration characteristics and disaster-forming mechanism of loess in south Jinghe tableland[J]. Bulletin of Soil and Water Conservation,2019,39(3):75 − 79. (in Chinese with English abstract) [39] 孙萍萍. 黄土水敏性与降雨诱发浅层黄土滑坡预测[D]. 西安: 西北大学, 2020. SUN Pingping. Water sensitivity of loess and prediction of rainfall induced shallow loess landslides[D]. Xi'an: Northwest University, 2020. (in Chinese with English abstract)
[40] 罗扬. 黄土节理渗流特性的试验研究及节理黄土水分场数值分析[D]. 西安: 西安建筑科技大学, 2011. LUO Yang. Experimental study on joint seepage characteristics of loess and numerical analysis of joint loess[D]. Xi'an: Xi'an University of Architecture and Technology, 2011. (in Chinese with English abstract)
[41] 罗扬, 王铁行, 王娟娟. 含节理黄土渗流数值模型研究[J]. 工程地质学报,2014,22(6):1115 − 1122. [LUO Yang, WANG Tiehang, WANG Juanjuan. Finite element seepage flow model for unsaturated loess with joints[J]. Journal of Engineering Geology,2014,22(6):1115 − 1122. (in Chinese with English abstract) [42] 张宇. 考虑张开度的节理发育黄土体水分场试验研究[D]. 西安: 西安建筑科技大学, 2020. ZHANG Yu. Experimental study on moisture field of loess body with joints considering opening degree[D]. Xi'an: Xi'an University of Architecture and Technology, 2020. (in Chinese with English abstract)
[43] 谢婉丽, 王延寿, 马中豪, 等. 黄土湿陷机理研究现状及发展趋势[J]. 现代地质,2015,29(2):397 − 407. [XIE Wanli, WANG Yanshou, MA Zhonghao, et al. Research status and prospect of loess collapsibility mechanism[J]. Geoscience,2015,29(2):397 − 407. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-8527.2015.02.025 [44] WANG L, LI X, LI L C, et al. Characterization of the collapsible mechanisms of Malan loess on the Chinese Loess Plateau and their effects on eroded loess landforms[J]. Human and Ecological Risk Assessment: An International Journal,2020,26(9):2541 − 2566. DOI: 10.1080/10807039.2020.1721265
[45] 蒋定生. 黄土区不同利用类型土壤抗冲刷能力的研究[J]. 土壤通报,1979,10(4):20 − 23. [JIANG Dingsheng. Study on the anti-scouring ability of different utilization types of soil in the loess area[J]. Chinese Journal of Soil Science,1979,10(4):20 − 23. (in Chinese with English abstract) [46] 李昌贤. 黄土洞穴成因机制研究[D]. 西安: 长安大学, 2004. LI Changxian. Research on the genetic mechanism of loess caves. Xi'an: Changan University, 2004. (in Chinese with English abstract)
[47] 李滨. 晋西黄土暗穴成因及其对公路危害研究[D]. 西安: 长安大学, 2006. LI Bin. Research on the causes of the dark holes in the loess of western Shaanxi and their hazards to highways[D]. Xi'an: Changan University, 2006. (in Chinese with English abstract)
[48] LI X, WANG L, YAN Y L, et al. Experimental study on the disintegration of loess in the Loess Plateau of China[J]. Bulletin of Engineering Geology and the Environment,2019,78(7):4907 − 4918. DOI: 10.1007/s10064-018-01434-6
[49] QIAO X Y, LI X A, GUO Y W, et al. In-situ experimental research on water scouring of loess slopes[J]. Environmental Earth Sciences,2018,77(11):1 − 12.
[50] LI X, WANG L, HONG B, et al. Erosion characteristics of loess tunnels on the Loess Plateau: A field investigation and experimental study[J]. Earth Surface Processes and Landforms,2020,45(9):1945 − 1958. DOI: 10.1002/esp.4857
[51] 王景明, 张骏. 论黄土节理[J]. 长安大学学报(地球科学版),1985,7(2):30 − 41. [WANG Jingming, ZHANG Jun. On loessial joints[J]. Journal of Chang'an University Earth Science Edition,1985,7(2):30 − 41. (in Chinese with English abstract) [52] 王景明, 卜臣. 黄土喀斯特与水土流失灾害[J]. 中国水土保持,1990(1):20 − 24. [WANG Jingming, BU Chen. Loess karst and disaster due to soil loss[J]. Soil and Water Conservation in China,1990(1):20 − 24. (in Chinese with English abstract) [53] 王景明, 卜臣. 黄土喀斯特与水土流失灾害(续)[J]. 中国水土保持,1990(2):34 − 35. [WANG Jingming, BU Chen. Loess karst and soil erosion disasters (Continued)[J]. Soil and Water Conservation in China,1990(2):34 − 35. (in Chinese with English abstract) [54] 王景明, 王君. 冀中南黄土潜蚀地貌与黄土构造节理[J]. 地理研究,1994,13(1):90 − 93. [WANG Jingming, WANG Jun. Loessic corrosion landform and loessic tectonic joint in the mtddle south of Hebei Provnce[J]. Geographical Research,1994,13(1):90 − 93. (in Chinese with English abstract) [55] 康尘云, 王少凯, 贺鸣. 陇西黄土构造节理几何特征分析[J]. 中国地质灾害与防治学报,2019,30(5):131 − 138. [KANG Chenyun, WANG Shaokai, HE Ming. Geometrical features of tectonic joints in loess of central Gansu and southern Ningxia[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):131 − 138. (in Chinese with English abstract) [56] 王景明, 倪玉兰, 孙建中. 黄土构造节理研究及其应用[J]. 工程地质学报,1994,2(4):31 − 42. [WANG Jingming, NI Yulan, SUN Jianzhong. A study on structural joints in loess and its practical applications[J]. Journal of Engineering Geology,1994,2(4):31 − 42. (in Chinese with English abstract) [57] 贺可强, 王景明, 张振营. 南水北调穿黄工程区黄土潜蚀地貌发育规律与形成机制初探[J]. 水文地质工程地质,1996,23(5):30 − 35. [HE Keqiang, WANG Jingming, ZHANG Zhenying. A preliminary study on the development law and formation mechanism of loess undercutting geomorphology in the Yellow River water transfer project area[J]. Hydrogeology & Engineering Geology,1996,23(5):30 − 35. (in Chinese) [58] 卢全中, 彭建兵. 黄土体结构面的发育特征及其灾害效应[J]. 西安科技大学学报,2006,26(4):446 − 450. [LU Quanzhong, PENG Jianbing. Characteristics of structural planes of loess mass in loess plateau of China and its hazard effect[J]. Journal of Xi'an University of Science and Technology,2006,26(4):446 − 450. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-9315.2006.04.003 [59] 张珊珊. 黄土斜坡优势通道及优势入渗规律[D]. 北京: 中国地质大学(北京), 2018. ZHANG Shanshan. The preferential passage and the law of preferential infiltration of loess slope[D]. Beijing: China University of Geosciences, 2018. (in Chinese with English abstract)
[60] 张珊珊, 张茂省, 孙萍萍, 等. 面向黄土地质灾害的优势流研究[J]. 兰州大学学报(自然科学版),2019,55(2):274 − 280. [ZHANG Shanshan, ZHANG Maosheng, SUN Pingping, et al. Advances in and outlooks of preferential flow study in unsaturated soils[J]. Journal of Lanzhou University (Natural Sciences),2019,55(2):274 − 280. (in Chinese with English abstract) [61] 李喜安, 彭建兵, 陈志新, 等. 黄土地层地表径流下潜模式与地质灾害[J]. 工程地质学报,2007,15(4):495 − 499. [LI Xi'an, PENG Jianbing, CHEN Zhixin, et al. On the infiltration modes of surface runoff in the loess layer and geological hazards[J]. Journal of Engineering Geology,2007,15(4):495 − 499. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2007.04.011 [62] 仵彦卿. 地下水与地质灾害[J]. 地下空间,1999(4):303 − 310. [WU Yanqing. Groundwater flow and geological hazards[J]. Underground Space,1999(4):303 − 310. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-0836.1999.04.007 [63] 罗来兴. 划分晋西、陕北、陇东黄土区域沟间地与沟谷的地貌类型[J]. 地理学报,1956,11(3):201 − 222. [LUO Laixing. A tentative classification of landforms in the loess plateau[J]. Acta Geographica Sinica,1956,11(3):201 − 222. (in Chinese with English abstract) [64] 陈传康. 陇东东南部黄土地形类型及其发育规律[J]. 地理学报,1956,11(3):223 − 231. [CHEN Chuankang. Types of loess and its development in the southeast of Longdong[J]. Acta Geographica Sinica,1956,11(3):223 − 231. (in Chinese) [65] 刘建平. 陕西省子长地区黄土的潜蚀试验研究[D]. 武汉: 中国地质大学, 2008. LIU Jianping. Experimental study on the subsurface erosion of loess in the Zichang area of Shanxi Province[D]. Wuhan: China University of Geosciences, 2008. (in Chinese with English abstract)
[66] 康锦辉. 黄土洞穴物理潜蚀机理试验研究[D]. 西安: 长安大学, 2010. KANG Jinhui. Physical sub-erosion mechanism of loess cave study[D]. Xi'an: Changan University, 2010. (in Chinese with English abstract)
[67] PENG J B, SUN P, IGWE O, et al. Loess caves, a special kind of geo-hazard on loess plateau, northwestern China[J]. Engineering Geology,2018,236:79 − 88. DOI: 10.1016/j.enggeo.2017.08.012
[68] 李滨, 彭建兵, 殷跃平, 等. 晋西黄土洞穴成因研究[J]. 工程地质学报,2007,15(4):490 − 494. [LI Bin, PENG Jianbing, YIN Yueping, et al. Study on origin of loess caves in west Shanxi[J]. Journal of Engineering Geology,2007,15(4):490 − 494. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2007.04.010 [69] 朱兴华, 彭建兵, 同霄, 等. 黄土地区地质灾害链研究初探[J]. 工程地质学报,2017,25(1):117 − 122. [ZHU Xinghua, PENG Jianbing, TONG Xiao, et al. Preliminary research on geological disaster chains in loess area[J]. Journal of Engineering Geology,2017,25(1):117 − 122. (in Chinese with English abstract) [70] 张宇宇. 降雨作用下延安地区黄土崩塌形成的机理研究[D]. 西安: 西安科技大学, 2016. ZHANG Yuyu. Study on the formation mechanism of loess collapse induced by rainfall in Yan’an area[D]. Xi'an: Xi'an University of Science and Technology, 2016. (in Chinese with English abstract)
[71] 李治财, 刘高. 黄土滑坡与黄土洞穴的相关性及其相互作用机理[J]. 兰州大学学报(自然科学版),2014,50(1):21 − 25. [LI Zhicai, LIU Gao. Correlation and interaction mechanism between loess landslides and loess caves[J]. Journal of Lanzhou University (Natural Sciences),2014,50(1):21 − 25. (in Chinese with English abstract) [72] 张坤. 泥流型黄土滑坡与洞穴成因机制及其相互作用[J]. 铁道建筑,2018,58(5):95 − 97. [ZHANG Kun. Genetic mechanism and interaction between mudflow loess landslide and cave[J]. Railway Engineering,2018,58(5):95 − 97. (in Chinese with English abstract) [73] 高静贤, 戴福初, 朱雨轩, 等. 四川宁南水塘村滑坡形成机理[J]. 中国地质灾害与防治学报,2019,30(6):1 − 9. [GAO Jingxian, DAI Fuchu, ZHU Yuxuan, et al. Failure mechanism of the Shuitang Village landslide in Ningnan County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):1 − 9. (in Chinese with English abstract) [74] 袁中夏, 赵未超, 叶帅华, 等. 含水量对黄土边坡稳定性的影响[J]. 中国地质灾害与防治学报,2019,30(3):37 − 43. [YUAN Zhongxia, ZHAO Weichao, YE Shuaihua, et al. Influence of water content on loess slope stability[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):37 − 43. (in Chinese with English abstract) [75] 贺小黑, 彭鑫, 谭建民, 等. 地下水渗流对崩坡积滑坡稳定性和变形的影响: 以湖南安化春风滑坡群为例[J]. 中国地质灾害与防治学报,2020,31(6):96 − 103. [HE Xiaohei, PENG Xin, TAN Jianmin, et al. Influence of groundwater seepage on stability and deformation of colluvial deposit landslide: Taking Chunfeng Landslide group in Anhua County of Hunan Province as an example[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):96 − 103. (in Chinese with English abstract) [76] 李治财, 刘高. 滑坡体上黄土洞穴的发育特征及其成因机制[J]. 中国水土保持,2014(4):60 − 63. [LI Zhicai, LIU Gao. Development characteristics of loess caves on landslides and its formation mechanism[J]. Soil and Water Conservation in China,2014(4):60 − 63. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0941.2014.04.026 [77] 马东涛, 崔鹏, 张金山, 等. 黄土高原泥流灾害成因及特征[J]. 干旱区地理,2005,28(4):435 − 440. [MA Dongtao, CUI Peng, ZHANG Jinshan, et al. Formation causes and features of mudflows in the loess plateau, China[J]. Arid Land Geography,2005,28(4):435 − 440. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6060.2005.04.004 [78] 蒋臻蔚. 水作用下地裂缝成因机制及数值模拟[D]. 西安: 长安大学, 2011. JIANG Zhenwei. Earth fissure formation mechanism under the the role of water and its numerical simulation[D]. Xi'an: Changan University, 2011. (in Chinese with English abstract)
[79] 韩金良, 吴树仁, 汪华斌. 地质灾害链[J]. 地学前缘,2007,14(6):11 − 23. [HAN Jinliang, WU Shuren, WANG Huabin. Preliminary study on geological hazard chains[J]. Earth Science Frontiers,2007,14(6):11 − 23. (in Chinese with English abstract) DOI: 10.3321/j.issn:1005-2321.2007.06.003 [80] HAN J L, WU S R, WANG H B. Preliminary study on geological hazard chains[J]. Earth Science Frontiers,2007,14(6):11 − 20. DOI: 10.1016/S1872-5791(08)60001-9
[81] XU M Z, WANG Z Y, QI L J, et al. Disaster chains initiated by the Wenchuan earthquake[J]. Environmental Earth Sciences,2012,65(4):975 − 985. DOI: 10.1007/s12665-011-0905-3
[82] WANG Y, SHU Z Y, LI Y Y. Research of slope disaster chain-stage and evolvement rules[J]. IOP Conference Series:Earth and Environmental Science,2020,455(1):012076. DOI: 10.1088/1755-1315/455/1/012076
-
期刊类型引用(6)
1. 张明鹏,张帅,吕运鸿. 基于深度学习的地震诱发滑坡自动提取研究. 地基处理. 2024(03): 242-249 . 百度学术
2. 豆红强,黄思懿,简文彬,王浩. 基于遥感数据的闽东南山区公路滑坡快速识别技术研究. 自然灾害学报. 2023(01): 217-227 . 百度学术
3. 陈靖,文广超,谢洪波,张哲伟,陈红旗. 白格滑坡区遥感光谱时空特征对滑坡发育的指示作用. 自然灾害学报. 2022(06): 239-247 . 百度学术
4. 杨寅,包红军,徐成鹏. 地质灾害气象风险预警实时检验客观工具关键技术及应用. 气象科技. 2021(02): 291-296 . 百度学术
5. 李文娟,邵海. 基于遥感影像多尺度分割与地质因子评价的滑坡易发性区划. 中国地质灾害与防治学报. 2021(02): 94-99 . 本站查看
6. 刘志中,宋英旭,叶润青. 渝东北2014年“8·31”暴雨诱发滑坡遥感解译与分析. 自然资源遥感. 2021(04): 192-199 . 百度学术
其他类型引用(8)