A deep learning recognition model for landslide terrain based on multi-source data fusion
-
摘要: 传统高位远程滑坡识别依赖地质专家人工判别,识别效率较低。研究实现一种基于深度学习的滑坡地形自动识别模型,以提高大范围区域潜在滑坡隐患点筛查工作的效率。该模型以目标区域的遥感图像、DEM数据、地质分区、河流水系等地质观测数据为输入,针对不同类型观测数据差异巨大的问题,设计构建特征分支网络,精确提取对应的滑坡特征。对光学影像数据采用深层网络架构提取复杂特征,对海拔、地质构成、河流和断裂带分布等结构化数据采用浅层网络架构提取特征。随后设计特征融合模块,融合两个网络的提取结果获得全面的滑坡灾害特征。模型基于提取的滑坡特征进行滑坡区域语义分割,实现精准的像素级别滑坡地形分类和定位。通过实验验证,该模型对滑坡区域的识别准确率(ACC)达到了0.85,可为滑坡自动识别提供技术支撑。Abstract: The traditional high-level remote landslide recognition efficiency which relies on the artificial discrimination of geological experts is low. In this paper, an automatic landslide terrain recognition model based on deep learning is developed to improve the efficiency of the screening of potential landslide hazard in a large area. The model takes remote sensing images, DEM data, geological zones, river system and other geological observation data of the target area as input. For the huge difference of different types of observation data, a feature branch network is designed and constructed to accurately extract the corresponding landslide features: Among them, deep network architecture is used to extract complex features from optical image data, and shallow network architecture is used to extract features from structured data such as altitude, geological composition, river and fault zone distribution. Subsequently, a feature fusion module was designed to fuse the extraction results of the two networks to obtain a comprehensive landslide hazard feature. The model performs semantic segmentation of the landslide area based on the extracted landslide features, and achieves accurate pixel-level landslide terrain classification and positioning. The experimental results show that the recognition accuracy(ACC) of the model reaches 0.85, which can provide technical support for automatic landslide identification.
-
0. 引言
我国是地质灾害频发的国家,地质灾害易发性评价是我国重要的防灾减灾工作之一。地质灾害易发性评价因子厘定及其分级的合理性是易发性评价的工作基础和精度保障。目前,常用的因子分级方法有自然断点法[1]、专家经验法[2]、等间距法[3]、频率比法[4]等。孙德亮等[5]、杨得虎等[6]、解明礼等[7]通过对比不同分级方法获得的地质灾害易发性评价结果证明了灾害因子分级对评价精度的影响。鉴于此,凌晓等[8] 、郭建华等[9]、陈绪钰等[10]、陈伟等[11]分别采用对称分级法、方差分析法、迭代自组织聚类法、K-means聚类算法对现有分级方法进行了改进,但如何根据地质灾害分布特征客观确定各评价因子分级数的研究较为缺少。
自适应膨胀因子模糊覆盖分级(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)算法是一种确定一维数据分级数的自适应膨胀因子的模糊覆盖分级方法,最早被应用于地图制图领域[12],其能够根据数据分布特征,动态生成分级数及分级区间,有效的解决分级数确定受主观影响的问题。孙娟娟[13]通过数据实例证明了AIFFC算法分级数的最优性及分级结果的精确性;姚宇婕等[14]基于AIFFC算法优化了引导型专题数据分级处理模式;张涵斐[15]将AIFFC算法应用于多尺度地理信息数据的分级处理,实现了多尺度地理信息分级显示的效果。
本文以湖南省湘乡市为研究区,分别采用自然断点法和AIFFC分级法对坡度、坡向、高程、年平均降雨量、归一化植被指数等评价因子进行分级赋值,并分别代入加权信息量模型及随机森林模型对研究区进行地质灾害易发性区划评价。从单因子ROC曲线分析、易发性区划结果ROC曲线分析及灾积比对比三个方面对区划评价结果进行精度对比与分析,从而获取最优分级方法。
1. 基础研究理论
1.1 AIFFC算法
AIFFC其核心思想是对一个覆盖
定义相应的膨胀因子 和覆盖中心m,对其进行扩张形成一个新的覆盖 [12, 16]。依次进行下去,直到所有的数据被某个 覆盖,则有 。AIFFC算法具体计算步骤如下:步骤一:输入历史地质灾害点评价因子数据集X,并将各评价因子Xi从小到大排列,取评价因子模糊覆盖半径λ,
,m=1。(1) 其中,
, ,dmax为di的最大值。各评价因子距离序列 降序排序后仍记各元素为di。λ1的取值分为以下3种情况:1) 若
,取c=n。(2) 2)若dmax远远大于di,从dmax处将评价因子数据分为两部分,若两部分数据分布均匀,λ1按1)中步骤分别运用算法分级。
3)否则,取
,c=1。(3) 步骤二:从第m个历史地质灾害点元素起定义模糊覆盖,设
为 内历史地质灾害点个数,k=1。(4) 步骤三:
,若 ,转步骤四;否则,重新定义评价因子 向外膨胀的中心及半径为:(5) 取
,(6) 其中,k为覆盖膨胀的次数,c为常数,代表膨胀的大小。再作
的覆盖:(7) 若
, , ,继续步骤三;否则,若 ,则令 、 ,转步骤二。步骤四:输出
及 , 为各评价因子的分级数, 为各评级因子的分级结果。1.2 自然断点法(natural breakpoint classification,NBC)
NBC法是由乔治·弗雷德里克·詹克斯提出的一种基于聚类思维的单变量分组方法[17]。其核心思想是通过迭代对比各分组及分组中元素的均值与观测值之间的平方差之和确定每个数据在分组中的最佳排列。在确定的分级数下,计算出数据分布中的中断点,给出最佳分类区间,使组间差异化最大,组内差异化最小,较好的保护数据的统计特性。NBC计算原理如下[18]:
(8) (9) 其中,SDAM为研究区数组平均值的偏差平方和;DNBi为研究区内数据值;DNB为平均数据值。迭代每个数据值范围组合,计算类别均值的平方偏差平方和SDCM_ALL,找到最小值,并计算方差拟合优度GVF。GVF值的范围在0~1,其值代表分类结果是否类内差异最小,类间差异最大,1表示拟合极好,0表示拟合极差。
(10) 1.3 加权信息量模型(weighted information value based on entropy weight method,MIV)
通过熵权法得到各评价因子的权重,再结合信息量法得到的各评价因子的信息量值,两者相乘得到评价因子的最终信息量[19 − 21]。MIV计算方法如下:
(11) 式中:I——n种评价因子组合下各地质灾害易发性栅格 单元的加权信息量值;
Ii——评价因子i的信息量值;
——通过熵权法计算的评价因子i的权重值;N——研究区内历史灾害点总个数;
Ni——各分级区间内历史灾害点个数;
S——研究区总面积/km2;
Si——各分级区间面积/km2。
1.4 随机森林模型(random forest,RF)
RF是由Breiman[22]首次提出的一种集成方法。随机森林模型的基本思想是将n个独立的决策树组合建立一个模型,森林中的n棵决策树具有相同的分布,且每棵决策树都由独立采样的随机向量值决定,运用模型中的决策树对输入的样本进行预测和判断,通过机器训练形成不同的分类模型
,从而建立随机森林模型[23]。计算公式如下:(12) 式中:
——随机森林模型; ——单个决策树模型;Z——输出变量;
I——显函数。
2. 研究区概况
湘乡市总面积1 967.4 km2,居湘中偏东,靠近北回归线,属亚热带季风湿润气候,年平均降雨量1 408.6 mm;境内主要由涟水、沩水和靳水组成,水系较为发育。主要出露地层为三叠系、石炭系、泥盆系和震旦系等;区域构造根据其力学性质、空间展布规律及组合关系分为东西向构造、北东向构造、弧形构造、北西向构造四类,境内以北东向构造为主。湘乡市在气象水文、地形地貌、地质构造、新构造运动与地震等自然条件和采矿、修路等人为活动的共同作用下,境内发生各类地质灾害共270处(图1),主要以滑坡灾害为主,对湘乡市的人类生命财产安全造成了重大威胁,有效的预测和治理地质灾害成为了相关部门有待解决的问题。
3. 评价因子选取与分级
以湘乡市地质灾害分布规律及孕灾环境分析[24 − 26]为基础,选取坡度、坡向、高程、年平均降雨量、归一化植被指数、道路、断层、地层岩性和土地利用作为地质灾害易发性评价因子(图2)。采用30 m×30 m的栅格单元作为评价研究和空间分析的基本单元,利用ArcGIS中栅格转点工具将栅格文件转化为点文件,然后用多值提取至点对所有评价因子图层进行值提取,得到每个栅格的评价因子数据。其中,坡度、坡向和高程因子通过ArcGIS对研究区的DEM数据进行空间分析得到;年平均降雨量通过统计研究区各站点的年平均降雨量数据,利用反距离权重工具获取;地层岩性评价因子通过研究区工程地质图得到;归一化植被指数是利用ENVI软件提取遥感影像,然后在ArcGIS中赋值分类得到;道路、断层因子通过ArcGIS中的多环缓冲区工具获取;土地利用评价因子根据研究区土地利用类型图提取分析得到。离散型评价因子地层岩性和土地利用根据其原有的类型等级划分如图2(h)、(i),其他7个连续型评价因子分别进行AIFFC分级划分及NBC分级划分。
3.1 AIFFC分级划分
根据湘乡市270个已发生地质灾害点的原始数据,统计各灾害点的坡度、坡向、高程、年平均降雨量、归一化植被指数、道路和断层7个连续型评价因子值。根据1.1节各步骤通过Java工具对AIFFC分级算法进行迭代编程,利用程序对各评价因子进行分级计算,各评价因子AIFFC分级参数、分级数和分级区间见表1。历史灾害点数据是离散型数据,评价因子的范围是连续性数据,通过历史灾害点数据分析,研究区内坡度高于70°,灾害点高程高于456.70 m,年平均降雨量大于1 554.89 mm,归一化植被指数高于0.417,以及灾害点距离道路和断层在3.48 km及4.63 km以外,未见地质灾害发生,设定为地质灾害不易发范围,统一为一级。对应评价因子分级数在原来分级数上增加一级,分级区间采用大于各评价因子最大值的方法表示,得到AIFFC最终分级结果见表2。
表 1 各评价因子AIFFC分级参数Table 1. AIFFC classification parameters for each evaluation factor评价因子 研究区范围 灾害点分布范围 di λ 分级数 分级区间({ρl}) 坡度/(°) [0,71.26] [2,70] 1.0~2.0 8 7 {1, 12, 125, 35, 14, 49, 34} 坡向/(°) [0,360] [0,360] 1.0~1.67 20 12 {10, 11, 19, 23, 38, 52, 25, 30, 25, 15, 9, 13} 高程/m [31.90,800.44] [113.12,456.70] 1.0~2.0 40.33 8 {112, 92, 34, 22, 5, 3, 1, 1} 年平均降雨量/mm [1202.78,1600.43] [1221.03,1554.89] 1.0~1.9 22.81 10 {1, 2, 14, 19, 59, 70, 60, 36, 8, 1} 归一化植被指数 [0,0.61] [0.015,0.417] 1.0~1.5 0.04 6 {7, 27, 48, 89, 85, 14} 距道路距离/m [0,>3483.20] [326.11,3483.20] 1.0~1.79 230.84 10 {102, 55, 33, 37, 16, 10, 10, 5, 1, 1} 距断层距离/m [0,>4634.35] [423.71,4634.35] 1.0~1.5 236.17 11 {75, 57, 43, 38, 10, 16, 10, 6, 5, 5, 5} 表 2 AIFFC分级结果Table 2. AIFFC classification results评价因子 分级数 分级结果 坡度/(°) 8 >0~2;>2~22;>22~35;>35~48;>48~55;>55~65;>65~70;>70 坡向/(°) 12 >0~30;>30~68;>68~90;>90~125;>125~162;>162~190;>190~225;>225~260;>260~280;
>280~310;>310~338;>338~360高程/m 9 >31.9~113.12;>113.12~165.57;>165.57~221.23;>221.23~278.54;>278.54~333.59;>333.59~367.50;
>367.50~408.51;>408.51~456.70;>456.70年平均降雨量/mm 11 >1 202.70~1 221.03;>1 221.03~1 283.85;>1 283.85~1 336.92;>1 336.92~1 368.54;>1 368.54~1 410.03;
>1 410.03~1 446.28;>1 446.28~1 484.91;>1 484.91~1 516.62;>1 516.62~1 536.87;>1 536.87~1 554.89;
>1 554.89归一化植被指数 7 >0~0.015;>0.015~0.180;>0.180~0.246;>0.246~0.316;>0.316~0.377;>0.377~0.417;>0.417 距道路距离/m 11 0~326.11;>326.11~664.23;>664.23~989.03;>989.03~1368.63;>1 368.63~1 688.75;>1 688.75~2 075.72;
>2 075.72~2 497.47;>2 497.47~2 831.94;>2 831.94~3 065.30;>3 065.30~3 483.20;>3 483.20距断层距离/m 12 0~423.71;>423.71~850.88;>850.88~1 272.26;1 272.27~1 694.48;1 694.49~2 150.42;2 150.43~2 485.00;
2 485.01~3 005.74;3 005.75~3 523.15;3 523.16~4 107.21;4 107.22~4 248.58;4 248.59~4 634.35;>4 634.353.2 NBC分级划分
为保证AIFFC分级法及NBC法分级数变量的统一,以AIFFC算法计算的分级数为基础,对7个连续型评价因子利用ArcGIS重分类工具中的自然断点分级法进行自然断点法分级,结果见表3。
表 3 NBC分级结果Table 3. Natural break point method grading results评价因子 分级数 分级结果 坡度/(°) 8 0~3.91;>3.91~9.50;>9.50~15.37;>15.37~20.95;>20.95~26.26;>26.26~31.85;>31.85~38.56;>38.56~71.26 坡向/(°) 12 0~24.48;>24.48~ 57.04;>57.04~88.18;>88.18~ 117.91;>117.91~147.64;>147.64~ 177.37;>177.37~ 208.52;>208.52~239.66;>239.66~269.39;>269.39~ 299.12;>299.12~ 328.85;>328.85~ 360.00 高程/m 9 31.90~79.93;>79.93~121.96;>121.96~166.99;>166.99~218.03;>218.03~275.07;>275.07~341.11;>341.11~425.17;>425.17~542.26;>542.26~800.44 年平均降雨量/mm 11 1 202.70~1 289.62;>1 289.62~1 333.91;>1 333.91~1 363.46;>1 363.46~1 386.40;>1 386.40~1 405.55;>1 405.55~
1 425.18;>1 425.18~1 444.75;>1 444.75~1 463.71;>1 463.71~1 488.88;>1 488.88~1 523.98;>1 523.98~1 600.42归一化植被指数 7 0~0.051;>0.051~0.152;>0.152~0.208;>0.208~0.259;>0.259~0.303;>0.303~0.347;>0.347~0.611 距道路距离/m 11 0~71.14;>71.14~167.93;>167.93~287.96;>287.96~398.67;>398.67~534.77;>534.77~757.79;>757.79~1 088.95;
>1 088.95~1 532.08;>1 532.08~2 160.22;>2 160.22~3 483.20;>3 483.20距断层距离/m 12 0~93.41;>93.41~195.93;>195.93~317.53;>317.53~464.40;>464.40~667.68;>667.68~850.88;>850.88~1 059.58;
>1 059.58~1 363.72;>1 363.72~1 914.46;>1 914.46~2 795.16;>2 795.16~4 634.35;>4 634.354. 易发性评价结果
将AIFFC和NBC法分级结果分别代入加权信息量模型及随机森林模型计算,得到基于AIFFC的加权信息量模型(AIFFC-MIV)、基于NBC法的加权信息量模型(NBC-MIV)、基于AIFFC的随机森林模型(AIFFC-RF)和基于自然断点法的随机森林模型(NBC-RF),对其评价结果进行低、中、高易发性区间划分,见图3。
由四个模型易发性分区图可知:各模型的分区结果存在一些差异,但是高易发区、中易发区及低易发区的趋势范围基本相同,分区结果符合湘乡市历史灾害点的分布特征。高易发区主要分布在西北及南部的构造侵蚀剥蚀花岗岩低山地区和构造侵蚀剥蚀变质岩-碎屑岩低山地区,岩石风化强烈,残坡积层发育,地形起伏较大;低易发区主要分布在中部的河流侵蚀堆积河谷平原地区和侵蚀剥蚀碎屑岩-碳酸盐岩丘陵地区,地形相对平坦,植被及构造相对不发育。且高易发区人口密度相对集中,城乡建设频繁,矿山开采及人类工程经济活动较强烈,表明人类活动对地质灾害的发生具有较大的影响。
5. 对比与分析
5.1 单因子分级结果精度对比
采用单因子ROC曲线法对每个因子的分级结果进行评价,根据各评价因子二级区间信息量值由高至低的面积比和对应的信息量值所处单元中的灾害点的百分比做单因子ROC曲线图,曲线下方面积(AUC值)越大,说明该分级结果更合理[27 − 29]。由AIFFC及NBC法的7个连续型因子分级结果ROC曲线图,见图4(a)、(b),及AUC值对比图,见图4(c),可知:AIFFC分级曲线AUC值介于0.546~0.911,NBC法分级AUC值介于0.541~0.895,均高于0.5具有较好的准确性。采用AIFFC法分级的各因子AUC值皆高于NBC法,提升精度介于1.8%~6.3%,说明AIFFC分级结果更趋合理。
5.2 易发性评价结果分析
通过对四种区划评价结果的灾积比对比分析(表4)可知,AIFFC-MIV模型与AIFFC-RF模型区划的高易发区灾积比分别为0.955与1.318,高于NBC-MIV模型与NBC-RF模型的0.611与0.755,并分别提升了56.3%和74.6%。AIFFC-MIV模型与AIFFC-RF模型区划的低易发区灾积比分别为0.026与0.013,低于NBC-MIV模型与NBC-RF模型的0.050与0.031,并分别降低了48.0%和58.1%。
表 4 易发性评价结果灾积比统计表Table 4. Statistical table of disaster accumulation ratio - product ratio for susceptibility evaluation results评价
模型易发性
分区面积
占比/%灾积比 评价
模型易发性
分区面积
占比/%灾积比 NBC-MIV 高易发 13.62 0.611 AIFFC-MIV 高易发 11.73 0.955 中易发 25.42 0.178 中易发 19.61 0.147 低易发 60.96 0.050 低易发 68.76 0.026 NBC-RF 高易发 15.03 0.755 AIFFC-RF 高易发 9.68 1.318 中易发 28.53 0.096 中易发 25.86 0.083 低易发 56.44 0.031 低易发 64.45 0.013 因此,无论采用MIV模型或RF模型,基于AIFFC算法的灾害因子分级方法均大幅提升了高易发区的灾积比并降低了低易发区的灾积比,评价结果更具合理性。
5.3 易发性评价精度对比
对易发性评价结果进行ROC曲线分析(图5)可知:各模型AUC值均超过0.5,评价结果预测精度满足要求[30]。其中,AIFFC-MIV模型与AIFFC-RF模型区划结果的AUC值分别为0.835与0.905,高于NBC-MIV模型与NBC-RF模型区划结果的0.776与0.880,并分别提升了7.6%和2.7%。
6. 结论
(1)通过单因子评价精度对比可知,各因子采用AIFFC算法分级比NBC法分级的AUC值均有提高,提升幅度介于1.8%~6.3%,AIFFC分级方法更具合理性。
(2)4种模型易发性区划评价结果中,基于AIFFC的评价结果相比基于NBC法的评价结果高易发区灾积比分别提升了56.3%、74.6%,低易发区灾积比分别降低了48%、58.1%,AUC值分别提高了0.059(7.6%)、0.025(2.7%),基于AIFFC的易发性评价精确性和预测能力更佳。
(3)AIFFC分级方法在地质灾害易发性评价运用中,不仅能根据地质灾害数据特征与分布规律合理确定各因子的分级数,其分级区间划分的精度也具有一定的准确性。为今后确定易发性评价因子的合理分级数及分级方法提供了参考。
-
表 1 二分类问题中预测结果与真实标签的组合关系
Table 1 The combination between predicted results and real labels in dichotomous problems
预测值 Positive Negative 真实值 Positive True Positive(TP) False Negative(FN) Negative False Positive(FP) True Negative(TN) 表 2 基于光学遥感图像的识别结果
Table 2 Recognition result based on optical remote sensing image
模型名称 评价指标 IOU ACC F1-Score U-Net 0.4365 0.5923 0.3428 PSPNet 0.4367 0.5769 0.398 DeepLab v3 0.5635 0.7154 0.5219 DeepLab v3+ 0.4263 0.6308 0.3685 基于 ResNet50-SA 的 DeepLab v3 (ours) 0.6582 0.7430 0.5844 表 3 基于多源数据融合的识别结果
Table 3 Recognition results based on multi-source data fusion
模型名称 评价指标 IOU ACC F1-Score 基于 ResNet50-SA 的 DeepLab v3 (ours) 0.6582 0.7430 0.5844 仅融合了地形数据的DeepLab-MFNet (ours) 0.714 0.809 0.673 采用数据融合思想的DeepLab-MFNet (ours) 0.755 0.850 0.742 -
[1] 解明礼, 巨能攀, 刘蕴琨, 等. 崩塌滑坡地质灾害风险排序方法研究[J]. 水文地质工程地质,2021,48(5):184 − 192. [XIE Mingli, JU Nengpan, LIU Yunkun, et al. A study of the risk ranking method of landslides and collapses[J]. Hydrogeology & Engineering Geology,2021,48(5):184 − 192. (in Chinese with English abstract) [2] 韩旭东, 付杰, 李严严, 等. 舟曲江顶崖滑坡的早期判识及风险评估研究[J]. 水文地质工程地质,2021,48(6):180 − 186. [HAN Xudong, FU Jie, LI Yanyan, et al. A study of the early identification and risk assessment of the Jiangdingya landslide in Zhouqu County[J]. Hydrogeology & Engineering Geology,2021,48(6):180 − 186. (in Chinese with English abstract) [3] 朱真, 江思义, 刘小明, 等. 基于广播RTK边缘计算的北斗高精度地质灾害监测系统及应用分析[J]. 水文地质工程地质,2021,48(5):176 − 183. [ZHU Zhen, JIANG Siyi, LIU Xiaoming, et al. The Beidou high precision geological disaster monitoring system based on RTK edge calculation and its application analysis[J]. Hydrogeology & Engineering Geology,2021,48(5):176 − 183. (in Chinese with English abstract) [4] 张倩荧, 王俊英, 雷冬冬. 基于深度学习目标检测算法的滑坡检测研究[J]. 信息通信,2019,193(1):15 − 18. [ZHANG Qianying, WANG Junying, LEI Dongdong. Research on landslide detection based on deep learning target detection algorithm[J]. Information and Communication,2019,193(1):15 − 18. (in Chinese) [5] 何思明, 白秀强, 欧阳朝军, 等. 四川省茂县叠溪镇新磨村特大滑坡应急科学调查[J]. 山地学报,2017,35(4):598 − 603. [HE Siming, BAI Xiuqiang, OUYANG Chaojun, et al. On the survey of giant landslide at Xinmo village of Diexi town, Maoxian Country, Sichuan Province, China[J]. Mountain Research,2017,35(4):598 − 603. (in Chinese with English abstract) [6] 刘超云, 尹小波, 张彬. 基于Kalman滤波数据融合技术的滑坡变形分析与预测[J]. 中国地质灾害与防治学报,2015,26(4):30 − 35. [LIU Chaoyun, YIN Xiaobo, ZHANG Bin. Analysis and prediction of landslide deformations based on data fusion technology of Kalman-filter[J]. The Chinese Journal of Geological Hazard and Control,2015,26(4):30 − 35. (in Chinese with English abstract) [7] 徐俊峰, 张保明, 郭海涛, 等. 一种多特征融合的面向对象多源遥感影像变化检测方法[J]. 测绘科学技术学报,2015,32(5):505 − 509. [XU Junfeng, ZHANG Baoming, GUO Haitao, et al. Object-oriented change detection for multi-source images using multi-feature fusion[J]. Journal of Geomatics Science and Technology,2015,32(5):505 − 509. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-6338.2015.05.014 [8] PRADHAN B, JEBUR M N, SHAFRI H Z M, et al. Data fusion technique using wavelet transform and taguchi methods for automatic landslide detection from airborne laser scanning data and QuickBird satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(3):1610 − 1622. DOI: 10.1109/TGRS.2015.2484325
[9] MA H R, CHENG X W, CHEN L J, et al. Automatic identification of shallow landslides based on Worldview2 remote sensing images[J]. Journal of Applied Remote Sensing,2016,10:01600801 − 1600812.
[10] CHEN X, LI J, ZHANG Y F, et al. Evidential fusion based technique for detecting landslide barrier lakes from cloud-covered remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(5):1742 − 1757. DOI: 10.1109/JSTARS.2017.2665529
[11] 邱丹丹. 基于多源数据融合的滑坡风险分析研究[D]. 武汉: 中国地质大学, 2017 QIU Dandan. Landslide risk analysis based on multi-source data fusion[D]. Wuhan: China University of Geosciences, 2017. (in Chinese with English abstract)
[12] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 2015: 234 − 241.
[13] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. June 27−30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770 − 778.
[14] YANG M K, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18−23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 3684 − 3692.
[15] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84 − 90. DOI: 10.1145/3065386
[16] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 6230-6239.
[17] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. 2017: arXiv: 1706.05587. https://arxiv.org/abs/1706.05587.
[18] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Computer Vision – ECCV 2018, 2018: 801-818.
-
期刊类型引用(3)
1. 王溢禧,赵俊彦,朱兴华,于美冬,陈彩虹. 贵德盆地席芨滩巨型滑坡前缘次级滑坡特征及其复活机理分析. 中国地质灾害与防治学报. 2024(06): 1-14 . 本站查看
2. 王文沛,殷跃平,王立朝,沈亚麒,石鹏卿,李瑞冬,何清,陈亮,殷保国. 排水抗滑桩技术研究现状及展望. 水文地质工程地质. 2023(02): 73-83 . 百度学术
3. 陈銮. 浅析滑坡勘查过程中滑动面的确定方法. 江西建材. 2023(06): 168-169+172 . 百度学术
其他类型引用(2)