ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

陕西安塞城区基岩崩塌主控构造因素分析

王虎, 郭怀军, 王益民, 薛强, 王凯, 查显锋, 王晓勇, 孙萍萍, 程秀娟

王虎,郭怀军,王益民,等. 陕西安塞城区基岩崩塌主控构造因素分析[J]. 中国地质灾害与防治学报,2022,33(3): 51-60. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-06
引用本文: 王虎,郭怀军,王益民,等. 陕西安塞城区基岩崩塌主控构造因素分析[J]. 中国地质灾害与防治学报,2022,33(3): 51-60. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-06
WANG Hu, GUO Huaijun, WANG Yimin, et al. Analysis on the main structural factors controlling rockfalls in downtown of Ansai, Shaanxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 51-60. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-06
Citation: WANG Hu, GUO Huaijun, WANG Yimin, et al. Analysis on the main structural factors controlling rockfalls in downtown of Ansai, Shaanxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 51-60. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-06

陕西安塞城区基岩崩塌主控构造因素分析

基金项目: 中国地质调查局地质调查项目(DD20189270;DD20211398)
详细信息
    作者简介:

    王 虎(1983-),男,甘肃张掖人,硕士,工程师,主要研究方向为岩石地层。E-mail:whu_xa2020@163.com

    通讯作者:

    郭怀军(1990-),男,陕西延安人,硕士,工程师,主要研究方向为新生代地质与环境。E-mail:guohj03@163.com

  • 中图分类号: P642.21

Analysis on the main structural factors controlling rockfalls in downtown of Ansai, Shaanxi Province

  • 摘要: 安塞区主城区范围内的基岩地层发育一以延河为枢纽线、走向约330°的背斜构造,在基岩地层中普遍发育走向与褶皱轴面平行(320°~340°)和垂直(40°~60°)两个方位的两组张性节理,还发育有两组与褶皱轴斜交的共轭剪切节理,第一组共轭剪切节理面走向为近南北(0°~10°)和近东西(80°~90°),第二组共轭剪切节理面走向为100°~120°和200°~210°。上述基岩中发育的、不同走向的多组节理面对研究区内具相同走向分布特征的崩塌结构控制面的发育有较强控制作用。第一组共轭剪节理中走向近东西(80°~90°)的节理面控制着研究区内发育程度最高的崩塌结构控制面,它与区内岩质崩塌的发育相关程度最高;其次是两组张性节理面分别控制着走向相同且发育程度较高的两组岩质崩塌结构控制面,第二组共轭剪节理面则控制着区内发育程度相对较低的、走向与共轭节理面相同的两组崩塌结构控制面。
    Abstract: An anticlinal structure with an axis plane along Yanhe river and a strike of about 330° is developed in the bedrock strata within the main urban area of AnSai County. In the bedrock strata, there are generally two groups of tensile joints parallel to the fold axis plane (320°-340°) and vertical (40°-60°), and two groups of conjugate shear joints diagonally intersecting the fold axis. The first group of conjugate shear joint planes struck direction near N-S (0°-10°) and near E-W (80°-90°), while the second group of conjugate shear joint planes strikes direction 100°-120° and 200°-210°. The multiple groups of joints with different strike directions developed in the bedrock have a strong control effect on the development of the collapse structure control plane with the same strike distribution in the study area. In the first group of conjugate shear joints, the near E-W (80°-90°) distributed joint planes control strongly the most developed collapse structure control planes in the study area, and it has the highest correlation with the development of rock collapse in the study area. Secondly, two groups of tensile joint planes control two groups of highly developed rock collapse structural control planes with the same strike, and the second group of conjugate shear joint planes controls two groups of relatively less developed rock collapse structural control planes with the same strike.
  • 黄土高原区约占国土面积的6%,但发生地质灾害的数量占全国的30%,灾害数量多、危害严重、机理复杂[1]。21世纪开始,随着城镇化率的逐步加速[2],黄土高原人口密集区的地质灾害多发频发[3-4],严重威胁着人民群众的生命财产安全和关乎国计民生的重大工程建设[5],国家在黄土高原地区系统性地部署并实施了不同尺度的地质灾害调查项目[6],获得了大量的研究成果[7, 8]。以往对黄土高原地质灾害的研究工作主要集中于灾害工程地质[9, 10],黄土成灾机理[11-13]、黄土结构及岩土力学[14-17]、地质灾害风险评价体系[18-19]和监测预警体系[20]等方面,研究对象主要为基岩上覆的新生代土质地层,有部分涉及到基岩[21-23, 10],但大都缺少对城镇区域基岩构造特征与崩塌地质灾害间相关性的深入的研究。延安地区基岩崩塌灾害和隐患大都分布在人口及工业活动密集的城镇区域,如公路铁路沿线、居民区及工业区周边等,对居民生命财产和高价值设施威胁严重:2004年8月,延川县张家河村至伏寺村的公路上巨石坠落致3人死亡;2011年7月,延安市宝塔区红化沟居民楼旁基岩边坡坍塌致楼房受损严重,居民财产遭受损坏;2013年2月,延安市南寨砭小区旁边山崖上巨石掉落砸坏多辆汽车;2017年7月,安塞区园子小区后侧陡崖石块坠落损坏民房和天然气管道;2019年7,安塞区地税局东南侧发生基岩崩塌,毁坏民房数间。因此,加强黄土区基岩崩塌成因机制的研究工作,对于保护居民的生命财产安全、支撑地方政府防灾减灾和城市规划建设是紧迫且必要的。

    目前基岩型崩塌相关研究大都是从岩土工程专业出发,运用岩土体结构构造分析、工程钻探及稳定性数值模拟等方法,着重对危岩体的成灾机制、稳定性和防治措施等开展研究工作[24-28],研究成果显示崩塌的形成与张性裂隙发育程度密切相关,而且其稳定程度及形变运动特征都可以运用数值模拟分析方法判定并提出针对性防治措施。上述研究工作大都是围绕单个危岩体开展的,未考虑区域尺度上崩塌灾害所处的构造位置及其与不同性质构造样式间的关系。通过2018年以来在延安市安塞区、富县、志丹县、吴起县等城镇区域开展1∶10000尺度的地质灾害调查和风险评价工作,显示近年来黄土高原地区人口逐步集中的城镇区绝大都座落于基岩普遍出露、水蚀切割较深的河谷区内,地质灾害和隐患点的成灾类型多半都为基岩型崩塌。以延安市安塞区地质灾害调查中实测的层理、节理产状和基岩崩塌结构控制面产状等数据为支撑,将区内与背斜构造相伴生的张、剪性节理产状与基岩崩塌结构控制面产状进行城镇区域尺度的对比研究,以期从地层构造角度切入,揭示安塞主城区基岩型崩塌(隐患)形成及发展的主控构造要素。

    延安市位于鄂尔多斯盆地中东部,沿河而建的安塞区主城区就座落于延安市偏北的延河河道中(图1 )。鄂尔多斯盆地是华北陆块岩石圈厚度最大的地区,自三叠纪末期以来一直保持着稳定沉积盆地特征,无明显构造作用改造,褶皱构造总体表现为轴向近南北的大型宽缓向斜,次级褶皱以短轴背斜、鼻状背斜等平缓拱形隆起为主,断裂构造不发育。

    图  1  安塞主城区地理位置及灾害地质图
    Figure  1.  Geographical location and disaster geological of Ansai urban

    将安塞主城区周边各斜坡单元中地质灾害发育的空间位置及影响范围与本地区的基础地质要素进行叠加分析成图,在此基础之上对承载地质灾害的年代地层和工程地质岩性组合特征开展初步的相关程度定性分析,结果见图1(b),与地质灾害发育相关性最高的地层单元为中侏罗统延安组枣园段。

    鄂尔多斯盆地块内枣园段地层整体岩性组合为不等厚的砂岩和泥岩组合[29]。安塞主城区范围内具体岩性组合特征为:北部发育枣园段下部层位,是灰白色砂岩、深灰色泥岩不等厚互层组合,夹页岩和粉砂岩;南部发育枣园段的上部层位,岩性以深灰色泥岩、粉砂质泥岩等细碎屑组合为主,夹灰白色中层状砂岩(图2)。

    图  2  安塞区内出露的砂—泥岩组合
    Figure  2.  Outcrop sand-mudstone assemblage in Ansai urban

    安塞城区北部近东西向展布的、揭示延河两岸基岩地层构造发育特征的地质剖面AA′见图1(b),实测结果表明:总体以延河流向为枢纽线发育一北西—南东走向的背斜构造,褶皱轴走向约为330°,延河西岸地层产状集中在200°~230°∠4°~6°,延河东岸地层产状集中在35°~73°∠6°~10°(图3)。

    图  3  安塞区主城区东西向地层结构剖面图
    Figure  3.  East-west strata structure section of Ansai urban

    将宽缓背斜构造抽象成“圆柱状褶皱”,则与此形态相对应的节理构造有两种形态:张性构造,平行于褶皱轴的纵节理,垂直于褶皱轴的横节理;剪性构造,以及与褶皱轴斜交的斜节理(图4[30-31]

    图  4  圆柱状褶皱中发育的节理、破裂,小型断层及缝合面构造[31]
    Figure  4.  Joints, fractures, small faults and sutures developed in cylindrical folds[31]

    安塞城区座落于背斜轴部,是区内张应力最为集中的部位,张性的纵节理和横节理发育,节理破裂面粗糙不平且宽度较大,单条节理连续性不强,常见多条节理以雁列式或侧列式排列,见图5(a)。在安塞区基岩地层中可见到能干性较强的砂岩中发育有两组节理面平整、近直交的剪性节理,将砂岩层切割成“锯齿”状,如图5(c)。能干性较弱的泥岩层则作为背斜构造中不同形变量砂岩层间的中和层,见图5(b)。其形变特征为横向伸展减薄,主要由上下砂岩层间的相对滑脱引起,所以张、剪性节理在泥岩层中基本不发育,见图5(d)。区内基岩所发育节理的具体特征见表1

    表  1  安塞主城区基岩中所发育节理的参数及特征
    Table  1.  Parameters and characteristics of joints developed in bedrock of ansai urban
    序号走向/(°)倾角/(°)性质发育程度
    1320~34074~89纵节理(张性节理)
    240~6075~90横节理(张性节理)较高
    30~1083~90第一组共轭剪切节理较高
    480~9077~85
    5100~12075~85第二组共轭剪切节理一般
    6200~21080~85
    下载: 导出CSV 
    | 显示表格
    图  5  安塞区基岩地层中所发育节理的特征
    Figure  5.  Characteristics of joints developed in bedrock strata of Ansai urban

    将安塞主城区周边基岩崩塌的产出状态和基岩中不同成因性质节理的产状特征对比,运用构造分析方法对安塞主城区范围内岩质崩塌控制面与基岩地层中多组透入性节理之间的关联性进行详细地对分析,以期揭示两者之间的关联规律。

    对安塞主城区范围内的崩塌地质灾害(隐患)点的调查结果表明基岩型崩塌数目(53处)占崩塌总数目(71处)的74.65%,都与延安组枣园段的互层状砂泥岩密切相关。

    以中侏罗统延安组枣园段互层状砂岩-泥岩组合的基岩和中晚更新统黄土地层界面为参照,对安塞区内发育的所有崩塌灾害(隐患)点的发育位置进行统计,结果显示有67%的崩塌灾害(隐患)点发育位置在基覆界面(基岩与上覆黄土界面)以下的基岩中(图6),与基岩地层类型、构造性质关系密切。

    图  6  安塞区主城区内岩质崩塌相对基覆界面位置图
    Figure  6.  Location of rock collapse relative to basement interface in the main urban area of Ansai urban

    研究区内基岩地层主要在延河主河道及其支沟的高陡边坡部位,近年来大量的基建工程活动和石料开采活动对岩质边坡开挖程度高,破坏了原本脆弱的应力平衡,再叠加降雨、冻融等自然侵蚀力的持续作用,高差大且坡度陡的边坡中裸露的砂岩、泥岩层大多都沿原生的节理面掉落,对斜坡下方的生命、财产、工程及建筑等造成损毁和威胁。

    安塞主城区范围内大多岩质崩塌地质灾害(隐患)露头上都可见到基岩地层中发育有多组节理面,尤其在相对坚硬的砂岩层露头处,常见锯齿状排列的节理面,所以位于高处且受差异风化而临空的厚层砂岩沿节理面附近坠落致灾。

    安塞区北部的阳庄崩塌点坡向330°、走向北东东,坡度80°、近直立。斜坡高处有巨厚层砂岩出露,其中发育有产状分别为280°∠86°和10°∠88°的一组共轭剪切节理面,将砂岩层切割成块,加之下方泥岩层抗风化能力较弱、剥蚀速率大,造成砂岩块下部临空,沿着受共轭剪切节理所控制的崩塌结构面掉落致灾(图7),近年来频繁发生巨大砂岩块体和泥岩碎屑掉落并阻塞河道。

    图  7  安塞区阳庄崩塌灾害点现场示意图及剖面图
    Figure  7.  Diagram and section of Yangzhuang collapse in Ansai urban

    安塞区南部贾家洼村崩塌点为人为开挖建房形成,开挖斜坡坡向260°,走向近南北,坡面上可见到两组近垂直的张性节理面,其产状分别为320°∠88°和250°∠80°(图8),其中走向为330°(250°∠80°)的张性节理严格地控制了此处崩塌结构面的发育。2017年6月因降雨导致斜坡面高处的巨型砂岩块体沿节理面向西倾倒,掉落后摧毁坡脚处居民房2间。

    图  8  贾家洼崩塌露头示意图及剖面图
    Figure  8.  Schematic diagram and section of Jiajiawa collapse outcrop

    利用“OpenStereo”极射赤平投影对安塞区基岩中的节理面产状数据开展研究[32-34],结果显示赤平投影圆面上的节理面极点在北西(310°~340°)、西南(230°~250°)和东南(140°~160°)等三个区间最为集中(颜色最深)、密度最大,它们反映了区内发育程最高的节理走向为NEE和NNW,再结合节理面极射赤平投影线的分布特征,它们分别对应走向320°~340°和40°~60°两个方向的节理,见图9(a)图9(b);其次,赤平面上的极点还在350°~10°、170°~190°和70°~90°、280°~300°四个方位区间较为集中,与节理面赤平投影线分布规律进行综合分析后结果也反映出它们分别对应走向在70°~90°和0°~20°等两个走向的两组发育程度次级的节理,见图9(c);除上述节理面较为集中区域外,还有数个极点密度相对最低的、节理发育程度低的方位区间:20°~40°、200°~220°和100°~120°、310°~320°,其对应的节理走向区间与节理面的赤平投影线走向区间一致,分别为20°~40°和100°~120°两个区间,见图9(d)

    图  9  基岩节理产状赤平投影及走向分布图
    Figure  9.  Stereographic projection and strike distribution of bedrock joint occurrence

    将节理面产状的玫瑰图与节理面赤平投影极点密度图叠加分析,结果显示节理走向的空间分布特征与上述的极射赤平投影分析结果相同,也更加明显。走向320°~340°和40°~60°两组节理是区内最发育的节理,它们分别与安塞区内基岩褶皱轴走向平行和垂直两个方向的张性节理相对应,前者与延河走向基本一致,为纵节理,后者则与之垂直,为横节理,见图10(a)

    图  10  基岩节理赤平投影极点密度与玫瑰花分析图
    Figure  10.  Stereographic projection pole density diagram and rose analysis diagram of bedrock joints

    叠加分析结果揭示安塞区基岩中发育有两组次级的大角度斜交节理与区内的张性节理斜交,为共轭剪切节理,见图10(b)图10(c),第一组共轭剪节理走向分别为0°~10°和80°~90°,如图10(b),第二组共轭剪节理走向分别为100°~120°和200°~210°,如图10(c)

    将安塞区城区及周边的岩质崩塌结构控制面的走向及主崩方向也运用极射赤平投影软件“Open Stereo”进行分析,结果显示岩质崩塌结控制面空间走向也呈现有规律地集中,如图11(a)。极点密度最大的方位区间为:340°~360°和160°~180°,对应走向为NEE(70°~90°)的一组崩塌控制面,其发育程度最高,见图11(c);其次为30°~50°、210°~230°和310°~330°、130°~150°,分别对应发育程度相对中等、走向为NW和NE两个方向的崩塌控制面,见图11(b);极点密度最小的区间为180°~200°和100°~120°,见图11(d),它们分别对应走向为NNE和SEE的两组塌控制面,其发育程度最弱。

    图  11  崩塌结构控制面极射赤平投影分析结果
    Figure  11.  Analysis results of stereographic projection on control surfaces of collapsed structures

    将玫瑰图解和赤平面极点密度图叠加分析后,结果显示区内岩质崩塌结构控制面走向的空间分布也具有明显的规律性,与岩质崩塌控制面极射赤平投影分析结果一致(图12)。

    图  12  崩塌控制结构面赤平投影及走向统计分析图
    Figure  12.  Stereographic projection and strike analysis diagram of collapse control structural plane

    将岩质崩塌控制面产状与不同性质基岩节理面产状的发育、组合特征进行综合对比,结果显示崩塌结构控制面产状也具相同组合特征:(1)可与基岩张性节理对比两组崩塌控制面,走向在230°~250°(或40°~60°)和120°~140°(或310°~330°)两个方位区间,此两组控制面发育程度较高;(2)可与基岩中第一组共轭剪节理对比的两组崩塌控制面,走向为250°~270°(或70°~90°)和0°~10°,其中走向近EW的崩塌控制面最为发育,而走向近SN的控制面则几乎不发育;(3)可与基岩中第二组共轭剪节理对比的两组崩塌控制面,走向在280°~300°(或100°~120°)和190°~210°(或10°~30°),此两组控制面发育程度一般。

    崩塌结构控制面的发育与基岩中发育的不同性质的节理关系密切。虽然基岩节理的发育程度和崩塌结构控制面的发育程度不尽一致,但崩塌结构控制面的发育整体上受基岩节理面的控制:基岩第一组共轭剪节理中的近EW走向剪切节理面控制着安塞区主城区内发育程度最高的一组岩质崩塌控制面,见图12(b);其次是发育程度较高的NE和NW走向的两组崩塌控制面,见图12(a),分别受相同走向基岩中张性节理的控制;此外,基岩中的第二组共轭剪切节理也对相同走向的崩塌控制面有明显的控制,见图12(c)

    安塞区主城区范围内的基岩地层构造是近似以延河河道为枢纽线、NNW—SSE走向(320°~340°)的直立型褶皱。在基岩地层的坚硬岩性层中普遍发育有两种性质的节理:一是走向与褶皱轴面延伸方向平行和垂直两个方向的两组张性节理,二是与张性节理面斜交的两组共轭剪切节理。

    两组张性节理面走向分别为40°~60°和320°~340°,它们在安塞主城区范围内发育程度最高;第一组共轭剪切节理面走向为近南北(0°~10°)和近东西(80°~90°),它们的发育程度较高;第二组共轭剪切节理面走向为100°~120°和200°~210°,它们的发育程度一般。节理构造与安塞主城区内基岩型崩塌的发育密切相关。

    安塞区主城区内基岩型崩塌结构控制面的走向分布规律完全可以和基岩地层中的节理面组合的走向相对应,不同走向崩塌控制面的发育程度从高到低排序依次有:走向近EW(250°~270°)的崩塌控制面、走向在230°~250°和120°~140°两个方位的崩塌控制面、走向在280°~300°和190°~210°两个方位的崩塌控制面,它们分别与基岩地层中的第一组共轭剪切节理、两组张性节理、第二组共轭剪切节理的走向分布特征一一对应。

    安塞区主城区范围内基岩地层中所发育的与褶皱构造相关的张、剪性节理面对基岩型崩塌结构控制面的发育有着较强的控制作用。

  • 图  1   安塞主城区地理位置及灾害地质图

    Figure  1.   Geographical location and disaster geological of Ansai urban

    图  2   安塞区内出露的砂—泥岩组合

    Figure  2.   Outcrop sand-mudstone assemblage in Ansai urban

    图  3   安塞区主城区东西向地层结构剖面图

    Figure  3.   East-west strata structure section of Ansai urban

    图  4   圆柱状褶皱中发育的节理、破裂,小型断层及缝合面构造[31]

    Figure  4.   Joints, fractures, small faults and sutures developed in cylindrical folds[31]

    图  5   安塞区基岩地层中所发育节理的特征

    Figure  5.   Characteristics of joints developed in bedrock strata of Ansai urban

    图  6   安塞区主城区内岩质崩塌相对基覆界面位置图

    Figure  6.   Location of rock collapse relative to basement interface in the main urban area of Ansai urban

    图  7   安塞区阳庄崩塌灾害点现场示意图及剖面图

    Figure  7.   Diagram and section of Yangzhuang collapse in Ansai urban

    图  8   贾家洼崩塌露头示意图及剖面图

    Figure  8.   Schematic diagram and section of Jiajiawa collapse outcrop

    图  9   基岩节理产状赤平投影及走向分布图

    Figure  9.   Stereographic projection and strike distribution of bedrock joint occurrence

    图  10   基岩节理赤平投影极点密度与玫瑰花分析图

    Figure  10.   Stereographic projection pole density diagram and rose analysis diagram of bedrock joints

    图  11   崩塌结构控制面极射赤平投影分析结果

    Figure  11.   Analysis results of stereographic projection on control surfaces of collapsed structures

    图  12   崩塌控制结构面赤平投影及走向统计分析图

    Figure  12.   Stereographic projection and strike analysis diagram of collapse control structural plane

    表  1   安塞主城区基岩中所发育节理的参数及特征

    Table  1   Parameters and characteristics of joints developed in bedrock of ansai urban

    序号走向/(°)倾角/(°)性质发育程度
    1320~34074~89纵节理(张性节理)
    240~6075~90横节理(张性节理)较高
    30~1083~90第一组共轭剪切节理较高
    480~9077~85
    5100~12075~85第二组共轭剪切节理一般
    6200~21080~85
    下载: 导出CSV
  • [1] 孙萍萍, 张茂省, 程秀娟, 等. 黄土高原地质灾害发生规律[J]. 山地学报,2019,37(5):737 − 746. [SUN Pingping, ZHANG Maosheng, CHENG Xiujuan, et al. On the regularity of geological hazards on the loess plateau in China[J]. Mountain Research,2019,37(5):737 − 746. (in Chinese with English abstract)

    SUN Pingping, ZHANG Maosheng, CHENG Xiujuan, et al. On the regularity of geological hazards on the loess plateau in China[J]. Mountain Research, 2019, 37(5): 737-746. (in Chinese with English abstract)

    [2] 简新华, 黄锟. 中国城镇化水平和速度的实证分析与前景预测[J]. 经济研究,2010,45(3):28 − 39. [JIAN Xinhua, HUANG Kun. Empirical analysis and forecast of the level and speed of urbanization in China[J]. Economic Research Journal,2010,45(3):28 − 39. (in Chinese with English abstract)

    JIAN Xinhua, HUANG Kun. Empirical analysis and forecast of the level and speed of urbanization in China[J]. Economic Research Journal, 2010, 45(3): 28-39. (in Chinese with English abstract)

    [3] 雷祥义. 黄土高原地质灾害与人类活动[M]. 北京: 地质出版社, 2001

    LEI Xiangyi. Geological disasters and human activities on the Loess Plateau of China[M]. Beijing: Geological Publishing House, 2001. (in Chinese)

    [4] 唐亚明. 从全球视角看城镇化进程中的土地利用模式[J]. 中国土地,2016(1):47 − 48. [TANG Yaming. Land use patterns in the process of urbanization from a global perspective[J]. China Land,2016(1):47 − 48. (in Chinese)

    TANG Yaming. Land use patterns in the process of urbanization from a global perspective[J]. China Land, 2016 (1): 47-48. (in Chinese)

    [5] 彭建兵, 林鸿州, 王启耀, 等. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报,2014,22(4):684 − 691. [PENG Jianbing, LIN Hongzhou, WANG Qiyao, et al. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology,2014,22(4):684 − 691. (in Chinese with English abstract)

    PENG Jianbing, LIN Hongzhou, WANG Qiyao, et al. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 2014, 22(4): 684-691. (in Chinese with English abstract)

    [6] 张茂省, 李林, 唐亚明, 等. 基于风险理念的黄土滑坡调查与编图研究[J]. 工程地质学报,2011,19(1):43 − 51. [ZHANG Maosheng, LI Lin, TANG Yaming, et al. Risk management based landslide investigation and mapping in loess area[J]. Journal of Engineering Geology,2011,19(1):43 − 51. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2011.01.007

    ZHANG Maosheng, LI Lin, TANG Yaming, et al. Risk management based landslide investigation and mapping in loess area[J]. Journal of Engineering Geology, 2011, 19(1): 43-51. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2011.01.007

    [7] 唐亚明, 薛强, 毕俊擘, 等. 降雨入渗诱发黄土滑塌的模式及临界值初探[J]. 地质论评,2013,59(1):97 − 106. [TANG Yaming, XUE Qiang, BI Junbo, et al. Preliminary study on loess landslide rainfall triggering modes and thresholds[J]. Geological Review,2013,59(1):97 − 106. (in Chinese with English abstract) DOI: 10.3969/j.issn.0371-5736.2013.01.010

    TANG Yaming, XUE Qiang, BI Junbo, et al. Preliminary study on loess landslide rainfall triggering modes and thresholds[J]. Geological Review, 2013, 59(1): 97-106. (in Chinese with English abstract) DOI: 10.3969/j.issn.0371-5736.2013.01.010

    [8] 薛强, 张茂省, 高波. 斜坡单元支持下基于土体含水率的陕西省清涧县城区黄土滑坡危险性评价[J]. 中国地质,2020,47(6):1904 − 1914. [XUE Qiang, ZHANG Maosheng, GAO Bo. Hazard assessment of loess landslide based on soil moisture content and supported by slope unit in Qingjian City, Shaanxi Province[J]. Geology in China,2020,47(6):1904 − 1914. (in Chinese with English abstract) DOI: 10.12029/gc20200624

    XUE Qiang, ZHANG Maosheng, GAO Bo. Hazard assessment of loess landslide based on soil moisture content and supported by slope unit in Qingjian City, Shaanxi Province[J]. Geology in China, 2020, 47(6): 1904-1914. (in Chinese with English abstract) DOI: 10.12029/gc20200624

    [9] 王家鼎, 张倬元. 典型高速黄土滑坡群的系统工程地质研究[M]. 成都: 四川科学技术出版社, 1999: 1 − 183.

    WANG Jiading, ZHANG Zhuoyuan. The Study on stypical high-speed loess landslide in crowds using the ystematic analysis in engineering geology[M]. Chengdu: Sichuan Science and Technology Press, 1999: 1 − 183. (in Chinese)

    [10] 段旭, 祝俊华, 董琪, 等. 延安地区人类工程活动与地质灾害相关性探讨[J]. 灾害学,2017,32(1):106 − 110. [DUAN Xu, ZHU Junhua, DONG Qi, et al. Discussion of the correlation between human engineering activities and geological disasters in Yan’an area[J]. Journal of Catastrophology,2017,32(1):106 − 110. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2017.01.018

    DUAN Xu, ZHU Junhua, DONG Qi, et al. Discussion of the correlation between human engineering activities and geological disasters in Yan’an area[J]. Journal of Catastrophology, 2017, 32(1): 106-110. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2017.01.018

    [11]

    ZHANG M, LIU Jie. Controlling factors of loess landslides in Western China[J]. Environmental Earth Sciences,2010,59(8):1671 − 1680. DOI: 10.1007/s12665-009-0149-7

    [12] 白玉锋. 黄土试样开裂机理试验研究[D]. 西安: 长安大学, 2014

    BAI Yufeng. Experiment study on the cracking mechanism about loess ground under the environment of the cave[D]. Xi’an: Changan University, 2014. (in Chinese with English abstract)

    [13] 王兰民, 刘红玫, 李兰, 等. 饱和黄土液化机理与特性的试验研究[J]. 岩土工程学报,2000,22(1):89 − 94. [WANG Lanmin, LIU Hongmei, LI Lan, et al. Laboratory study on the mechanism and beheviors of saturated loess liquefaction[J]. Chinese Journal of Geotechnical Engineering,2000,22(1):89 − 94. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2000.01.016

    WANG Lanmin, LIU Hongmei, LI Lan, et al. Laboratory study on the mechanism and beheviors of saturated loess liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 89-94. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2000.01.016

    [14] 邵生俊, 周飞飞, 龙吉勇. 原状黄土结构性及其定量化参数研究[J]. 岩土工程学报,2004,26(4):531 − 536. [SHAO Shengjun, ZHOU Feifei, LONG Jiyong. Structural properties of loess and its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering,2004,26(4):531 − 536. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2004.04.021

    SHAO Shengjun, ZHOU Feifei, LONG Jiyong. Structural properties of loess and its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 531-536. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2004.04.021

    [15]

    FENG L, ZHANG M S, JIN Z, et al. The genesis, development, and evolution of original vertical joints in loess[J]. Earth-Science Reviews,2021,214:1 − 26.

    [16] 卢全中, 彭建兵. 黄土体结构面的发育特征及其灾害效应[J]. 西安科技大学学报,2006,26(4):446 − 450. [LU Quanzhong, PENG Jianbing. Characteristics of structural planes of loess mass in loess plateau of China and its hazard effect[J]. Journal of Xi’an University of Science and Technology,2006,26(4):446 − 450. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-9315.2006.04.003

    LU Quanzhong, PENG Jianbing. Characteristics of structural planes of loess mass in loess plateau of China and its hazard effect[J]. Journal of Xi’an University of Science and Technology, 2006, 26(4): 446-450. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-9315.2006.04.003

    [17] 谢定义. 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报,2001,23(1):3 − 13. [XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering,2001,23(1):3 − 13. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2001.01.002

    XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 3-13. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2001.01.002

    [18] 张茂省, 薛强, 贾俊, 等. 山区城镇地质灾害调查与风险评价方法及实践[J]. 西北地质,2019,52(2):125 − 135. [ZHANG Maosheng, XUE Qiang, JIA Jun, et al. Methods and practices for the investigation and risk assessment of geo-hazards in mountainous towns[J]. Northwestern Geology,2019,52(2):125 − 135. (in Chinese with English abstract)

    ZHANG Maosheng, XUE Qiang, JIA Jun, et al. Methods and practices for the investigation and risk assessment of geo-hazards in mountainous towns[J]. Northwestern Geology, 2019, 52(2): 125-135. (in Chinese with English abstract)

    [19]

    TANG Y M, SHU H P, XUE Q, et al. Field monitoring-based and theoretical analysis of baota mountain landslide stability[J]. Advances in Civil Engineering,2021,2021:6699917.

    [20] 唐亚明, 冯卫, 毕银强, 等. 基于风险评价的黄土滑坡分类及特征[J]. 地质通报,2015,34(11):2092 − 2099. [TANG Yaming, FENG Wei, BI Yinqiang, et al. The classification and features of loess landslide based on risk assessment[J]. Geological Bulletin of China,2015,34(11):2092 − 2099. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2015.11.015

    TANG Yaming, FENG Wei, BI Yinqiang, et al. The classification and features of loess landslide based on risk assessment[J]. Geological Bulletin of China, 2015, 34(11): 2092-2099. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2015.11.015

    [21] 段钊, 赵法锁, 陈新建. 陕北黄土高原区滑坡发育类型与时空分布特征:以吴起县为例[J]. 灾害学,2011,26(4):52 − 56. [DUAN Zhao, ZHAO Fasuo, CHEN Xinjian. Types and spatio-temporal distribution of loess landslides in loess plateau region—A case study in Wuqi County[J]. Journal of Catastrophology,2011,26(4):52 − 56. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2011.04.010

    DUAN Zhao, ZHAO Fasuo, CHEN Xinjian. Types and spatio-temporal distribution of loess landslides in loess plateau region—A case study in Wuqi County[J]. Journal of Catastrophology, 2011, 26(4): 52-56. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2011.04.010

    [22] 宋宪琳. 延安市坡体结构类型与地质灾害关系分析[D]. 西安: 长安大学, 2012

    SONG Xianlin. Study on the relationship between the slope structure types and geological disasters in Yan’an City[D]. Xi’an: Changan University, 2012. (in Chinese with English abstract)

    [23] 蔡怀恩, 张继文, 秦广平, 等. 延安黄土丘陵沟壑区地质灾害易发性浅析[J]. 地震工程学报, 2015, 37(增刊1): 68 − 73

    CAI Huaien, ZHANG Jiwen, QIN Guangping, et al. Preliminary research on geological disaster susceptibility in loess hilly gully regions of Yan’an[J]. China Earthquake Engineering Journal, 2015, 37(Sup 1): 68 − 73. (in Chinese with English abstract)

    [24] 袁志辉, 倪万魁, 陈志新. 拉裂式崩塌的运动特征分析:以陕西延长县为例[J]. 灾害学,2014,29(4):111 − 115. [YUAN Zhihui, NI Wankui, CHEN Zhixin. Analysis on movement characteristics of pull-splitting collapses: Taking Yanchang County of Shaanxi Province as an example[J]. Journal of Catastrophology,2014,29(4):111 − 115. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2014.04.22

    YUAN Zhihui, NI Wankui, CHEN Zhixin. Analysis on movement characteristics of pull-splitting collapses: Taking Yanchang County of Shaanxi Province as an example[J]. Journal of Catastrophology, 2014, 29(4): 111-115. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2014.04.22

    [25] 梁峰, 李保, 李剑锋, 等. 重庆市江津区四面山镇头道河危岩带形成演化机制分析[J]. 中国地质灾害与防治学报,2009,20(1):55 − 59. [LIANG Feng, LI Bao, LI Jianfeng, et al. Analysis on formation and development mechanism of Simianshan Toudaohe dangerous rock belt in Jiangjin County of Chongqing[J]. The Chinese Journal of Geological Hazard and Control,2009,20(1):55 − 59. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2009.01.011

    LIANG Feng, LI Bao, LI Jianfeng, et al. Analysis on formation and development mechanism of Simianshan Toudaohe dangerous rock belt in Jiangjin County of Chongqing[J]. The Chinese Journal of Geological Hazard and Control, 2009, 20(1): 55-59. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2009.01.011

    [26] 陈涛. 重庆武隆庆口危岩形成机制及失稳模式探讨[J]. 中国地质灾害与防治学报,2020,31(3):50 − 57. [CHEN Tao. Discussion on formation mechanism and instability mode of Qingkou dangerous rock in Wulong District, Chongqing City[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):50 − 57. (in Chinese with English abstract)

    CHEN Tao. Discussion on formation mechanism and instability mode of Qingkou dangerous rock in Wulong District, Chongqing City[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 50-57. (in Chinese with English abstract)

    [27] 陈智强, 李渝生. 重庆市南川甑子岩危岩形成演化机制分析及防治措施探讨[J]. 中国地质灾害与防治学报,2004,15(1):78 − 81. [CHEN Zhiqiang, LI Yusheng. Analysis on formation and development mechanism and discussion on prevention measures for Zenziyan dangerous rock mass in Chongqing[J]. The Chinese Journal of Geological Hazard and Control,2004,15(1):78 − 81. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2004.01.017

    CHEN Zhiqiang, LI Yusheng. Analysis on formation and development mechanism and discussion on prevention measures for Zenziyan dangerous rock mass in Chongqing[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(1): 78-81. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2004.01.017

    [28] 吉随旺, 张倬元, 王凌云, 等. 近水平软硬互层斜坡变形破坏机制[J]. 中国地质灾害与防治学报,2000,11(3):49 − 52. [JI Suiwang, ZHANG Zhuoyuan, WANG Lingyun, et al. The mechanism of deformation and failure for the slope composed of nearly horizontal competent and incompetent intercalated rock mass strata[J]. The Chinese Journal of Geological Hazard and Control,2000,11(3):49 − 52. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2000.03.012

    JI Suiwang, ZHANG Zhuoyuan, WANG Lingyun, et al. The mechanism of deformation and failure for the slope composed of nearly horizontal competent and incompetent intercalated rock mass strata[J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(3): 49-52. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2000.03.012

    [29] 陕西省地质调查院. 中国区域地质志·陕西志[M]. 北京: 地质出版社, 2017: 1 − 1120

    Shaanxi Geological Survey Institute. Regional geology of China · Shaanxi[M]. Beijing: Geological Publishing House, 2017: 1 − 1120. (in Chinese)

    [30]

    HANCOCK P L. Brittle microtectonics: principles and practice[J]. Journal of Structural Geology,1985,7(3/4):437 − 457.

    [31] 李建星, 高晓峰. 野外地质工作手册[M]. 武汉: 中国地质大学出版社, 2021: 1 − 559

    LI Jianxing, GAO Xiaofeng. Field geology work manual[M]. Wuhan: China University of Geosciences Press, 2021: 1 − 559. (in Chinese)

    [32] 理查德 J. 莱尔, 彼得 R. 莱森. 地质构造研究之极射赤平投影技术: 地质工作者和土木工程师必备工具手册[M]. 张大昌, 译. 北京: 海洋出版社, 2010

    RICHARD J. Lyell, PETER R. Riesen. Stereographic proiection techniques for geologists and givil engineers[M]. ZHANG Dachang, trans. Beijing: Ocean Press, 2010. (in Chinese)

    [33] 王仁铎, 郑伯让, 刘甸瑞. 从施密特网极射赤平投影散点图中确定优选方位的一种新的统计方法[J]. 地球科学,1989,14(6):619 − 626. [WANG Renduo, ZHENG Borang, LIU Dianrui. A new statistical method in determining thepre ferred orientation from scatter diagramof schmidt’s stereographic projection[J]. Earth Science,1989,14(6):619 − 626. (in Chinese with English abstract)

    WANG Renduo, ZHENG Borang, LIU Dianrui. A new statistical method in determining thepre ferred orientation from scatter diagramof schmidt’s stereographic projection[J]. Earth Science, 1989, 14(6): 619-626. (in Chinese with English abstract)

    [34]

    CARLOS G, GINALDO A C C, ADILSON V S J. OpenStereo: um programa Livre e multiplataforma para análise de dados estruturais figshare[J]. Journal contribution,2014:26 − 28.

  • 期刊类型引用(5)

    1. 王惠聪,周爱红,袁颖. 基于信息量法—层次分析法的北京市延庆区崩塌灾害危险性评价. 河北地质大学学报. 2024(02): 47-55+60 . 百度学术
    2. 刘凯,王新刚,张培栋,曹宏远,薛晨,辜超颖. 陕北黄土高原典型地质灾害发育特征及成灾模式研究——以榆林市榆阳区为例. 自然灾害学报. 2024(02): 98-112 . 百度学术
    3. 李岩,张国华,王晟宇. 北京地区崩塌隐患特征分析与防治方案. 城市地质. 2023(02): 123-129 . 百度学术
    4. 周迎,易武,刘朝,敖亮,贲琰棋. 湖北地区不同岩性崩塌破坏过程及防护措施分析. 河南科技. 2023(12): 101-105 . 百度学术
    5. 刘新宇,张艳阳,张紫昭,史光明,王双成,赖润森,陈德斌. 新疆温宿县卡坡土质崩塌群形成机理与失稳模式研究. 工程地质学报. 2023(04): 1167-1185 . 百度学术

    其他类型引用(0)

图(12)  /  表(1)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  292
  • PDF下载量:  424
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-05-11
  • 录用日期:  2022-05-12
  • 网络出版日期:  2022-05-24
  • 刊出日期:  2022-06-29

目录

/

返回文章
返回