Investigation of water induced damages triggered by rainfall in east Gansu and the implications
-
摘要: 黄土地区降雨导致的水毁灾害常有发生,造成严重的工程灾害和人员伤亡。对已有水毁灾害的调查和成因分析,可为防治区灾害提供经验。2021年8月中旬至10月初,在陇东陕甘边界黄土地区持续了50多天降雨,引发了大量水毁灾害,导致G211国道中断两周。文中介绍了这次降雨在G211沿线及其附近的村镇引起水毁灾害的现场调查情况,发生在村镇的水毁灾害有黄土窑洞塌陷、土质房屋和夯土围墙倒塌;发生在道路上的水毁灾害有路基外缘沉陷开裂,路基内侧边坡崩塌、斜坡浅层滑移及滑坡泥流等地质灾害。这些灾害规模小、影响范围不大;但数量多、致灾性较为普遍。文章还调查了植被对黄土斜坡稳定性的有利和不利影响。针对水毁灾害,分析其原因并提出了村镇和道路建设中针对此类水毁灾害的预防措施。Abstract: Flood-induced disaster caused by rainfall in loess area often occurs, causing serious engineering disasters and casualties. The investigation and cause analysis of existing flood-induced disaster can provide experience for disaster prevention and control areas. From mid-August to early October, 2021, more than 50 days of rainfall triggered a large number of Flood-induced disaster in the loess area of east Gansu Province. The damages made G211 national highway close for two weeks. This paper introduces the on-the-spot investigation of the flood disaster caused by this rainfall in villages and towns along route 211 and its vicinity, it happened in the villages and towns are mainly the collapse of loess living caves, collapse of earth-houses and fall of earth-walls. Geo-disasters on the road are subsidence and cracking of the soil filling subgrade, collapse of the cutting slope at inner side of the road, shallow flow-slide of the main slope. These disasters are small in scale and weak in influence, but it is large in number and serious in disastrous. We also investigated the positive and passive effects of vegetation on the loess slope. Based on investigation of the flood-induced disaster, this paper analyzes its causes, and puts forward some preventive measures in the construction of villages, towns and roads.
-
0. 引言
强降雨多发生在每年7—8月,降雨因素为该时间段地质灾害发生的主要影响因素。据历史数据统计,中国约60%的突发地质灾害的发生与降雨强度及累计降雨量密切相关,突发地质灾害集中发生在每年暴雨多发的汛期[1]。
降雨型滑坡预测预报研究一直以来受到国内外学者的关注,研究方向可分为滑坡破坏机理分析和预警预报研究两方面。降雨型滑坡预警预报研究方法包括试验分析法、数值模拟法和数学统计法。黄润秋等[2]通过室内模型试验揭示了降雨型滑坡随着降雨量的增大,滑坡岩土体孔隙水压力逐渐升高,最终形成滑坡,揭示了降雨型滑坡存在降雨阈值的根本原因。Guzzetti等[3]、Sharir等[4]认为降雨型滑坡的发生通常与临界降雨量有关,若超过此雨量界限,可能会发生滑坡。
根据分析对象不同,数学统计法又分为滑坡位移与降雨相关性分析法[5]、滑坡结构与降雨相关性分析法[6]、经验统计模型法[7]。甘肃省地质构造复杂,崩塌、滑坡、泥石流等地质灾害非常发育。按年度统计,降雨引发的地质灾害占比约60%以上,最高可达99%(图1)。甘肃省以区域降雨统计模型、滑坡24 h趋势预警模型、泥石流预警模型均属于以数学统计为主的第一代预警模型,在地质灾害气象风险预警中发挥了重要作用[8 − 10]。
目前,甘肃省的地质灾害气象风险预警模型研究仍处于第一代隐式统计模型向第二代显示统计模型的过渡阶段[11],预警模型研究及应用相对滞后,精度有待提高。近年来,甘肃省地质灾害气象风险预警模型研究主要集中在地质灾害高发、频发的白龙江流域,且以泥石流灾害预警模型研究为主。比如王高峰等[12]选取泥石流危险性评价因子:泥石流沟的规模、主沟纵比降、沟谷发育密度、物源区沟道纵比降,通过综合分析研究,得出了自然沟谷发生泥石流灾害的定量评价模型,为中小型泥石流预警预报提供思路,而针对斜坡类灾害的预警模型研究相对较少。
本文以白龙江流域降雨型滑坡为研究对象,针对不同岩性特征的滑坡,建立了不同概率等级下的滑坡发生时事件降雨量(event rainfall)与降雨历时(duration of rainfall)之间的关系模型,以下简称ED模型,为不同岩性类型的斜坡在降雨作用下发生滑坡的阈值研究提供新思路。
1. 白龙江流域灾害概况
1.1 地质灾害发育特征
白龙江流域甘肃段包含5个县(区),位于长江上游,区内植被发育,受新生代印度—亚洲板块挤压作用影响,断裂构造变形明显[13]。区内山大沟深,地形地貌复杂、岩土体类型多样、新构造活动强烈、生态环境脆弱,加之地震活动频繁、降雨集中、暴雨频发,建设用地紧张、发展与环境保护矛盾突出。滑坡、泥石流灾害的暴发,不仅严重威胁当地人民的生命财产,也严重制约社会经济发展。
研究区是中国滑坡、泥石流四大高易发区之一,开展区内降雨引发滑坡灾害预警模型研究意义重大。据统计,截至2023年底,研究区共发育地质灾害隐患点5035处,占当年全省隐患点总数的22.97%,隐患点密度为0.24处/km2;按类型划分,滑坡2776处,崩塌910处,泥石流1341处,地裂缝1处,地面塌陷7处;按行政区划分,宕昌380处,武都2251处,文县1530处,迭部401处,舟曲473处。
1.2 降雨型滑坡界定
本研究以2000—2019年研究区发生的滑坡灾害数据为基础。结合自然资源部门地质灾害隐患点台账、县(区)地质灾害区划报告资料、地质灾害调查报告、县志等资料,同时采用多期遥感数据对比分析、室内解译、野外调查、访问、取样、测试等手段,修正补充已有的滑坡灾害台账数据,结合前期降雨事件分析比对,最终整理形成128个因降雨引发滑坡的记录,资料详细记录了滑坡事件发生的地点、时间、类型、成因等,数据较为可靠,成为本次研究的对象。经分析,该类滑坡主要分布在白龙江两岸的山坡地带,在6—9月多发,占比为74%,7月下旬及8月上旬,滑坡发生数量达到峰值,其余月份滑坡发生的数量较少,滑坡的发生数量与降雨量和降雨强度基本吻合[14],与当地灾害发生的规律相符(图2—3)。
2. 研究方法
按照滑坡岩性特征将滑坡分为较硬、极软、软硬相间三种类型。对于每种类型的滑坡,采用频数法,分别计算不同降雨事件下滑坡发生的概率,即不同岩性类型的滑坡发生前的事件雨量和降雨历时关系,基于频率法分别获得不同概率条件下ED降雨阈值曲线[15 − 16],建成滑坡发生概率预警模型。
2010年Brunetti等[15]发表的论文中指出基于频率法的ED降雨阈值符合幂律法则:
式中:E——事件雨量/mm;
D——降雨持续时间/d;
α——截距,Δα为与α相关的变量;
γ——指数,Δγ为与γ相关的变量。
假设选择一组滑坡数据,以滑坡发生的概率为5%、20%和50% 3种情况下,获得对应的截距和指数,绘制3条曲线,将滑坡事件分为4个区间。即,位于5%概率线以下的点表示该降雨事件下的雨量及降雨历时引发滑坡的概率小于5%。如图4所示,通过对滑坡降雨事件数据统计分析,分别获取滑坡发生概率为5%、20%和50%的ED关系曲线,其中,RLs为诱发滑坡的降雨事件,NRLs为未诱发滑坡的降雨事件。根据样本数据中滑坡发生概率,采用数据拟合方法,计算获得截距和指数γ±Δγ取0.64±0.09,概率为5%的直线关系(T5)为E=(5.01±0.06)·D(0.64±0.09),概率为20%的直线关系为(T20)E=(7.08±0.67)·D(0.64±0.09),概率为50%的直线关系(T50)为E=(15.14±1.15)·D(0.64±0.09)。ɑ取值介于2.07~16.29,D取值介于1~40 d,随着滑坡事件概率的增大,相对不确定性增加,ED之间的关系趋于离散[17]。通过对本次研究中数据的分析,在概率为50%的直线关系中,其相对不确定度为7.6%;在概率为20%的直线关系中,其相对不确定度为9.5%;在概率为5%的直线关系中,其相对不确定度为1.2%。从图2中可以看出,概率为50%的曲线关系中,其相对不确定度较低,说明数据较为集中[18]。
3. 不同岩性滑坡的降雨阈值
根据地层年代、岩体工程性质特征等因素综合考虑,将区域内地层岩性按照软弱程度进行分类,分类标准详见表1。通过岩性分类结果与128处滑坡样本空间分布进行对比,得出松散物质、软硬相间、极软三种类型的岩性中滑坡灾害多发,其中,有72起滑坡分布在松散层内,岩土体类型主要为第四系残坡积碎石土、粉质黏土、强风化千枚岩、砾石,占比约56.25%;有37起滑坡分布在软硬相间的岩性中,岩体类型主要有板岩、千枚岩、浅变质砂岩、砂岩与千枚岩互层岩体,占比约28.91%;有12起滑坡分布极软的岩组中,岩性主要是新近系砾岩、页岩、泥质砂岩等,占比9.38%[19 − 20]。而坚硬、较软、较硬三种岩性类型中滑坡分布数量为7起,数量较少,滑坡降雨阈值曲线的拟合效果差,因此此处不做分析(图5)。
表 1 岩性类型的划分标准Table 1. Classification Standards for Lithological Types软硬类型 主要岩性类型 极软 层状碎屑岩:古近系砾岩;新近系砾岩、页岩、泥质砂岩 坚硬 块状岩浆岩:花岗岩、辉绿岩、辉长岩、闪长岩、
闪长玢岩、闪斜煌斑岩等较软 层状碎屑岩:白垩系砾岩、砂岩、泥岩 较硬 层状碳酸盐岩:三叠系、二叠系灰岩、砂岩、页岩等
泥盆系板岩、砂岩、页岩、灰岩等软硬相间 ①层状变质岩:二叠系砂岩、砂质板岩、凝灰岩、千枚岩;
志留系砂岩、石灰岩、千枚岩、板岩
②层状碳酸盐岩:泥盆系板岩、千枚岩、灰岩
③层状碎屑岩:侏罗系砂岩、泥岩、砾岩、页岩松散物质 第四系残坡积碎石土、粉质黏土、强风化千枚岩、砾石 采用频数法对不同岩体类型的滑坡进行分析,得到概率分别为15%(低)、25%(中)、40%(高)、60%(极高)时,降雨ED曲线(图6),以曲线为下限,将曲线上部4个区间自下而上依次对应定义为低风险区、中风险区、高风险区、极高风险区4个预警等级,即降雨事件雨量与降雨历时所对应的点落入4个区间中的某一个,即判定该滑坡的风险等级为该区间的风险等级。
3种岩性类型的滑坡不同预警等级下限的降雨阈值曲线分别如下:
松散物质:E=6.43D0.72(P=15%,蓝色预警)、E=7.94D0.72(P=25%,黄色预警)、E=10.91D0.72(P=40%,橙色预警)、E=18.79D0.72(P=60%,红色预警)。
极软岩类:E=9.25D0.54(P=15%,蓝色预警)、E=12.30D0.54(P=25%,黄色预警)、E=18.88D0.54(P=40%,橙色预警)、E=31.48D0.54(P=60%,红色预警)。
软硬相间:E=9.79D0.46 (P=15%,蓝色预警)、E=11.16D0.54(P=25%,黄色预警)、E=15.00D0.46(P=40%,橙色预警)、E=21.09D0.46(P=60%,红色预警)。
从图6中可知,松散层滑坡降雨阈值曲线的间距较小,不同预警等级临界累计降雨量差值最小,降雨量对松散层滑坡作用较快。极软岩类滑坡降雨阈值曲线的间距较大,不同预警等级临界累计降雨量差值较大,降雨量对滑坡发生反映慢。软硬相间岩类滑坡降雨阈值曲线的间距中等,不同预警等级临界累计降雨量差值中等,降雨量对滑坡发生反映中等。按照12 d降雨历时,计算得不同岩性类型斜坡分别在4种预警等级下的下限临界累计雨量值(表2)。
表 2 不同岩性类型的斜坡在各预警等级下发生滑坡前不同降雨历时下的累计雨量Table 2. Duration and cumulative rainfall before landslides occur on slopes of different rock types at different warning levels/mm 滑坡类型 预警等级 降雨历时/d 1 2 3 4 5 6 7 8 9 10 11 12 松散物质 低(P=15%) 6.43 10.59 14.18 17.45 20.49 23.36 26.10 28.74 31.28 33.75 36.14 38.48 中(P=25%) 7.94 13.08 17.51 21.54 25.30 28.85 32.23 35.49 38.63 41.67 44.63 47.52 高(P=40%) 10.91 17.97 24.06 29.60 34.76 39.64 44.29 48.76 53.07 57.26 61.32 65.29 极高(P=60%) 18.79 30.95 41.44 50.98 59.87 68.26 76.28 83.98 91.41 98.61 105.62 112.44 极软岩类 低(P=15%) 9.25 13.45 16.74 19.55 22.06 24.34 26.45 28.43 30.30 32.07 33.77 35.39 中(P=25%) 12.30 17.88 22.26 26.00 29.33 32.37 35.18 37.81 40.29 42.65 44.90 47.06 高(P=40%) 18.88 27.45 34.17 39.91 45.02 49.68 54.00 58.03 61.84 65.46 68.92 72.24 极高(P=60%) 31.48 45.77 56.97 66.55 75.07 82.84 90.03 96.76 103.12 109.15 114.92 120.45 软硬相间 低(P=15%) 9.79 13.47 16.23 18.52 20.53 22.32 23.96 25.48 26.90 28.23 29.50 30.70 中(P=25%) 11.61 15.97 19.24 21.97 24.34 26.47 28.42 30.22 31.90 33.48 34.98 36.41 高(P=40%) 15.00 20.63 24.86 28.38 31.45 34.20 36.71 39.04 41.21 43.26 45.20 47.05 极高(P=60%) 21.09 29.01 34.96 39.90 44.22 48.09 51.62 54.89 57.95 60.82 63.55 66.15 4. 预警模型检验
本文收集了2020年陇南“8•17”暴洪灾害期间59起滑坡信息及前期降雨资料,其中,滑坡发生与8月11—17日,降雨数据为滑坡附近雨量站点8月5—18日逐日累计降雨数据,共计372条。按照3种岩性类型,分别与上述不同预警等级的降雨阈值曲线对比分析,检验模型的准确性。
根据滑坡事件分析,滑坡多在降雨持续6 d后集中暴发。松散物质类滑坡共计38起,其中,25起滑坡发生前降雨事件位于极高风险区,占比约65.79%;10起位于高风险区(40%≤P<60%),占比约7.89%;3起位于中风险区(25%≤P<40%),占比约0。极软岩类滑坡事件共计9起,其中,8起滑坡时降雨事件位于极高风险区(P≥60%),占比约88.89%;1起位于高风险区(40%≤P<60%),占比约11.11%;中、低风险区(P<40%)无滑坡发生。软硬相间滑坡事件共计12起,其中,10起滑坡降雨事件位于极高风险区(P≥60%),占比约83.33%;1起位于高风险区(40%≤P<60%),占比约8.33%;1起位于低风险区(40%≤P<60%),占比约8.33%;中风险区无滑坡发生(表3、图7)。
表 3 不同岩性类型滑坡事件对应的预警等级Table 3. Warning levels corresponding to landslide events of various lithologic types滑坡类型 预警等级 滑坡/处 事件比例/% 松散物质 低(P<25%) 0 0 中(25%≤P<40%) 3 7.89 高(40%≤P<60%) 10 26.32 极高(P≥60%) 25 65.79 极软岩类 低(P<25%) 0 0 中(25%≤P<40%) 0 0 高(40%≤P<60%) 1 11.11 极高(P≥60%) 8 88.89 软硬相间 低(P<25%) 1 8.33 中(25%≤P<40%) 0 0 高(40%≤P<60%) 1 8.33 极高(P≥60%) 10 83.33 综上所述,位于极高风险预区的降雨事件,比例最低的为松散物质类滑坡,占比65.79%,其次为软硬相间滑坡,占比83.33%,最高为极软岩类滑坡,占比88.89%,但都大于60%,因此,极高风险阈值曲线基本准确。
5. 结论
(1)白龙江流域甘肃段地质灾害数量多,严重威胁当地群众的生命财产安全,制约社会经济发展,针对降雨引发斜坡类灾害研究较少,本文为开展该区地质灾害预警预报模型研究提供了新思路。
(2)基于频率法建立了白龙江流域不同岩性特征的滑坡降雨阈值ED模型,并给出了累计雨量下限阈值,对白龙江流域斜坡类灾害预警预报具有指导意义。
(3)通过2020年陇南“8•17”暴洪灾害期间,降雨引发的59起滑坡事件前期降雨量分析对比,引发滑坡的降雨事件约65.79%以上均位于极高风险预警区,与极高风险(P>60%)阈值曲线一致。
(4)本文获取的滑坡下限降雨预警曲线,只能通过已发生的滑坡灾害结合前期降雨事件来验证模型准确性,对滑坡发生前的预警曲线校验存在困难,下一步研究中应考虑滑坡发生前不同风险等级预警模型或阈值,为斜坡类地质灾害降雨预警预报提供依据。
-
-
[1] 李萍, 李同录, 王阿丹, 等. 黄土中水分迁移规律现场试验研究[J]. 岩土力学,2013,34(5):1331 − 1339. [LI Ping, LI Tonglu, WANG Adan, et al. Field experimental study on water migration in loess[J]. Geotechnical Mechanics,2013,34(5):1331 − 1339. (in Chinese with English abstract) LI Ping, LI Tonglu, WANG Adan, et al. Field experimental study on water migration in loess [J]. Geotechnical Mechanics, 2013, 34(5): 1331-1339. (in Chinese with English abstract)
[2] 张常亮, 李萍, 李同录, 等. 黄土中降雨入渗规律的现场监测研究[J]. 水利学报,2014,45(6):728 − 734. [ZHANG Changliang, LI Ping, LI Tonglu, et al. In-situ observation on rainfall infiltration in loess[J]. Journal of Hydraulic Engineering,2014,45(6):728 − 734. (in Chinese with English abstract) ZHANG Changliang, LI Ping, LI Tonglu, et al. In-situ observation on rainfall infiltration in loess [J]. Journal of Hydraulic Engineering, 2014, 45(6): 728-734. (in Chinese with English abstract)
[3] 李萍, 李同录, 付昱凯, 等. 非饱和黄土中降雨入渗规律的现场监测研究[J]. 中南大学学报(自然科学版),2014,45(10):3551 − 3560. [LI Ping, LI Tonglu, FU Yukai, et al. In-situ observation on regularities of rainfall infiltration in loess[J]. Journal of Central South University (Science and Technology),2014,45(10):3551 − 3560. (in Chinese with English abstract) LI Ping, LI Tonglu, FU Yukai, et al. In-situ observation on regularities of rainfall infiltration in loess[J]. Journal of Central South University ( Science and Technology), 2014, 45(10): 3551-3560. (in Chinese with English abstract)
[4] HOU X K, VANAPALLI S K, LI T L. Water flow in unsaturated soils subjected to multiple infiltration events[J]. Canadian Geotechnical Journal. 2020, 57(3): 366 − 376.
[5] LI P, LI T L, VANAPALLI S K. Influence of environmental factors on the wetting front depth: A case study in the Loess Plateau[J]. Engineering Geology,2016,214:1 − 10. DOI: 10.1016/j.enggeo.2016.09.008
[6] 刘海松, 倪万魁, 杨泓全, 等. 黄土路基降雨入渗现场试验[J]. 地球科学与环境学报,2008,30(1):60 − 63. [LIU Haisong, NI Wankui, YANG Hongquan, et al. Site test on infiltration of loess subgrade under rainfall circumstance[J]. Journal of Earth Science and Environment,2008,30(1):60 − 63. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-6561.2008.01.009 LIU Haisong, NI Wankui, YANG Hongquan, et al. Site Test on Infiltration of Loess Subgrade under Rainfall Circumstance [J]. Journal of Earth Science and Environment, 2008, 30(1): 60-63. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-6561.2008.01.009
[7] 李萍, 李同录, 侯晓坤, 等. 黄土中毛细上升速率的现场测试[J]. 河海大学学报(自然科学版),2014,42(6):503 − 507. [LI Ping, LI Tonglu, HOU Xiaokun et al. Field experiment on rate of capillary rise in loess[J]. Journal of Hehai University (Natural Sciences),2014,42(6):503 − 507. (in Chinese with English abstract) LI Ping, LI Tonglu, HOU Xiaokun et al. Field experiment on rate of capillary rise in loess, Journal of Hehai University (Natural Sciences), 2014, 42(6): 503-507. (in Chinese with English abstract)
[8] 雷祥义, 魏青珂. 陕北伤亡性黄土崩塌成因与对策研究[J]. 岩土工程学报,1998,20(1):64 − 69. [LEI Xiangyi, WEI Qingke. Study on the origin and countermeasure of the casualty loess landfalls in the Northern Shaanxi[J]. Chinese Journal of Geotechnical Engineering,1998,20(1):64 − 69. (in Chinese with English abstract) LEI Xiangyi, WEI Qingke. Study on the origin and countermeasure of the casualty loess landfalls in the Northern Shaanxi[J]. Chinese Journal of Geotechnical Engineering. 1998, 20(1): 64-69. (in Chinese with English abstract)
[9] 莫海军. 公路水毁灾害综合防治措施分析[J]. 大科技,2019,31:105 − 106. [MO Haijun. Analysis of comprehensive prevention and control measures of highway flood disaster[J]. Super Science,2019,31:105 − 106. (in Chinese with English abstract) MO Haijun. Analysis of comprehensive prevention and control measures of highway flood disaster [J]. Super Science, 2019, (31): 105-106. (in Chinese with English abstract)
[10] 熊玲. 分析公路水毁病害形成机制与治理[J]. 黑龙江交通科技,2021,44(2):60 − 61. [XIONG Ling. Analysis of the formation mechanism and treatment of highway flooding[J]. Communications Science and Technology Heilongjiang,2021,44(2):60 − 61. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-3383.2021.02.027 XIONG Ling. Analysis of the formation mechanism and treatment of highway flooding [J]. Communications Science and Technology Heilongjiang, 2021, 44 (2): 60-61. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-3383.2021.02.027
[11] 江漫雪. 在建二级公路边坡滑塌的病害调查与形成机制研究[J]. 交通世界,2021(20):2. [JIANG Manxue. Disease investigation and formation mechanism of slope collapse of secondary highway under construction[J]. Transpo World,2021(20):2. (in Chinese with English abstract) JIANG Manxue. Disease investigation and formation mechanism of slope collapse of secondary highway under construction [J]. Transpo World, 2021, (20): 2. (in Chinese with English abstract)
[12] WANG G L, LI T L, XING X L, et al. Research on loess flow-slides induced by rainfall in July 2013 in Yan’an, NW China[J]. Environmental Earth Sciences,2014,73(12):7933 − 7944.
[13] 孙乾征, 江兴元. 非饱和理论下各因素变化对浅层滑坡影响[J]. 公路,2020,65(4):36 − 41. [SUN Qianzheng, JIANG Xingyuan. Influence of various factors on shallow landslide under unsaturated theory[J]. Highway,2020,65(4):36 − 41. (in Chinese with English abstract) SUN Qianzheng, JIANG Xingyuan. Influence of various factors on shallow landslide under unsaturated theory. Highway, 2020, 65(04): 36-41. (in Chinese with English abstract)
[14] 邢鲜丽, 李同录, 李萍, 等. 黄土抗剪强度与含水率的变化规律[J]. 水文地质工程地质,2014,41(3):53 − 59. [XING Xianli, LI Tonglu, LI Ping, et al. An analysis of the influence of declined water levels on the reliability of the pipeline protection retaining wall[J]. Hydrogeology & Engineering Geology,2014,41(3):53 − 59. (in Chinese with English abstract) XING Xianli, LI Tonglu, LI Ping, et al. An analysis of the influence of declined water levels on the reliability of the pipeline protection retaining wall [J]. Hydrogeology & Engineering Geology, 2014, 41(3): 53-59. (in Chinese with English abstract)
[15] VANAPALLI S K, FREDLUND D G, PUFAHL D E, et al. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal,1996,33(1):379 − 392.
[16] 蔺晓燕, 李同录, 张子然, 等. 陕西华县高楼村黄土滑坡—泥流的成因分析[J]. 工程地质学报,2013,21(2):282 − 288. [LIN Xiaoyan, LI Tonglu, ZHANG Ziran, et al. Cause of gaoloucun loess flowslide in Huaxian County, Shaanxi Province[J]. Journal of Engineering Geology,2013,21(2):282 − 288. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2013.02.014 LIN Xiaoyan, LI Tonglu, ZHANG Ziran, et al. Cause of gaoloucun loess flowslide in Huaxian County, Shaanxi Province [J]. Journal of Engineering Geology, 2013, 21 (2): 282-288. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2013.02.014
[17] 习羽, 李同录, 邢鲜丽. 灌渠渗漏诱发的黄土滑坡泥流触发机理分析[J]. 地球科学与环境学报,2017,39(1):135 − 142. [XI Yu, LI Tonglu, XING Xianli. Analysis of the triggering mechanism of a loess flowslide induced by water canal leakage[J]. Journal of Earth Sciences and Environment,2017,39(1):135 − 142. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-6561.2017.01.011 XI Yu, LI Tonglu, XING Xianli. Analysis of the Triggering Mechanism of a Loess Flowslide Induced by Water Canal Leakage [J]. Journal of Earth Sciences and Environment, 2017, 39(1): 135-142. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-6561.2017.01.011
[18] 吴宏伟. 大气–植被–土体相互作用:理论与机理[J]. 岩土工程学报,2017,39(1):1 − 47. [WU Hongwei. Atmosphere-plant-soil interactions: Theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering,2017,39(1):1 − 47. (in Chinese with English abstract) DOI: 10.11779/CJGE201701001 WU Hongwei. Atmosphere-plant-soil interactions: theories and mechanisms [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 1-47. (in Chinese with English abstract) DOI: 10.11779/CJGE201701001
[19] 徐则民, 黄润秋, 唐正光, 等. 植被护坡的局限性及其对深层滑坡孕育的贡献[J]. 岩石力学与工程学报,2005,24(3):438 − 450. [XU Zemin, HUANG Runqiu, TANG Zhengguang, et al. Limitation of biotechnical slope protection and contribution of vegetation to deep seated landslide preparation[J]. Journal of Rock Mechanics and Engineering,2005,24(3):438 − 450. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2005.03.013 XU Zemin, HUANG Runqiu, TANG Zhengguang, et al. Limitation of biotechnical slope protection and contribution of vegetation to deep seated landslide preparation [J]. Journal of Rock Mechanics and Engineering, 2005, 24(3): 438-450. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2005.03.013
[20] 孙长忠, 黄宝龙, 陈海滨, 等. 黄土高原人工植被与其水分环境相互作用关系研究[J]. 北京林业大学学报,1998,20(3):10 − 17. [SUN Changzhong, HUANG Baolong, CHEN Haibin, et al. Interaction between soil water conditions and different kinds of artificial plant cover in the loess plateau[J]. Journal of Beijing Forestry University,1998,20(3):10 − 17. (in Chinese with English abstract) SUN Changzhong, HUANG Baolong, CHEN Haibin, et al. Interaction between soil water conditions and different kinds of artificial plant cover in the loess plateau[J]. Journal of Beijing Forestry University, 1998, 20(3): 10-17. (in Chinese with English abstract)
[21] 韩勇, 郑粉莉, 徐锡蒙, 等. 子午岭林区浅层滑坡侵蚀与植被的关系—以富县“7·21”特大暴雨为例[J]. 生态学报,2016,36(15):4635 − 4643. [HAN Yong, ZHENG Fenli, XU Ximeng, et al. Relationship between shallow landslide erosion and vegetation in the Ziwuling forest area: A case study of the “7·21” disaster in Fuxian County J]. Acta Ecologica Sinica,2016,36(15):4635 − 4643. (in Chinese with English abstract)
[22] 侯庆春, 韩蕊莲, 韩仕锋. 黄土高原人工林草地“土壤干层”问题初探[J]. 中国水土保持,1999,5(3):13 − 16. [HOU Qingchun, HAN Ruilian, HAN Shifeng. Preliminary study on the problem of "dry soil layer" of artificial grassland in Loess Plateau[J]. China Soil and Water Conservation,1999,5(3):13 − 16. (in Chinese with English abstract) HOU Qingchun, HAN Ruilian, HAN Shifeng. Preliminary study on the problem of "dry soil layer" of artificial grassland in Loess Plateau [J]. China Soil and Water Conservation, 1999, 5(3): 13-16. (in Chinese with English abstract)
-
期刊类型引用(4)
1. 王启浩,吕亚斌,张德栋. 甘肃省白龙江流域泥沙时空变化特征及演变趋势研究. 江西水利科技. 2025(01): 32-37 . 百度学术
2. 龙宇飞. 黄河兰州段白塔山地质灾害现状及生态环境治理探讨. 资源信息与工程. 2025(02): 91-94 . 百度学术
3. 曾新雄,刘佳,赖波,赵风顺,江山. 广东珠海市降雨型崩塌滑坡预警阈值研究. 中国地质灾害与防治学报. 2024(05): 141-150 . 本站查看
4. 刘强. 浙江省兰溪市地质灾害致灾雨量阈值分析. 工程技术研究. 2024(23): 45-48 . 百度学术
其他类型引用(0)