ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

基于XGBoost模型的三峡库区燕山乡滑坡易发性评价与区划

吴宏阳, 周超, 梁鑫, 袁鹏程, 余蓝冰

吴宏阳,周超,梁鑫,等. 基于XGBoost模型的三峡库区燕山乡滑坡易发性评价与区划[J]. 中国地质灾害与防治学报,2023,34(5): 141-152. DOI: 10.16031/j.cnki.issn.1003-8035.202206020
引用本文: 吴宏阳,周超,梁鑫,等. 基于XGBoost模型的三峡库区燕山乡滑坡易发性评价与区划[J]. 中国地质灾害与防治学报,2023,34(5): 141-152. DOI: 10.16031/j.cnki.issn.1003-8035.202206020
WU Hongyang,ZHOU Chao,LIANG Xin,et al. Assessment of landslide susceptibility mapping based on XGBoost model: A case study of Yanshan Township[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5): 141-152. DOI: 10.16031/j.cnki.issn.1003-8035.202206020
Citation: WU Hongyang,ZHOU Chao,LIANG Xin,et al. Assessment of landslide susceptibility mapping based on XGBoost model: A case study of Yanshan Township[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5): 141-152. DOI: 10.16031/j.cnki.issn.1003-8035.202206020

基于XGBoost模型的三峡库区燕山乡滑坡易发性评价与区划

基金项目: 国家自然科学基金项目(42371094;41907253;41702330);湖北省重点研发计划项目(2021BCA219)
详细信息
    作者简介:

    吴宏阳(1997-),男,硕士研究生,主要从事地质灾害风险评价与系统开发。E-mail:wuhongyangpower@163.com

    通讯作者:

    周 超(1989-),男,副教授,博士,主要从事地质灾害监测预警与风险评价研究。E-mail:zhouchao@cug.edu.cn

  • 中图分类号: P642.22

Assessment of landslide susceptibility mapping based on XGBoost model: A case study of Yanshan Township

  • 摘要: 滑坡易发性评价是精细化滑坡灾害风险评价的基础。为了提升滑坡易发性评价模型的精度和稳健性,以三峡库区万州区燕山乡为例,选取工程地质岩组、堆积层厚度等九个影响因子构建滑坡易发性评价指标体系,应用信息量模型定量分析滑坡发育与指标之间的关系。在此基础上,随机选取70%/30%的滑坡样本作为训练/验证数据集,应用极致梯度提升模型(extreme gradient boosting, XGBoost)开展易发性评价。随后从模型预测精度和模型稳定性两方面将其与决策树模型(decision tree, DT)和梯度提升树模型(gradient boosting decision tree, GBDT)进行对比。结果表明:研究区堆积层滑坡主要受长江水系、堆积层厚度和工程地质岩组影响。XGBoost模型具有最高的准确率(94.3%)和预测精度(97.3%)。在模型稳定性验证中,平均预测精度最高(97.3%),优于DT(91.3%)和GBDT(95.7%),模型标准差和变异系数均为0.01,低于其余两种模型。XGBoost在区域滑坡易发性评价与制图中得到了可靠的结果,为滑坡灾害空间预测提供了新的技术支撑。
    Abstract: Landslide susceptibility assessment forms the foundation for precise evaluation of landslide risk. To enhance the accuracy and robustness of landslide susceptibility mapping, a state-of-art machine learning algorithm named the extreme gradient boosting model (XGBoost) was introduced to this study. Yanshan Town in Wanzhou district, Three Gorges reservoir, was chosen as a case study. Nine influencing factors, including engineering geological lithology and thickness of deposit layer, were selected to construct the landslide susceptibility evaluation index system. The relationship between landslide development and these indicators is quantitatively analyzed using the information value model. Subsequently, 70% of landslide samples were randomly assigned for training, while the remaining 30% were used for validation. The XGBoost model was then employed for landslide susceptibility mapping. The output were compared with those of the decision tree model (DT) and gradient boosting decision tree (GBDT) in terms of prediction accuracy and model stability. The findings revealed that distance to the Yangtze River, soil thickness, and lithology were the primary factors influencing landslide development. The XGBoost model demonstrated the highest average prediction accuracy (97.3%) in 100 repeated trials, surpassing the DT (91.3%) and GBDT models. Moreover, the XGBoost model exhibited superior robustness with a standard deviation and coefficient of variation of 0.01, lower than the other two models. It also achieved the highest accuracy (94.3%) and prediction accuracy (97.3%) in the validation process. The proposed XGBoost model serves as a reliable assessment method and yields optimal results in regional landslide susceptibility mapping.
  • 崩塌落石是鄂西山区主要地质灾害之一,具有分布零散、发生偶然、运动不规律、破坏力强等特征[1-2]。近年来,极端天气频发,崩塌落石地质灾害发生的频率也越来越高威胁着鄂西山区人民生命财产安全。2020年6月19日上午8时40分左右,远安县瓦坡崩塌区发生坠石险情,现场可见6处落石,最大直径约2.5 m,总体积约4.0 m3,造成村级公路多处路面损坏,所幸本次崩塌坠石未造成人员伤亡和村民房屋损毁。但根据现场调查,崩塌区发育较多危石、孤石,严重威胁下方20户65人的生命财产安全,以及G347国道的安全运行。

    崩塌落石灾害一直是国内外地质灾害研究的重点[3-5]。胡厚田[6]归纳总结了国内典型崩塌落石灾害的形成机制、影响因素、运动特征及规律。唐红梅等[7]研究了三峡库区危岩落石,分别探究了坠落式、倾倒式、滑塌式危岩的初始运动状态、碰撞阶段、碰撞过程及滚动阶段,获得了危岩落石的运动轨迹方程,并在工程中得到验证。Palma等[8]通过野外地质调查及数值模拟,在二维平面中分析了落石的运动过程。Lan等[9]通过Rock Analyst 软件,在三维空间下模拟了崩塌落石的运动过程,并基于GIS平台对崩塌落石的危险性进行了评价。目前落石运动过程主要是在二维空间下,通过数值模拟分析崩塌落石灾害的运动特征具有一定局限性[10],而三维空间下的轨迹模拟可以更加真实的反映落石运动过程中的空间特征,在崩塌落石的预防与治理中具有更加实际的指导意义[11]

    因此文中以远安县瓦坡崩塌为例,通过地质调查、野外测绘、无人机航拍,建立了瓦坡崩塌三维模型,基于Rockfall Analyst(RA)分析软件,模拟了瓦坡崩塌区大量崩塌落石三维空间下运动路径、高度、能量等要素,研究坡崩塌区落石的三维运动过程及威胁范围,为瓦坡崩塌区落石灾害的风险管控及防治提供了科学参考。

    研究区位于湖北省远安县洋坪镇余家畈村一组(图1),距洋坪镇直线距离约8 km,距远安县城约20 km。属长江中游亚热带湿润季风气候,区内多年平均降雨量(1957—2000年)为1080.2 mm,最大24 h降雨量418 mm,最大年降雨量为1586 mm(1964年),一年中降雨量多集中在4—9月,其中7月降雨量最大,1月、12月最少。

    图  1  研究区位置图
    Figure  1.  The geographical location of the study area

    研究区地貌单元属于侵剥蚀低山地貌,地形起伏不大,植被茂密。区内出露地层有石炭系黄龙组(C2h)、泥盆系黄家蹬组(D3h)、志留系纱帽组(S3s)及第四系崩坡积物(Q4col+dl),第四系残破积物(Q4el+dl)。研究区位处远安地堑西侧,属弱震活动区,弱震活动频繁,震级小,大部分小于3级,地震动峰值加速度为0.05 g

    研究区内地下水类型主要有裂隙水、岩溶水。崩塌发育区出露灰岩具一定的含水性,由于裸露岩体构造裂隙发育,岩体的完整性差,为地表水下渗提供通道及储存空间,是该地区的主要含水层,下部泥盆系和志留系为相对隔水层。地下水主要接受大气降水补给,其水动力特征多属浅层短循环无压流。研究区地势总体北高南低,地形陡峭坡度大,有利于地下水和地表水排泄,大部分以坡面流形式自北向南排泄至公路下坡面,就近向低洼地带,水文地质属简单类型。

    崩塌区位于北高南低的单面斜坡上,下部地形稍缓,坡度为35°~45°,顶部坡度为近直立,坡体表面植被覆盖较茂密,中部为一村级盘山公路,坡脚为G347国道。根据现场勘查,该崩塌所处斜坡为东西走向,总体坡向约180°,斜坡坡顶距余家畈村村委会垂直高差约250 m,坡脚高程为250~270 m,坡顶高程为540 m,崩塌区出露岩性为石炭系黄龙组(C2h)灰、灰白色块状灰岩,白云质灰岩,底部为角砾状及条带状灰岩,岩层产状95°∠8°,为崩塌体母岩,岩体呈块状结构,节理裂隙极为发育,结构十分破碎。下部出露地层有:泥盆系黄家蹬组(D3h)浅黄绿色、灰色薄层至中厚层状细粒石英砂岩及砂质页岩;志留系纱帽组(S3s)上部为黄绿色薄层状细砂岩、粉砂岩夹页岩,下部为砂质页岩与页岩互层,岩层产状90°∠13°,中等—强风化。坡面与岩层组合为横向坡,斜坡体上部基岩裸露,中部残坡积覆盖层较薄,厚度约0.2~1.0 m。危岩体分布高程480~539 m,高差为30~50 m,主崩方向180°,节理裂隙十分发育,主要发育与坡向相同的裂隙,主要倾向为92°~270°,倾角为60°~90°,岩体裂隙宽2~15 cm,岩体裂缝宽0.5~1.5 m。该崩塌平面分布长度约320 m,平均高度约35 m,均厚约10 m,体积约5×104 m3

    根据现场调查,崩塌区共分布7处危岩体,总体积为493.8 m3,斜坡带分布较多危石、孤石,总体积约15093.8 m3。崩塌区危岩主要破坏形式为倾倒式,以1号危岩为例(图2),1号危岩长约1.5 m,高约3.5 m,厚约0.5 m,体积约2.6 m3,剖面形态呈柱状,主崩方向180°。该危岩体岩性为石炭系黄龙组(C2h)岩性为灰、灰白色块状灰岩,白云质灰岩,岩层产状95°∠8°,中等风化,节理裂隙较发育,坡体主要发育2组裂隙,裂隙①:185°∠89°,长3.5 m,宽0.1~0.3 m,0.5 m/条;裂隙②:270°∠82°,长2~4 m,裂隙张开2~5 cm,1.5 m/条;坡面与岩层组合为横向坡。危岩后缘裂隙张开0.1~0.3 m,几近贯穿,下部基座已劈裂。根据《崩塌防治工程设计规范(T/CAGHP032-2019)》,1号危岩体在天然工况下稳定系数为1.232,欠稳定,在50年一遇暴雨(饱水状态)工况下稳定系数为1.123,为欠稳定。

    图  2  1号危岩体基本情况
    Figure  2.  Basic information of No.1 dangerous rock mass

    近年来,无人机航拍结合野外测绘技术,可以获得崩塌区高精度地形数据,建立仿真三维模型。同时,借助三维运动轨迹模拟软件,可以开展崩塌落石三维运动轨迹模拟,为崩塌落石的运动特征、精准预测及风险管控提供科学参考。

    此次落石三维运动轨迹模拟采用Rock analyst(RA)软件,RA是基于ArcGIS开发的落石三维运动轨迹模拟软件[12],能够模拟崩塌落石的3个主要运动过程:坠落或飞行、碰撞反弹和滚动滑行。可模拟落石的三维滚动、滑动、碰撞、飞跃等复杂运动特征,合理预测运动距离、影响范围和破坏强度等[13]。RA基于GIS平台开发,可兼容利用GIS强大的空间数据管理、分析与展示等功能。同时采用流程化的操作模式,仅需简单点击即可获得初步结果以供后续优化。

    RA计算模型采用如下假定条件:(1)边坡为光滑的坡面;(2)落石简化为质点模型,质量分布均匀;(3)落石和坡面均为刚体;(4)不考虑落石与落石之间的相互碰撞,同时假定落石始终保持完整。落石运动过程中满足牛顿运动定律和碰撞理论,为确定性理论模型。

    在落石飞行阶段,落石运动过程满足抛物线方程。落石在三维空间坐标系中(图3),初始位置为(X0Y0Z0),满足方程:

    图  3  飞行阶段示意图
    Figure  3.  The schematic diagram of the rockfall fly
    S=[Vx0+X0Vy0+Y012gt2+Vz0t+Z0] (1)
    S=[0012gt2]+[00t]+[X0Y0Z0] (2)
    V=[Vx0Vy0Vz0gt]=[00gt]+[Vx0Vy0Vz0] (3)

    式中:S——运动距离/m;

    V——速度/(m·s−1);

    t——落石飞行时刻/s;

    Vx0——X方向初始速度/(m·s−1);

    Vy0——Y方向初始速度/(m·s−1);

    Vz0——Z方向初始速度/(m·s−1)。

    落石在碰撞反弹过程中,满足动量守恒定律,在ArcGIS平台中,根据落点与栅格相交位置,通过质点碰撞反弹模型,可以计算质点碰撞后的弹跳矢量速度(图4)。满足方程:

    图  4  碰撞阶段示意图
    Figure  4.  The schematic diagram of the rockfall collision
    {VrDip =RTVDipVrTrend =RTVTrendVrN=RNVN (4)

    式中:VrDip——碰撞后倾向速度/(m·s−1);

    RT—切向向上恢复系数(无纲量其数值大小在 0~1之间,可通过野外现场试验或工程类 别判断);

    VDip——碰撞前倾向速度/(m·s−1);

    VrTrend——碰撞后走向速度/(m·s−1);

    RN——法向上恢复系数(无纲量其数值大小在0~ 1之间,可通过野外现场试验或工程类别 判断);

    VTrend——碰撞前走向速度/(m·s−1);

    VrN——碰撞后法向速度/(m·s−1);

    VN——碰撞前法向速度/(m·s−1)。

    在落石的滚动过程中(图5),落石由于受到地面的摩擦力,速度逐渐减小,满足牛顿第二定律及运动学公式,满足公式:

    图  5  滚动过程示意图
    Figure  5.  The schematic diagram of rockfall roll
    a=gsinθgcosθtanφ (5)
    Vt=V0at (6)

    式中:a——加速度/(m·s−2);

    θ——坡度/(°);

    φ——内摩擦角/(°);

    Vt——t时刻速度/(m·s−1);

    V0——落石初速度/(m·s−1)。

    根据野外测绘及无人机航拍,获得研究区地形资料,建立研究区三维地形模型,模型栅格大小为5 m×5 m。根据地质调查,将崩塌落石区下部坡面划分为3类:基岩(植被发育区)、居民生活区、碎石区。设定了崩塌落石源区,落石点以折线形式分布于危岩顶部岩石临空面上(图6)。

    图  6  研究区坡面分类
    Figure  6.  Classification of slope surface in the study area

    结合野外地质调查崩塌落石区覆盖层厚度,植被发育情况,参考前人研究结果[14],确定了崩塌落石下部坡面法向恢复系数(RN)、切向恢复系数(RT)和动摩擦角(φ)等计算参数,根据现场堆积区落石的调查,估算了落石的最大落石质量(m)、密度(ρ)及初始运动状态(V0),落石坠落一般具有一个较小初速度(V0),三维运动轨迹模拟基本参数见表1

    表  1  三维运动轨迹模拟基本参数
    Table  1.  Basic parameters of three-dimensional motion trajectory simulation
    坡面类型法向恢复
    系数
    切向恢复
    系数
    动摩擦角
    /(°)
    最大落石
    质量/kg
    初速度
    /(m·s−1
    基岩(植被
    发育区)
    0.370.83301000 1
    居民生活区0.30.8225
    碎石区0.250.8020
    下载: 导出CSV 
    | 显示表格

    研究区崩塌落石三维运动轨迹如图7所示,模拟运动轨迹与已有落石点基本重合,说明此次模拟结果与实际情况较为吻合。崩塌区落石主要集中在崩塌区下部冲沟及公路区域,部分落石运动达到居民区。落石最大运动距离为450 m,最大弹跳高度为30 m,在居民区附近最大弹跳高度为2 m,最大冲击能量为1 000 kJ。典型落石点2运动轨迹如图8所示,落石运动轨迹可划分为3个部分:(1)碰撞弹跳;(2)自由飞落;(3)滚动。运动过程中以碰撞弹跳、自由飞落为主,落石2最大运动距离为320 m。在落石运动初期,运动速度逐渐增大,与坡面发生碰撞、弹跳。当运动速度大于30 m/s时,落石脱离地面,开始自由飞落。当落石与地面接触时,速度达到最大值50 m/s,然后与地面发生碰撞,速度迅速降低,以滚动为主,直至速度降为0,落石停止运动。

    图  7  崩塌落石三维运动轨迹
    Figure  7.  Three-dimensional trajectory of rockfall
    图  8  落石点2运动轨迹
    Figure  8.  Trajectory of rockfall 2

    模拟获得崩塌区落石三维运动轨迹后,通过RA软件,将落石运动轨迹栅格化,栅格大小为5 m×5 m,选取落石的轨迹交叉频数、弹跳高度、运动速度三种评价因子,分析每个栅格落石的轨迹交叉频数、弹跳高度、运动速度。根据前人研究,三种评价指标权重ABC分别为0.5、0.2、0.3[15]。将栅格图层叠加计算(式7),并按照自然间断点法进行分级,获得崩塌落石影响范围危险性评价图。

    Hazard(i)=A×PFrequency(i)+B×PHeight(i)+C×PVelocity(i) (7)

    式中:Hazard(i)——第i个栅格单元的危险程度;

    PFrequency(i)PHeight(i)PVelocity(i)—表示第i个栅格 单元上落石经过 的频率、弹跳高 度和运动速度。

    从落石危险性评价图(图9)中可知,在崩塌落石区下部公路、冲沟及崩塌区右侧危险性较高,结合落石三维运动轨迹,大部分落石停留在崩塌区冲沟中,但少量落石会运动到公路及居民生活区,对崩塌区下方居民、行人车辆及建筑物的安全构成威胁,需对崩塌落石体进行防治。

    图  9  危险性分区图
    Figure  9.  Hazard zoning map of the study area

    针对瓦坡崩塌落石结构特征及灾害体发育特点,防治工程以“安全可靠、技术可行、经济合理、施工简便”为总则,尽可能避免因施工对崩塌落石区地质环境条件造成恶化、破坏。因此,崩塌落石防治工程建议采用危石孤石清除+被动防护网。鉴于危岩的岩性硬脆,危石孤石清除可根据危岩结构的自由面而定或尽可能多地创造自由面,对不同自由面采取不同的布孔方法。采用风钻、钢钎等工具将危石分解破碎,直接用挖机装车外运,危岩清理应严格遵循自上而下开挖原则。被动防护网拟建在公路内侧及斜坡下方,共设置2道防护网。根据上文崩塌落石三维运动轨迹可知,公路内侧被动防护网处的落石弹跳高度绝大部分小于5 m,最大冲击能约1400 kJ,故设置高5 m,抗冲击力2000 kJ的被动防护网能对大部分落石进行有效拦截;在斜坡下方落石弹跳高度均小于3 m,最大冲击能最大约1000 kJ,故在斜坡下方设置第二道高3 m,抗冲击力2000 kJ的被动防护网可有效拦截其余落石。设置被动拦网后,落石运动轨迹如图10所示,2道防护网能有效拦截落石。

    图  10  设置防护网后落石运动轨迹
    Figure  10.  Rockfall movement trajectory after setting the protective net

    (1)崩塌区危岩主要破坏形式为倾倒式,目前处于欠稳定状态。

    (2)基于RA模拟的落石三维运动轨迹与已有落石点基本重合,说明本次模拟结果与实际情况较为吻合。

    (3)落石运动过程中以碰撞弹跳、自由飞落为主。落石主要集中在崩塌区下部冲沟及公路区域,部分落石运动达到居民区。在崩塌落石区下部公路、冲沟及崩塌区右侧危险性较高。

    (4)落石最大运动距离为450 m,最大弹跳高度为30 m,在居民区附近最大弹跳高度为2 m,最大冲击能量为1 000 kJ。

    (5)崩塌落石防治工程建议采用危石孤石清除+被动防护网。在公路内侧、斜坡下方分别设置5 m高、3 m高抗冲击力2 000 kJ的被动防护网,可有效拦截落石。

  • 图  1   决策树模型流程图

    Figure  1.   Flowchart of decision tree model

    图  2   梯度提升树模型流程图

    Figure  2.   Flowchart of gradient boosting decision tree model

    图  3   极致梯度提升模型流程图

    Figure  3.   Flowchart of extreme gradient boosting model

    图  4   研究区位置及滑坡分布

    Figure  4.   Location of the study area and distribution of landslides

    图  5   典型滑坡全貌图

    Figure  5.   Overview of typical landslide

    图  6   指标相关性

    Figure  6.   The correlation plot of Indicator factors

    图  7   研究区易发性评价指标图

    Figure  7.   Indicator plot for landslide susceptibility assessment in the study area

    图  8   参数与预测精度关系曲线

    Figure  8.   Relationship curve between parameters and prediction accuracy

    图  9   滑坡易发性分级图

    Figure  9.   Landslide susceptibility classification map

    图  10   各易发区灾害点比例

    Figure  10.   Proportion of disaster points in different susceptibility zones

    图  11   模型 ROC曲线图

    Figure  11.   ROC curves of the different models

    图  12   抽样次数与预测精度关系曲线

    Figure  12.   The correlation curve between sampling times and prediction accuracy

    表  1   各因素状态信息量表

    Table  1   The weighted information values of each factor state

    指标分级信息量指标分级信息量指标分级信息量
    坡度/(°)0~91.28工程地质岩组
    砂岩夹泥岩、砂岩1.58斜坡结构
    顺向伏倾坡、顺向飘倾坡0.75
    9~210.75砂泥岩互层0.59顺斜坡−0.99
    21~33−0.83泥岩夹砂岩、泥岩1.46横向坡、逆斜坡、逆向坡−0.96
    33~45−3.28页岩夹灰岩、灰岩−1.79斜坡形态内向凸形坡0.31
    >45−9.32距长江距离/m
    0-4002.96直线凸形坡、外向凸形坡−0.21
    植被归一化指数<0.151.07400~700−0.46内向直坡、直线直坡−1.79
    0.15~0.25−0.30700~14000.72外向直坡、内向凹坡−0.82
    >0.25−0.70>1400−1.84直线凹坡、外向凹坡−0.99
    坡向/(°)0~180−1.33地形湿度指数
    0~6−0.35堆积层厚度/m0~0.8−9.98
    180~2340.016~120.830.8~1.6−3.35
    234~252−0.1312~180.231.6~2.4−1.04
    252~3420.58>18−1.24>2.42.54
    342~360−0.60
    下载: 导出CSV

    表  2   标准差和变异系数

    Table  2   Standard deviation and coefficient of variation

    模型平均数标准差变异系数95%置信区间下限95%置信区间上限
    DT90.3040.7340.81390.16090.448
    GBDT95.6120.0620.06595.60095.624
    XGBoost97.2810.0100.01097.27997.283
    下载: 导出CSV
  • [1] 武雪玲,沈少青,牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报(信息科学版),2016,41(5):665 − 671. [WU Xueling,SHEN Shaoqing,NIU Ruiqing. Landslide susceptibility prediction using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University,2016,41(5):665 − 671. (in Chinese with English abstract)

    WU Xueling, SHEN Shaoqing, NIU Ruiqing. Landslide susceptibility prediction using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5)665-671(in Chinese with English abstract)

    [2] 殷跃平,张晨阳,闫慧,等. 三峡水库蓄水运行滑坡渗流稳定和防治设计研究[J]. 岩石力学与工程学报,2022,41(4):649 − 659. [YIN Yueping, ZHANG Chenyang, YAN Hui, et al. Research on seepage stability and prevention design of landslides during impoundment operation of the Three Gorges Reservoir, China[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(4):649 − 659. (in Chinese with English abstract)

    Yin Yueping, Zhang Chenyang, Yan Hui, et al. Research on seepage stability and prevention design of landslides during impoundment operation of the Three Gorges Reservoir, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(4): 649-659.(in Chinese with English abstract)

    [3] 杨何,汤明高,许强,等. 长江三峡库区滑坡变形统计特征研究[J]. 灾害学,2021,36(2):37 − 42. [YANG He,TANG Minggao,XU Qiang,et al. Research of statistical characteristics of deformation of landslides in the Three Gorges Reservoir area of the Yangtze River[J]. Journal of Catastrophology,2021,36(2):37 − 42. (in Chinese with English abstract)

    YANG He, TANG Minggao, XU Qiang, et al. Research of statistical characteristics of deformation of landslides in the Three Gorges Reservoir area of the Yangtze River[J]. Journal of Catastrophology, 2021, 36(2)37-42(in Chinese with English abstract)

    [4] 朱宇航,黄海峰,殷坤龙,等. 基于滑坡破坏模式分析的易发性评价—以三峡库区首段泄滩河左岸为例[J]. 中国地质灾害与防治学报,2023,34(2):156 − 166. [ZHU Yuhang, HUANG Haifeng, YIN Kunlong, et al. Evaluation of landslide susceptibility based on landslide failure mode analysis: A case study of the left bank of Xietan River in the first section of Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):156 − 166. (in Chinese with English abstract)

    [ZHU Yuhang, HUANG Haifeng, YIN Kunlong, et al. Evaluation of landslide susceptibility based on landslide failure mode analysis: a case study of the left bank of Xietan River in the first section of Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2)156-166(in Chinese with English abstract)

    [5] 许嘉慧,张虹,文海家,等. 基于逻辑回归的巫山县滑坡易发性区划研究[J]. 重庆师范大学学报(自然科学版),2021,38(2):48 − 56. [XU Jiahui,ZHANG Hong,WEN Haijia,et al. Landslide susceptibility mapping based on logistic regression in Wushan County[J]. Journal of Chongqing Normal University (Natural Science),2021,38(2):48 − 56. (in Chinese with English abstract)

    Xu Jiahui, Zhang Hong, Wen Haijia, et al. Landslide susceptibility mapping based on logistic regression in Wushan County[J]. Journal of Chongqing Normal University (Natural Science), 2021, 38(2): 48-56. (in Chinese with English abstract)

    [6] 陈丽霞, 徐勇, 李德营. 武陵山区城镇地质灾害风险评估技术指南及案例分析[M]. 武汉: 中国地质大学出版社, 2019

    CHEN Lixia, XU Yong, LI Deying. Guidelines and applications for geohazard risk assessment of urban areas in Wuling Mountain region[M]. Wuhan: China University of Geosciences Press, 2019. (in Chinese)

    [7]

    BAI Shibiao,WANG Jian,LÜ Guonian,et al. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area,China[J]. Geomorphology,2010,115(1/2):23 − 31.

    [8]

    LONG Jingjing,LIU Yong,LI Changdong,et al. A novel model for regional susceptibility mapping of rainfall-reservoir induced landslides in Jurassic slide-prone strata of western Hubei Province,Three Gorges Reservoir area[J]. Stochastic Environmental Research and Risk Assessment,2021,35(7):1403 − 1426. DOI: 10.1007/s00477-020-01892-z

    [9] 周超,殷坤龙,曹颖,等. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价[J]. 地球科学,2020,45(6):1865 − 1876. [ZHOU Chao,YIN Kunlong,CAO Ying,et al. Landslide susceptibility assessment by applying the coupling method of radial basis neural network and adaboost:a case study from the Three Gorges Reservoir area[J]. Earth Science,2020,45(6):1865 − 1876. (in Chinese with English abstract)

    ZHOU Chao, YIN Kunlong, CAO Ying, et al. Landslide susceptibility assessment by applying the coupling method of radial basis neural network and adaboost: a case study from the Three Gorges Reservoir area[J]. Earth Science, 2020, 45(6): 1865-1876. (in Chinese with English abstract)

    [10] 田乃满,兰恒星,伍宇明,等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报,2020,22(12):2304 − 2316. [TIAN Naiman,LAN Hengxing,WU Yuming,et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science,2020,22(12):2304 − 2316. (in Chinese with English abstract)

    TIAN Naiman, LAN Hengxing, WU Yuming, et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science, 2020, 22(12): 2304-2316. (in Chinese with English abstract)

    [11]

    REGMI N R,GIARDINO J R,VITEK J D. Assessing susceptibility to landslides:using models to understand observed changes in slopes[J]. Geomorphology,2010,122(1/2):25 − 38.

    [12] 王佳佳,殷坤龙,肖莉丽. 基于GIS和信息量的滑坡灾害易发性评价—以三峡库区万州区为例[J]. 岩石力学与工程学报,2014,33(4):797 − 808. [WANG Jiajia,YIN Kunlong,XIAO Lili. Landslide susceptibility assessment based on GIS and weighted information value:A case study of Wanzhou district,Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(4):797 − 808. (in Chinese with English abstract)

    WANG Jiajia, YIN Kunlong, XIAO Lili. Landslide susceptibility assessment based on GIS and weighted information value: a case study of Wanzhou district, Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 797-808. (in Chinese with English abstract)

    [13] 周超,殷坤龙,向章波,等. 基于GIS的淳安县滑坡易发性定量评价[J]. 安全与环境工程,2015,22(1):45 − 50. [ZHOU Chao,YIN Kunlong,XIANG Zhangbo,et al. Quantitative evaluation of the landslide susceptibility in Chun'an County based on GIS[J]. Safety and Environmental Engineering,2015,22(1):45 − 50. (in Chinese with English abstract)

    ZHOU Chao, YIN Kunlong, XIANG Zhangbo, et al. Quantitative evaluation of the landslide susceptibility in Chun'an County based on GIS[J]. Safety and Environmental Engineering, 2015, 22(1): 45-50. (in Chinese with English abstract)

    [14] 张林梵,王佳运,张茂省,等. 基于BP神经网络的区域滑坡易发性评价[J]. 西北地质,2022,55(2):260 − 270. [ZHANG Linfan, WANG Jiayun, ZHANG Maosheng, et al. Evaluation of regional landslide susceptibility assessment based on BP neural network[J]. Northwestern Geology,2022,55(2):260 − 270. (in Chinese with English abstract)

    [ZHANG Linfan, WANG Jiayun, ZHANG Maosheng, et al. Evaluation of regional landslide susceptibility assessment based on BP neural network[J]. Northwestern Geology, 2022, 55(2): 260-270.(in Chinese with English abstract)

    [15] 许冲,徐锡伟. 基于GIS与ANN模型的地震滑坡易发性区划[J]. 地质科技情报,2012,31(3):116 − 121. [XU Chong,XU Xiwei. GIS and ANN model for earthquake triggered landslides susceptibility zonation[J]. Geological Science and Technology Information,2012,31(3):116 − 121. (in Chinese with English abstract)

    XU Chong, XU Xiwei. GIS and ANN model for earthquake triggered landslides susceptibility zonation[J]. Geological Science and Technology Information, 2012, 31(3): 116-121. (in Chinese with English abstract)

    [16]

    BRAGAGNOLO L,DA SILVA R V,GRZYBOWSKI J M V. Artificial neural network ensembles applied to the mapping of landslide susceptibility[J]. CATENA,2020,184:104240. DOI: 10.1016/j.catena.2019.104240

    [17] 陈飞,蔡超,李小双,等. 基于信息量与神经网络模型的滑坡易发性评价[J]. 岩石力学与工程学报,2020,39(S01):2859 − 2870. [CHEN Fei,CAI Chao,LI Xiaoshuang,et al. Evaluation of landslide susceptibility based on information volume and neural network model[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(S01):2859 − 2870. (in Chinese with English abstract)

    CHEN Fei, CAI Chao, LI Xiaoshuang, et al. Evaluation of landslide susceptibility based on information volume and neural network model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S01): 2859-2870. (in Chinese with English abstract)

    [18]

    YU Chenglong,CHEN Jianping. Landslide susceptibility mapping using the slope unit for southeastern Helong city,Jilin Province,China:a comparison of ANN and SVM[J]. Symmetry,2020,12(6):1047. DOI: 10.3390/sym12061047

    [19]

    ZHAO Shuai,ZHAO Zhou. A comparative study of landslide susceptibility mapping using SVM and PSO-SVM models based on grid and slope units[J]. Mathematical Problems in Engineering,2021,2021:1 − 15.

    [20]

    LEE S,HONG S M,JUNG H S. A support vector machine for landslide susceptibility mapping in gangwon Province,Korea[J]. Sustainability,2017,9(1):48. DOI: 10.3390/su9010048

    [21]

    PRADHAN B. A comparative study on the predictive ability of the decision tree,support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS[J]. Computers & Geosciences,2013,51:350 − 365.

    [22]

    PARK S,HAMM S Y,KIM J. Performance evaluation of the GIS-based data-mining techniques decision tree,random forest,and rotation forest for landslide susceptibility modeling[J]. Sustainability,2019,11(20):5659. DOI: 10.3390/su11205659

    [23]

    SONG Yingxu,NIU Ruiqing,XU Shiluo,et al. Landslide susceptibility mapping based on weighted gradient boosting decision tree in Wanzhou section of the Three Gorges Reservoir area (China)[J]. ISPRS International Journal of Geo-Information,2018,8(1):4. DOI: 10.3390/ijgi8010004

    [24]

    YANG Yanguo, YU Jiaqi, FU Yubin, et al. Research on geological hazard risk assessment based on the cloud fuzzy clustering algorithm[J]. Journal of Intelligent & Fuzzy Systems,2019,37(4):4763 − 4770.

    [25]

    SRIKANTH B,LAKSHMI V PAPINENI S,SRIDEVI G,et al. Adaptive XGBOOST hyper tuned meta classifier for prediction of churn customers[J]. Intelligent Automation & Soft Computing,2022,33(1):21 − 34.

    [26]

    TEHRANY M S,PRADHAN B,MANSOR S,et al. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types[J]. CATENA,2015,125:91 − 101. DOI: 10.1016/j.catena.2014.10.017

    [27]

    WU Yuanyuan,WU Li,ZHU Huacheng,et al. Design of high temperature complex dielectric properties measuring system based on XGBoost algorithm[J]. Materials,2020,13(6):1419. DOI: 10.3390/ma13061419

    [28] 赵建华,陈汉林,杨树锋,等. 基于决策树算法的滑坡危险性区划评价[J]. 浙江大学学报(理学版),2004,31(4):465 − 470. [ZHAO Jianhua,CHEN Hanlin,YANG Shufeng,et al. Landslide risk assessment based on decision tree arithmetic[J]. Journal of Zhejiang University (Science Edition),2004,31(4):465 − 470. (in Chinese with English abstract)

    Zhao Jianhua, Chen Hanlin, Yang Shufeng, et al. Landslide risk assessment based on decision tree arithmetic[J]. Journal of Zhejiang University (Science Edition), 2004, 31(4): 465-470. (in Chinese with English abstract)

    [29] 蔡文学,罗永豪,张冠湘,等. 基于GBDT与Logistic回归融合的个人信贷风险评估模型及实证分析[J]. 管理现代化,2017,37(2):1 − 4. [CAI Wenxue, LUO Yonghao, ZHANG Guanxiang, et al. Personal credit risk assessment model and empirical analysis based on the fusion of GBDT and logistic regression[J]. Modernization of Management,2017,37(2):1 − 4. (in Chinese with English abstract)

    [Cai Wenxue, Luo Yonghao, Zhang Guanxiang, et al. Personal credit risk assessment model and empirical analysis based on the fusion of GBDT and logistic regression[J]. Modernization of Management, 2017, 37(2(in Chinese with English abstract)

    [30]

    CHEN Tianqi, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 13 – 17, 2016, San Francisco, California, USA. New York: ACM, 2016: 785 – 794.

    [31]

    ZHONG Jiancheng,SUN Yusui,PENG Wei,et al. XGBFEMF:an XGBoost-based framework for essential protein prediction[J]. IEEE Transactions on NanoBioscience,2018,17(3):243 − 250. DOI: 10.1109/TNB.2018.2842219

    [32] 黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):156 − 167. [HUANG Faming,YIN Kunlong,JIANG Shuihua,et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):156 − 167. (in Chinese with English abstract)

    Huang Faming, Yin Kunlong, Jiang Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167. (in Chinese with English abstract)

    [33] 张俊,殷坤龙,王佳佳,等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报,2016,35(2):284 − 296. [ZHANG Jun,YIN Kunlong,WANG Jiajia,et al. Evaluation of landslide susceptibility for Wanzhou District of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):284 − 296. (in Chinese with English abstract)

    Zhang Jun, Yin Kunlong, Wang Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296. (in Chinese with English abstract)

    [34] 王芳,殷坤龙,桂蕾,等. 不同日降雨工况下万州区滑坡灾害危险性分析[J]. 地质科技情报,2018,37(1):190 − 195. [WANG Fang,YIN Kunlong,GUI Lei,et al. Landslide hazard analysis under different daily rainfall conditions in Wanzhou district[J]. Geological Science and Technology Information,2018,37(1):190 − 195. (in Chinese with English abstract)

    WANG Fang, YIN Kunlong, GUI Lei, et al. Landslide hazard analysis under different daily rainfall conditions in Wanzhou district[J]. Geological Science and Technology Information, 2018, 37(1): 190-195. (in Chinese with English abstract)

    [35] 刘渊博,牛瑞卿,于宪煜,等. 旋转森林模型在滑坡易发性评价中的应用研究[J]. 武汉大学学报(信息科学版),2018,43(6):959 − 964. [LIU Yuanbo,NIU Ruiqing,YU Xianyu,et al. Application of the rotation forest model in landslide susceptibility assessment[J]. Geomatics and Information Science of Wuhan University,2018,43(6):959 − 964. (in Chinese with English abstract)

    LIU Yuanbo, NIU Ruiqing, YU Xianyu, et al. Application of the rotation forest model in landslide susceptibility assessment[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 959-964. (in Chinese with English abstract)

    [36]

    BASHEER I A,HAJMEER M. Artificial neural networks:fundamentals,computing,design,and application[J]. Journal of Microbiological Methods,2000,43(1):3 − 31. DOI: 10.1016/S0167-7012(00)00201-3

    [37]

    TIAN Liwei,FENG Li,SUN Yu,et al. Forecast of LSTM-XGBoost in stock price based on Bayesian optimization[J]. Intelligent Automation & Soft Computing,2021,29(3):855 − 868.

    [38]

    CHEN Yu,WEI Yongming,WANG Qinjun,et al. Mapping post-earthquake landslide susceptibility:A U-net like approach[J]. Remote Sensing,2020,12(17):2767. DOI: 10.3390/rs12172767

    [39]

    ZHANG Kaixiang,WU Xueling,NIU Ruiqing,et al. The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area,China[J]. Environmental Earth Sciences,2017,76(11):405. DOI: 10.1007/s12665-017-6731-5

  • 期刊类型引用(5)

    1. 陈宇,沈位刚,宋忠友,高攀,鄢发斌,雍平,张锐. 土垫层缓冲落石冲击力特性离散元数值模拟分析. 中国地质灾害与防治学报. 2024(02): 90-97 . 本站查看
    2. 陈媛,刘然,罗常炜,孙涛,覃壮恩,侯争军,杨宝全. 基于Rockfall数值模拟的边坡落石防护网修复加固方案研究. 防灾减灾工程学报. 2024(02): 313-321 . 百度学术
    3. 黄祥,黄健,贺子城,王豪. 基于图像识别估算碎裂岩崩体积方法研究. 水文地质工程地质. 2024(03): 140-148 . 百度学术
    4. 田玥琳,罗刚,邹鹏,张龙睿,侯易凡. 落石冲击作用下拦石桩设计方法研究. 中国地质灾害与防治学报. 2024(03): 88-96 . 本站查看
    5. 曹放,孙徐,张钰. 基于“XGBoost—SHAP”的可解释性崩塌落石风险预测在公路工程中的应用. 工程技术研究. 2024(14): 1-4 . 百度学术

    其他类型引用(4)

图(12)  /  表(2)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  789
  • PDF下载量:  155
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-06-16
  • 修回日期:  2022-08-25
  • 网络出版日期:  2023-07-12
  • 刊出日期:  2023-10-30

目录

/

返回文章
返回