Exploration of hidden structure and prediction of gas anomaly area based on gas control projects
-
摘要:
隐伏构造勘查与瓦斯异常区域预测研究是瓦斯灾害防治工程的基础。根据中国煤矿生产法律规章,开采具有瓦斯灾害危险的煤层前,必须实施瓦斯抽放工程。通常,地质异常区域即是瓦斯灾害危险区,构造应力场和采动应力场的叠加会扰动煤体并加压瓦斯。为精准定位地质异常区,评价其瓦斯致灾潜能,提出了一种基于瓦斯抽采工程进行瓦斯异常区域勘测的研究方法。该方法利用抽采钻孔参数和施工记录,采集钻孔数据并计算煤层顶底板控制点坐标,进而利用二维投影图件及三维应力场模型对隐伏地质构造(如小的断层、褶曲、局部煤厚异常变化等)进行勘查和预测;通过分析小型地质构造周围的附加应力场,并对瓦斯致灾潜能进行动态预测。应用该方法,可以对地质异常区进行精细调查,揭示采煤工作面瓦斯地质演化的一般规律。其研究结果为高瓦斯或突出煤层瓦斯灾害防治措施优化设计及有效实施提供科学依据。
Abstract:The investigation of hidden structures and the prediction of gas abnormal area form the foundation of gas disaster prevention engineering. In accordance with the laws and regulations governing coal mining in our country, a gas pumping project must be implemented prior to mining coal seams with a gas hazard. Typically, geologic anomaly area represent gas hazard zones, where the combination of tectonic stress field and mining-induced stress field can disturb coal bodies and pressurize gas. To accurately locate geologic anomaly areas and evaluate their gas disaster potential, a gas geologic anomaly survey method has been proposed based on gas extraction projects. This method uses drilling parameters and records to calculate the coordinates of the control points of the coal seam roof and bottom, and then utilizes two-dimensional projection diagrams and three-dimensional stress field models to survey and forecast small, hidden geological structures (such as small faults, folds, and locally abnormal coal thicknesses). By analyzing the additional stress field surrounding small geological structures, gas disaster potential can be dynamically predicted. The application of this method enables the detailed investigation of geological anomalies and reveals the general pattern of gas geological evolution at coal mining worksites. The research results provide a scientific basis for the optimal design and effective implementation of disaster prevention and control measures for coal seams with high gas content or at risk of gas outbursts.
-
0. 引言
地质灾害的发生是内因和外因共同作用的结果。内因即为区内的地质环境,决定着地质灾害的类型、分布、规模和强度,主要包括地形地貌、岩性构造、工程地质岩组等[1]。外因是触发地质灾害的外部条件,主要包括降雨、地震、工程切坡、植被破坏、矿山开采等。
开展大比例尺高精度的地质灾害评价是当前地质灾害调查亟需的[2]。利用GIS平台结合高分遥感影像、DEM数据等,可以快速有效的进行大范围地质灾害危险性评价[3]。即根据研究区特点,通过对已发的地质灾害进行提取,分析其孕灾、成灾的因素,并选用恰当的数学评价模型,综合评价区内的地质灾害危险性程度,并预测区域内地质灾害易发生空间位置。进而建立针对研究区的地质灾害危险性评价模型。
1. 研究区概况
研究区位于皖南山区,行政区划隶属黄山市徽州区,面积约398.49 km2(图1)。以中低山地貌为主,总体呈北高南低,海拔标高一般在200~1400 m。地层岩性以浅变质砂岩、粉砂岩、凝灰质粉砂岩为主。区域变质、变形为板岩、千枚状板岩。岩石易风化,残坡积层较发育。区域构造上,属下扬子陆块、江南造山带、江南古陆隆起带之历口构造带,构造线走向主要为北东向,其次为北西向。区内水系属钱塘江流域、新安江水系,最低侵蚀基准面标高为196 m左右。区内多年平均降雨量1708.1 mm,春、夏汛期为地质灾害高发期[4]。
2. 信息量模型原理
信息量模型是一种定量分析方法,其物理意义明确,广泛应用于区域地质灾害危险性评价[5-6],评价过程中可较好的反映致灾因子和地质灾害的关联性[7]。通过模型评价,能够直观的反映出研究区内各致灾因子对于形成地质灾害的敏感度和贡献率。
(1) 式中:x i—成灾因素x中的第i区间;
Y—成灾因素x中第i区间地质灾害发生的信息量值;
B —地质灾害事件;
Ni—研究区内包含评价因素 xi 的单元数且存在地质灾害的单元数;
Si—研究区内包含评价因素 xi 的单元数;
N —研究区存在地质灾害单元总数;
S—研究区中评价单元的总数。
3. 研究区地质灾害危险性评价
3.1 评价因子的选取
研究区所处的皖南山区,地质构造复杂,山体风化强度较高,残坡积发育,丰乐河及其支流广布于研究区内。区内道路、房屋的建设多采用切坡施工。另外,该地区广泛种植茶叶,茶园多开垦于陡峻的山坡坡面,人类活动强度大(图2)。结合研究区实际情况和前人工作经验,本次地质灾害危险性评价选取了高程、坡度、坡向、断裂构造、土地覆盖类型、水系、工程地质岩组、人类活动强度,共8项主要因素作为评价指标。
通过收集以往地质灾害调查成果及野外查证,研究区内已发生地质灾害点215处。根据已知灾害点,分别结合选取的8项主要因素进行分析,求得评价因素中各因子对地质灾害的“贡献度”,将8项评价因素叠加,进而得到研究区地质灾害危险性评价结果。
3.1.1 高程
研究区地形地貌跨度较大,总体地势西北高南东低,北部为中低山区,山体走向以北西、北东为主,海拔500~1400 m,相对高差600~800 m,局部地区800~1000 m;南部为高丘地貌,广泛分布在中低山侧,高程200~500 m,相对高差50~250 m。
根据研究区地形特点,将高程划分为0~200 m、200~300 m、300~400 m、400~500 m、500~700 m、700~1300 m共6个级别,见图2(b)。
通过高程因素信息量分析,300~700 m高程区间地质灾害发生的可能性较大,而高程低于200 m或高于700 m,地质灾害发生概率较低(表1)。
表 1 高程分级及信息量统计表Table 1. Satistics of elevation classification and information评价指标 高程分级/m Si/S Ni/N 信息量I 数据 0~200 0.0732 0.0526 −0.3303 200~300 0.1717 0.1383 −0.2164 300~400 0.1967 0.3027 0.4310 400~500 0.2024 0.2355 0.1514 500~700 0.2475 0.2051 −0.1882 700~1300 0.1085 0.0659 −0.4984 3.1.2 坡度
坡度直接影响坡面上坡积物的厚度、物质的稳定性和水动力条件,从而影响地质灾害发生的强度和规模[8]。
本次将坡度划分为0°~10°、10°~20°、20°~30°、30°~40°、40°~50°、50°~90°共6个级别,见图2(c)。 通过坡度对地质灾害提供的信息量图,可见坡度在20°~40°区间,地质灾害发生可能性较大,而坡度小于20°时,灾害发生概率较小,对于坡度大于50°,由于研究区内此坡度区域极少,故地灾信息量较低(表2)。
表 2 坡度分级及信息量统计表Table 2. Satistics of slope classification and information评价指标 坡度分级/(°) Si/S Ni/N 信息量I 数据 0~10 0.0951 0.0173 −1.7023 10~20 0.1798 0.1207 −0.3985 20~30 0.3081 0.3682 0.1780 30~40 0.3071 0.3955 0.2530 40~50 0.1075 0.0966 −0.1066 50~90 0.0025 0.0017 −0.3454 3.1.3 坡向
坡向即坡面的朝向。不同朝向的坡面,坡体受太阳辐射强度,各种物理化学的风化作用程度不同。
将坡向每隔90°划分为四个方位区间,将分别为东坡45°~135°、南坡135°~225°、西坡225°~315°、北坡315°~45°,见图2(d)。
通过坡向对地质灾害提供的信息量图,可见北坡地质灾害发生可能性较小,其他方向地质发生概率较大,特别是南坡(表3)。
表 3 坡向分级及信息量统计表Table 3. Satistics of slope classification and information评价指标 坡向分级/(°) Si/S Ni/N 信息量I 数据 315~45 0.1761 0.1494 −0.1644 45~135 0.2890 0.3008 0.0399 135~225 0.2646 0.2808 0.0592 225~315 0.2703 0.2691 −0.0045 3.1.4 断裂
研究区内断裂构造发育,且以北东及北西向断裂为主北东东向最为发育(规模大、密集),北西向次之。区内大型断裂切割本区古老地层,同时伴生次级断裂和构造裂隙,使岩体结构松散,岩石破碎及风化,是引发地质灾害的主要因素[9]。
根据遥感解译断裂构造的位置,以与断裂构造的距离为依据划分缓冲区,共划分5个级别,分别为0~300 m、300~600 m、600~1000 m、1000~1500 m、>1500 m,见图2(e)。
通过距离断裂级别对地质灾害提供的信息量图,可见在距离断裂带300 m内发生地质灾害的可能性最大,1000 m以上则地质灾害的发生概率较低(表4)。
表 4 断裂分级及信息量统计表Table 4. Satistics of fracture classification and information评价指标 断裂分级/m Si/S Ni/N 信息量I 数据 0~300 0.3637 0.5310 0.3785 300~600 0.2541 0.2833 0.1087 600~1000 0.2042 0.1406 −0.3731 1000~1500 0.1146 0.0287 −1.3833 >1500 0.0636 0.0164 −1.3550 3.1.5 水系
河流的侵蚀是导致地质灾害发生的重要因素,主要表现为侵蚀作用对斜坡前缘抗力的削弱和临空面的增加造成斜坡失稳[10]。
研究区内主要河流为丰乐河及其支流,对河流根据其线密度进行统计,密度越大,说明河流沟谷越多,地面越破碎,地面物质稳定性越低,造成的灾害越多。
在ArcGIS中,将河流进行遥感解译,并形成线矢量文件,将线文件进行密度分析,计算公式为:
(2) 式中:
——水系密度; ——研究区水系总长度/km;A——研究区面积/km2。
通过密度分析,研究区水系密度值范围为0~6.2644,通过与遥感影像图进行比对,将密度范围划分为3个区间,分别为0~1.4052、1.4052~2.8695、2.8695~6.2644,见图2(f)。通过水系密度对地质灾害提供的信息量可见,在水系密度高的区域,地质灾害相对概率也较高(表5)。
表 5 水系密度分级及信息量统计表Table 5. Satistics of the river system density classification and information评价指标 水系密度分级/(km−1) Si/S Ni/N 信息量I 数据 0~1.4052 0.7717 0.7523 −0.0255 1.4052~2.8695 0.1552 0.1689 0.0850 2.8695~6.2644 0.0731 0.0788 0.0745 3.1.6 土地利用类型
研究区为黄山毛峰的主产区,陡坡茶园在区内分布广泛,因此在土地类型的划分上,将茶园进行单独分类,共划分为道路、耕地、城镇用地、水域、林地、茶园6种类型,分析不同用地类型对引起地质灾害所提供的信息量,见图2(g)。
依据各土地类型对地质灾害提供的信息量,可见道路、茶园、城镇用地3种土地类型发生地质灾害的可能性较大(表6)。
表 6 各土地利用类型信息量统计表Table 6. Statistical table of information quantity of land use types评价指标 用地分级 Si/S Ni/N 信息量I 数据 道路 0.0105 0.0168 0.4742 耕地 0.1030 0.0956 −0.0753 城镇用地 0.0186 0.0231 0.2168 水域 0.0114 0.0119 0.0493 林地 0.7650 0.7154 −0.0671 茶园 0.0915 0.1372 0.4049 3.1.7 工程地质岩组
岩土体作为斜坡的基本组成,其控制着地质灾害的形成、分布和规模[11]。研究区按岩石强度划分为①坚硬中厚层砂岩岩组(NH1x)、②较坚硬层状、板状砂岩夹板岩岩组(PT2n)、③坚硬中厚层状变质砂岩岩组(PT2d)、④坚硬块状花岗闪长岩岩组(γδ)、⑤第四系松散岩组(Q4)、⑥残坡积层碎石土(Qdl+el)、⑦强风化层、⑧冲洪积层(Qapl),见图2(h)。
通过分析,8类工程地质岩组中,残坡积层碎石土(Qdl+el)和强风化层两类对地质灾害贡献的信息量最大(表7)。
表 7 各工程地质岩组信息量统计表Table 7. Statistical table of information of each engineering geological rock formation评价指标 工程地质岩组分级 Si/S Ni/N 信息量I 数据 NH1x 0.1644 0.1429 −0.1404 PT2n 0.2790 0.2198 −0.2385 PT2d 0.4122 0.4889 0.1706 γδ 0.1105 0.0852 −0.2601 Q4 0.0065 0.0056 −0.1358 Qdl+el 0.0225 0.0523 0.8421 强风化层 0.0006 0.0011 0.6807 Qapl 0.0043 0.0036 −0.1669 3.1.8 人类活动强度
在ArcGIS中,将道路路网和房屋范围进行遥感解译,并形成线矢量文件,将线文件进行密度分析,线网密度越大,说明人类活动越强烈,引发的地质灾害越多。
通过线密度分析,徽州区人类活动密度值范围为0~12.2955,通过与遥感影像图进行比对,将密度范围划分为4个区间,分别为0~1.4185(人类活动强度极低)、1.4185~4.5309(人类活动强度一般)、4.5309~5.8821(人类活动强度较高)、5.8821~12.2955(人类活动强度极高),见图2(i)。
通过人类活动强度对地质灾害提供的信息量图,可见在人类活动强度较高、极高区间,地质灾害发生较频繁,在人类活动强度极低区间地质灾害发生可能性较低(表8)。
表 8 人类活动强度分级及信息量统计表Table 8. Satistics of human activity intensity classification and information评价指标 人类活动分级 Si/S Ni/N 信息量I 数据 0~1.4185 0.4642 0.2406 −0.6569 1.4185~4.5309 0.3624 0.3496 −0.0362 4.5309~5.8821 0.0850 0.1530 0.5878 5.8821~12.2955 0.0884 0.2335 0.9712 3.2 地质灾害危险性评价
3.2.1 评价网格划分
对于基于GIS栅格运算的地质灾害易发性区段评价中,研究区中各致灾因子图层的评价单元,选用正方形标准栅格作为评价单元,确定栅格单元大小的经验公式为:
(3) 式中:Gs——适宜栅格大小;
S——地质灾害评价比例尺的倒数。
评价单元的划分会直接影响评价结果的合理性[12],利用公式(3)并结合本次地质灾害评估的精度要求,使用13.5 m×13.5 m的栅格大小作为评价单元,研究区共划分约2186478个评价单元。
3.2.2 地质灾害危险性评价结果
将所有致灾因子信息量求和,得到2186478个均一条件单元的总信息量值,其范围为−4.732721~3.449854,数值越大,对地质灾害发生的“贡献率”越大,地质灾害越容易发生(图2)[13-16]。
根据各评价单元的信息量值,采用自然间断点法,取−1.18、−0.03、1.26为分界点,将研究区按危险度划分为地质灾害不易发区、低易发区、中易发区和高易发区(表9、图3)[17-19]。
表 9 地质灾害危险度分区面积统计表Table 9. Statistical table of geological hazard area危险度分区 信息量 分区面积/km2 不易发区 −4.732721~−1.18 104.49 低易发区 −1.18~−0.03 157.78 中易发区 −0.03~1.26 116.35 高易发区 1.26~3.449854 19.86 4. 成果验证
通过本次地质灾害危险性评价结果与野外调查成果的215处地质灾害点进行叠合分析,灾点分布情况为:高易发区132处、中易发区80处、低易发区3处、不易发区0处(表10)。地质灾害点的分布结果与地质灾害危险性评价区划相符,评价结果较合理。
表 10 不同危险度分区内地质灾害点数量统计表Table 10. Statistical table of the number of geological disaster points in different risk zones易发区分类 分区面积/km2 地质灾害点数量/个 不易发区 104.49 0 低易发区 157.78 3 中易发区 116.35 80 高易发区 19.86 132 5. 结束语
通过研究区数据分析,得出以下结论:
(1)结合野外实际调查的地质灾害点成果,选取高程、坡度、坡向、断裂、水系、土地利用类型、工程地质岩组、人类活动强度等8个致灾因子,使用信息量模型法对研究区进行地质灾害危险性评价,其中中易发区和高易发区面积分别为116.35,19.86 km2,占研究区总面积的29.2%和4.98%。
(2)根据评价结果,研究区内地质灾害的分布主要受到断裂带的控制,同时在河流、道路、茶园附近,坡度20°~40°的坡面,第四系松散层和强风化层覆盖区域均为地质灾害高发区,需要在重点区域加强地质灾害的防治工作。
-
表 1 不同构造类型趋势面分析表
Table 1 Analysis table of trending surfaces for different tectonic types
构造
类型构造模型 煤层顶板/底板
等值线示意图趋势面残差示意图 断层 走向
断层倾向
断层褶曲 表 2 不同构造类型叠加应力场数值模拟
Table 2 Numerical simulation of superimposed stress fields of different tectonic types
构造
类型0°夹角断层 45°夹角断层 90°夹角断层 构造模型 开采前 20 m迎头 6 m迎头 -
[1] 李忠华,梁影,包思远,等. 断层冲击地压的影响因素分析[J]. 中国地质灾害与防治学报,2020,31(3):126 − 131. [LI Zhonghua,LIANG Ying,BAO Siyuan,et al. Analysis on influence factors of the fault rock burst[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):126 − 131. (in Chinese with English abstract) LI Zhonghua, LIANG Ying, BAO Siyuan, et al. Analysis on influence factors of the fault rock burst[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3)126-131 (in Chinese with English abstract)
[2] PETER HATHERLY. Overview on the application of geophysics in coal mining[J]. International Journal of Coal Geology,2013,114:74 − 84. DOI: 10.1016/j.coal.2013.02.006
[3] 贾天让,王蔚,张子敏,等. 现代构造应力场下断层走向对瓦斯突出的影响[J]. 采矿与安全工程学报,2013,30(6):930 − 934. [JIA Tianrang,WANG Wei,ZHANG Zhimin,et al. Influence of fault strike on gas outburst under modern tectonic stress field[J]. Journal of Mining & Safety Engineering,2013,30(6):930 − 934. (in Chinese with English abstract) JIA Tianrang, WEI Wei, ZHANG Zhimin, et al. Influence of fault strike on gas outburst under modern tectonic stress field[J]. Journal of Mining & Safety Engineering, 2013, 30(6): 930-934. (in Chinese with English abstract)
[4] LI Shucai,LI Shuchen,ZHANG Qingsong,et al. Predicting geological hazards during tunnel construction[J]. Journal of Rock Mechanics and Geotechnical Engineering,2010,2(3):232 − 242. DOI: 10.3724/SP.J.1235.2010.00232
[5] 魏国营,王保军,闫江伟,等. 平顶山八矿突出煤层瓦斯地质控制特征[J]. 煤炭学报,2015,40(3):555 − 561. [WEI Guoying,WANG Baojun,YAN Jiangwei,et al. Gas geological control characteristics of outbursts coal seam in Pingdingshan No. 8 Mine[J]. Journal of China Coal Society,2015,40(3):555 − 561. (in Chinese with English abstract) WEI Guoying, WANG Baojun, YAN Jiangwei, et al. Gas geological control characteristics of outbursts coal seam in Pingdingshan No. 8 Mine[J]. Journal of China Coal Society, 2015, 40(3): 555-561. (in Chinese with English abstract)
[6] 崔洪庆,姚念岗. 不渗透断层与瓦斯灾害防治[J]. 煤炭学报,2010,35(9):1486 − 1489. [CUI Hongqing,YAO Niangang. Impermeable faults and prevention of gas hazards[J]. Journal of China Coal Society,2010,35(9):1486 − 1489. (in Chinese) Cui Hongqing, Yao Niangang. Impermeable faults and prevention of gas hazards[J]. Journal of China Coal Society, 2010, 35(9): 1486-1489. (in Chinese)
[7] ZHU Baolong. Quantitative evaluation of coal-mining geological condition[J]. Procedia Engineering,2011,26:630 − 639. DOI: 10.1016/j.proeng.2011.11.2216
[8] 杨陆武,彭立世,曹运兴. 应用瓦斯地质单元法预测煤与瓦斯突出[J]. 中国地质灾害与防治学报,1997,8(3):21 − 26. [YANG Luwu,PENG Lishi,CAO Yunxing. Application of gas geological division in controlling coal and gas outburst[J]. The Chinese Journal of Geological Hazard and Control,1997,8(3):21 − 26. (in Chinese with English abstract) YANG Luwu, PENG Lishi, CAO Yunxing. Application of gas geological division in controlling coal and gas outburst[J]. The Chinese Journal of Geological Hazard and Control, 1997, 8(3): 21-26. (in Chinese with English abstract)
[9] 冉恒谦,张金昌,谢文卫,等. 地质钻探技术与应用研究[J]. 地质学报,2011,85(11):1806 − 1822. [RAN Hengqian,ZHANG Jinchang,XIE Wenwei,et al. Applications study of geo-drilling technology[J]. Acta Geologica Sinica,2011,85(11):1806 − 1822. (in Chinese) RAN Hengqian, ZHANG Jinchang, XIE Wenwei, et al. Applications study of geo-drilling technology[J]. Acta Geologica Sinica, 2011, 85(11): 1806-1822. (in Chinese)
[10] YAO Ningping,ZHANG Jie,JIN Xing,et al. Status and development of directional drilling technology in coal mine[J]. Procedia Engineering,2014,73:289 − 298. DOI: 10.1016/j.proeng.2014.06.201
[11] LI Shucai, LIU Bin, XU Xianji, et al. An overview of ahead geological prospecting in tunneling[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2017, 63: 69 − 93.
[12] 汪佩,吕闫生,张金陵. 基于地质构造分区的瓦斯地质单元区划方法[J]. 煤炭技术,2021,40(2):89 − 92. [WANG Pei,LYU Yansheng,ZHANG Jinling. Gas geological unit dividing method based on geological structure zoning[J]. Coal Technology,2021,40(2):89 − 92. (in Chinese with English abstract) WANG Pei, LYU Runsheng, ZHANG Jinling. Gas geological unit dividing method based on geological structure zoning[J]. Coal Technology, 2021, 40(2): 89-92. (in Chinese with English abstract)
[13] CAI Yidong,LIU Dameng,YAO Yanbin et al. Geological controls on prediction of coalbed methane of No. 3 coal seam in southern Qinshui Basin,North China[J]. International Journal of Coal Geology,2011,88(2/3):101 − 112.
[14] PAUL S, CHATTERJEE R. Determination of sub-surface stress direction from coal permeability and underground cleat orientation mapping for coal bed methane exploration, Jharia Coalfield, India[C]//International Conference on Unconventional Sources of Fossil Fuels and Carbon Management (ICUSFFCM 2011), 2011, 87(2): 87 − 96.
[15] KANG H,ZHANG X,SI L,et al. In-situ stress measurements and stress distribution characteristics in underground coal mines in China[J]. Engineering Geology,2010,116(3 − 4):333 − 345. DOI: 10.1016/j.enggeo.2010.09.015
[16] YANG Wei,LIN Baiquan,ZHAI Cheng. A new technology for coal and gas control based on the in situ stress distribution and the roadway layout[J]. International Journal of Mining Science and Technology,2012,22(2):145 − 149. DOI: 10.1016/j.ijmst.2011.08.002
[17] 伍小刚,李天斌,张中,等. 传统瞬变电磁法的改进及其在隧道超前地质预报中的应用[J]. 水文地质工程地质,2021,48(1):163 − 170. [WU Xiaogang,LI Tianbin,ZHANG Zhong,et al. Improvement of the traditional transient electromagnetic method and its application to advanced geological forecast of tunnel[J]. Hydrogeology & Engineering Geology,2021,48(1):163 − 170. (in Chinese with English abstract) WU Xiaogang, LI Tianbin, ZHANG Zhong, et al. Improvement of the traditional transient electromagnetic method and its application to advanced geological forecast of tunnel[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 163-170. (in Chinese with English abstract)
[18] SUN Xueyang, XIA Yucheng. Research on development character of middle and small size fault structure in DongPang Mine field on fractal theory[C]//2010 International Conference on Computing, Control and Industrial Engineering. June 5 − 6, 2010, Wuhan, China. IEEE, 2010: 170 − 174.
[19] NIU Yan, ZHAO Jun, LI Zhiyuan, et al. Optimization of geological and mineral exploration by integrating remote sensing technology and borehole database[J]. Wireless Communications and Mobile Computing, 2022: P717749.
[20] DENG Zhaopeng, CAO Maoyong, GENG Yushui, et al. Generating a cylindrical panorama from a forward-looking borehole video for borehole condition analysis[J]. Applied Sciences, 2019, 9(16): 3437.
[21] VAN DYKEM, KLEMETTI T, WICKLINE J. Geologic data collection and assessment techniques in coal mining for ground control[J]. International Journal of Mining Science and Technology,2020,30(1):131 − 139. DOI: 10.1016/j.ijmst.2019.12.003
[22] ZHANG Lei,PAN Jienan,ZHANG Xiaomin. Fuzzy comprehensive evaluation of mining geological condition in the No. 9 coal seam,Linhuan coal mine,Huaibei Coalfield,China[J]. Procedia Environmental Sciences,2012,12:9 − 16. DOI: 10.1016/j.proenv.2012.01.240
[23] 武强,陈红,刘守强. 基于环套原理的ANN型矿井小构造预测方法与应用—以淄博岭子煤矿为例[J]. 煤炭学报,2010,35(3):449 − 453. [WU Qiang,CHEN Hong,LIU Shouqiang. Methodology and application on size-limited structure predictions with ANN based on loop overlapping theory:A case study of Lingzi coal mine in Zibo[J]. Journal of China Coal Society,2010,35(3):449 − 453. (in Chinese with English abstract) WU Qiang, CHEN Hong, LIU Shouqiang. Methodology and application on size-limited structure predictions with ANN based on loop overlapping theory: a case study of Lingzi Coal Mine in Zibo[J]. Journal of China Coal Society, 2010, 35(3): 449-453. (in Chinese with English abstract)
[24] 孙米银. 基于钻孔成像的煤层地质趋势面分析技术[J]. 煤矿安全,2021,52(8):113 − 117. [SUN Miyin. Coal seam geological trend surface analysis technology based on borehole imaging[J]. Safety in Coal Mines,2021,52(8):113 − 117. (in Chinese with English abstract) Sun Miyin. Coal seam geological trend surface analysis technology based on borehole imaging[J]. Safety in Coal Mines, 2021, 52(8): 113-117. (in Chinese with English abstract)
[25] 贾晓亮,崔洪庆,张子敏. 断层端部地应力影响因素数值分析[J]. 煤田地质与勘探,2010,38(4):47 − 51. [JIA Xiaoliang,CUI Hongqing,ZHANG Zimin. Numerical simulation of geostatic stress influening factor at the end of fault[J]. Coal Geology & Exploration,2010,38(4):47 − 51. (in Chinese with English abstract) JIA Xiaoliang, CUI Hongqing, ZHANG Zimin. Numerical simulation of geostatic stress influening factor at the end of fault[J]. Coal Geology & Exploration, 2010, 38(4)47-51 (in Chinese with English abstract)
[26] 刘少伟,焦建康. 九里山井田断层构造区应力分析及区域划分[J]. 中国安全生产科学技术,2014,10(2):44 − 50. [LIU Shaowei,JIAO Jiankang. Stress analysis and division of fault tectonic region in Jiulishan coal field[J]. Journal of Safety Science and Technology,2014,10(2):44 − 50. (in Chinese with English abstract) LIU Shaowei, JIAO Jiankang. Stress analysis and division of fault tectonic region in Jiulishan coal field[J]. Journal of Safety Science and Technology, 2014, 10(2): 44-50. (in Chinese with English abstract)
[27] 李胜,罗明坤,范超军,等. 采煤工作面煤与瓦斯突出危险性智能判识技术[J]. 中国安全科学学报,2016,26(10):76 − 81. [LI Sheng,LUO Mingkun,FAN Chaojun,et al. Research on coal and gas outburst risk intelligent recognition in mining face[J]. China Safety Science Journal,2016,26(10):76 − 81. (in Chinese with English abstract) LI Sheng, LUO Mingkun, FAN Chaojun, et al. Research on coal and gas outburst risk intelligent recognition in mining face[J]. China Safety Science Journal, 2016, 26(10)76-81(in Chinese with English abstract)
[28] 关金锋. 采煤工作面小构造探测及动态分析方法研究[D]. 焦作: 河南理工大学, 2016. GUAN Jinfeng. Study on detection and dynamic analysis method of small structure in coal mining face[D]. Jiaozuo: Henan Polytechnic University, 2016. (in Chinese with English abstract)
[29] HATHERLY P,LEUNG R,SCHEDING S,et al. Drill monitoring results reveal geological conditions in blasthole drilling[J]. International Journal of Rock Mechanics and Mining Sciences,2015,78:144 − 154. DOI: 10.1016/j.ijrmms.2015.05.006
[30] YANG Wei,LIN Baiquan,XU Jiangtao. Gas outburst affected by original rock stress direction[J]. Natural Hazards,2014,72(2):1063 − 1074. DOI: 10.1007/s11069-014-1049-z
[31] 刘杰,王恩元,赵恩来,等. 深部工作面采动应力场分布变化规律实测研究[J]. 采矿与安全工程学报,2014,31(1):60 − 65. [LIU Jie,WANG Enyuan,ZHAO Enlai,et al. Distribution and variation of mining-induced stress field in deep workface[J]. Journal of Mining and Safety Engineering,2014,31(1):60 − 65. (in Chinese with English abstract) LIU Jie, WANG Enyuan, ZHAO Enlai, et al. Distribution and variation of mining-induced stress field in deep workface[J]. Journal of Mining and Safety Engineering, 2014, 31(1): 60-65. (in Chinese with English abstract)
[32] 勾攀峰,韦四江,张盛. 不同水平应力对巷道稳定性的模拟研究[J]. 采矿与安全工程学报,2010,27(2):143 − 148. [GOU Panfeng,WEI Sijiang,ZHANG Sheng. Numerical simulation of effect of horizontal stresses at different levels on stability of roadways[J]. Journal of Mining & Safety Engineering,2010,27(2):143 − 148. (in Chinese with English abstract) GOU Panfeng, WEI Sijiang, ZHANG Sheng. Numerical simulation of effect of horizontal stresses at different levels on stability of roadways[J]. Journal of Mining & Safety Engineering, 2010, 27(2): 143-148. (in Chinese with English abstract)
[33] BABAEI KHORZOUGHI M,HALL R. Processing of measurement while drilling data for rock mass characterization[J]. International Journal of Mining Science and Technology,2016,26(6):989 − 994. DOI: 10.1016/j.ijmst.2016.09.005
[34] 张纪星,师修昌. 浅埋采空区大采高条件下覆岩破坏规律[J]. 中国地质灾害与防治学报,2019,30(5):92 − 97. [ZHANG Jixing,SHI Xiuchang. Failure of overburden rock under large mining height in shallow buried goaf area[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):92 − 97. (in Chinese with English abstract) ZHANG Jixing, SHI Xiuchang. Failure of overburden rock under large mining height in shallow buried goaf area[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(5)92-97 (in Chinese with English abstract)
[35] 蒋金泉,武泉林,曲华. 硬厚覆岩正断层附近采动应力演化特征[J]. 采矿与安全工程学报,2014,31(6):881 − 887. [JIANG Jinquan,WU Quanlin,QU Hua. Evolutionary characteristics of mining stress near the hard-thick overburden normal faults[J]. Journal of Mining & Safety Engineering,2014,31(6):881 − 887. (in Chinese with English abstract) JIANG Jinquan, WU Quanlin, QU Hua. Evolutionary characteristics of mining stress near the hard-thick overburden normal faults[J]. Journal of Mining & Safety Engineering, 2014, 31(6): 881-887. (in Chinese with English abstract)
-
期刊类型引用(5)
1. 刘新荣,罗新飏,郭雪岩,周小涵,王浩,许彬,郑颖人. 巫山段岸坡水岩劣化特征及危岩失稳破坏模式. 工程地质学报. 2025(01): 240-257 . 百度学术
2. 陈亚洲,杨鹏,曹廷. 两河口库区常见岸坡类型及变形破坏机制研究. 四川水力发电. 2024(06): 130-133 . 百度学术
3. 黄浩,余姝,郭健,赵鹏,张枝华. 顺层陡倾斜坡溃屈破坏机理研究. 煤炭科技. 2023(05): 9-16 . 百度学术
4. 檀梦皎,殷坤龙,付智勇,朱春芳,陶小虎,朱延辉. 降雨及库水位影响下麻地湾滑坡地下水响应特征分析. 中国地质灾害与防治学报. 2022(01): 45-57 . 本站查看
5. 宋俊宏. 基于PFC的乔连河岸坡岩石力学特性及动力响应特征研究. 甘肃水利水电技术. 2022(06): 27-31+37 . 百度学术
其他类型引用(3)