ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

基于“D”型深孔测斜曲线的滑坡滑动面位置确定方法研究

陈浩, 吴红刚, 谌清

陈浩,吴红刚,谌清. 基于“D”型深孔测斜曲线的滑坡滑动面位置确定方法研究[J]. 中国地质灾害与防治学报,2024,35(4): 93-105. DOI: 10.16031/j.cnki.issn.1003-8035.202210031
引用本文: 陈浩,吴红刚,谌清. 基于“D”型深孔测斜曲线的滑坡滑动面位置确定方法研究[J]. 中国地质灾害与防治学报,2024,35(4): 93-105. DOI: 10.16031/j.cnki.issn.1003-8035.202210031
CHEN Hao,WU Honggang,CHEN Qing. Study on the method for determining the position of landslide slip surface based on “D” type inclinometer curve[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4): 93-105. DOI: 10.16031/j.cnki.issn.1003-8035.202210031
Citation: CHEN Hao,WU Honggang,CHEN Qing. Study on the method for determining the position of landslide slip surface based on “D” type inclinometer curve[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4): 93-105. DOI: 10.16031/j.cnki.issn.1003-8035.202210031

基于“D”型深孔测斜曲线的滑坡滑动面位置确定方法研究

基金项目: 国家重点研发计划(2018YFC1504903);青海省重点研发与转化计划(科技成果转化专项2022-SF-158);中国中铁股份有限公司科技研究开发计划(2022-重大专项-07);甘肃省技术创新引导计划-企业研发机构能力建设专项资助(23CXJA0011)
详细信息
    作者简介:

    陈 浩(1997—),男,广东梅州人,地质灾害防治专业,硕士,工程师,主要从事地质灾害监测预警、评价与防治方面的研究工作。E-mail:854914850@qq.com

    通讯作者:

    吴红刚(1983—),男,陕西宝鸡人,地质灾害防治及监测预警专业,博士,正高级工程师,主要从事地质灾害防治研究工作。E-mail:271462550@qq.com

  • 中图分类号: P642.22

Study on the method for determining the position of landslide slip surface based on “D” type inclinometer curve

  • 摘要:

    在实际的深孔位移监测中,测斜曲线的突变特征是滑动面辨识的关键依据,前人通过大量的研究总结将滑动面迹象显著的测斜曲线类型分为了“B”型、“D”型、“r”型等几种。其中,对于“D”型测斜曲线通常是将曲线的鼓包凸起点作为滑动面的位置,但这种方法容易受到测点布置间隔和横纵坐标观测尺度的影响,存在滑面位置定义不清晰、数值不确定的问题。为了能够有效地克服这些缺点,提升测斜曲线滑动面辨识的准确度,基于“D”型测斜曲线变化特征,将滑坡抽象为由“滑动体”“滑动区间”以及“不动体”三者组成的概化模型,根据三者抗弯刚度的差异建立外界荷载作用下的杆件力学模型,深入分析滑坡运动过程中不同深度处土体的变形特点。研究表明,由于“D”型曲线滑动面并未完全贯通,使得土体沿深度方向变形连续无突变,力学模型中杆件正负弯矩的分界点是变形曲线水平位移最大处,能够真实地反映滑坡变形特点以及滑动面的位置。将土体累计位移转化为相对位移,则“D”型深孔测斜曲线变为了“S”型相对位移-深度曲线,且“S”型曲线的拐点与滑动面的位置相近;通过提取监测期内不同深度处土体的平均相对位移,运用三次样条插值法计算“S”型区段内拐点的深度值,能够更加精准地确定滑动面位置,更好地提升深孔位移监测的可靠度和准确度,具有较大的实用价值。

    Abstract:

    In borehole monitoring for deep displacement, the abrupt characteristics of inclinometer curves are the key basis for identifying the sliding surface. Previous studies have summarized several types of inclinometer curve patterns that exhibit significant sliding surface signals, including “B” “D”and “r” types. For “D” type inclinometer curves, the convex point of the curve is typically used as the position of the sliding surface. However, this method is susceptible to the influence of observation points spacing and coordinate observation scales, which can result in an unclear definition of the sliding surface position and uncertain numerical values. To overcome these drawbacks and improve the accuracy of sliding surface identification in inclinometer curves, a generalized model of landslides composed of “sliding body” “sliding interval” and “immovable body” was developed based on the variation characteristics of the “D” type inclinometer curve. A mechanical strut model subjected to external loads was established based on the different flexural rigidity of the three members, and the deformation characteristics of soil at different depths during landslide movement were analyzed in depth. The study found that the sliding surface of “D” curve does not entirely penetrate, leading to continuous soil deformation along the depth direction without abrupt change. The demarcation point of the positive and negative bending moments in the mechanical model is a location where the horizontal displacement of deformation curve is the largest, which can reflect the real deformation characteristics of the landslide and the position of the sliding surface. By converted the accumulated soil displacement into relative displacement, the “D” type inclinometer curve is transformed into “S” type relative displacement-depth curve, and the inflection point of the “S” type curve is close to the position of the sliding surface. By extracting the average relative displacement of soil at different depths during the monitoring period and calculating the depth value of the inflection point in the “S” type segment by using the cubic spline interpolation method, the position of the sliding surface can be determined more accurately, which can greatly improve the reliability and accuracy of deep displacement monitoring and has significant practical value.

  • 近年来,西部黄土丘陵沟壑区为增加城市、机场、工业等建设用地,开展了大量黄土高填方工程。黄土高填方场地由于跨越不同地质单元,原始地形变化大、地质条件复杂、岩土软硬不同,填方薄厚不均,土方填筑完成后,场地中常有裂缝发育。当地表水沿裂缝下渗时,会使裂缝带附近地基产生显著的潜蚀、湿陷和软化等复杂的物理和化学变化过程,进一步加剧裂缝发育,使地表产生不均匀沉降,若不加以处理,将成为工程的安全隐患,引发地面设施的差异变形和开裂破坏,这无疑是黄土高填方工程十分关心的问题。因此,认清黄土高填方场地内裂缝的发育特征和分布规律,是裂缝防治的基础。

    地裂缝是一种由多种因素引起的地表岩层或土体开裂,并在地面形成一定长度和宽度裂缝的宏观破坏现象,严重时会成为一种地质灾害[1]。各领域对地裂缝研究的侧重点不同,如工程地质领域对裂缝的研究工作主要集中在新构造活动引起的裂缝[2]、采矿区塌陷引起的裂缝[3]、平原区抽取地下水引起的裂缝[4]等;岩土工程领域对裂缝的研究主要集中在边坡[5-6]、土石坝[7-10]和路基[11-12]等工程。在黄土高填方工程中,近年来国内学者围绕高填方场地变形[13]、挖填边坡稳定性[14]、地下水环境变化[15]等做了大量研究工作,但鲜有关于黄土高填方场地裂缝的实测资料和分析研究成果。本文基于陕北某黄土高填方场地裂缝的实测资料,分析了裂缝的发育特征、分布规律和时间变化,相关成果可为裂缝防治提供科学依据,为黄土高填方地基技术标准的制订提供参考。

    某黄土高填方工程地处陕北黄土丘陵沟壑区,属于为增加城镇建设用地开展的大面积造地工程,一期规划面积10.5 km2,南北向长度约5.5 km,东西向宽度约2.0 km,挖方体积约为2.0×108 m3,填方体积约为1.6×108 m3,最大挖方厚度约为118 m,最大填方厚度约为112 m。本工程自2012年4月17日起开工建设,2012年11月15日—2013年3月15日为冬歇停工期,至2013年10月底土方施工陆续完工,施工期历时约1.5年。

    典型的黄土高填方场地剖面示意图如图1所示。黄土高填方场地是由“三面”(原地基表面、填筑体表面和挖填边坡面)、“二体”(原地基体和填筑体)、“二水”(地下水和地表水)构成的特殊地质体,受原始沟谷地形影响,填土厚度差异较大,沟谷中部的填土厚度大,由沟谷底部向斜坡方向逐渐变薄。

    图  1  黄土高填方场地的剖面示意图
    Figure  1.  Section diagram of high loess filled ground

    本工程原始场地受构造剥蚀作用,呈“U”形或“V”形,地貌单元属黄土粱、峁、沟壑地带。场地内主要出露地层为第四系、新近系和侏罗系,其中:第四系包括全新统洪积层粉土、上更新统马兰黄土、中更新统离石黄土;新近系岩性为棕红色、暗紫色黏土,含大量钙质结核,半胶结;侏罗系岩性为砂岩、泥岩互层。

    本工程沿原沟谷沟底设置了树枝状的地下盲沟排水系统,将地下水引出场外,控制地下水位稳定。原地基沟谷区的淤积土、湿陷性黄土、松散堆积物和沟谷斜坡接茬部位均采用强夯法处理。填筑体采用分层碾压法(冲击碾压、振动碾压)处理,填料主要来自于黄土梁峁区挖填线以上各土层,主要为上更新统黄土及古土壤、中更新统黄土及古土壤,压实质量采用重型击实试验控制,控制标准为压实系数不小于0.93。

    本次对本工程试验场地内的裂缝进行监测与探测,采取的方法及测点布置情况如下:

    (1)裂缝表面特征测量:本工程试验场地土方填筑完成后,笔者自2013年11月中旬开始,对场地进行全区域巡视观察,并采用GPS-RTK、测尺对长度超过1 m、宽度超过5 mm的裂缝位置、长度和宽度进行了测量记录。

    (2)裂缝内部特征探测:采用高密度电法探测典型裂缝发育区域地表下裂缝(含伴生落水洞)的发育情况,测试仪器为DUK-2A60,测试工作参照《水利水电工程物探规程》[16],间隔系数为19,收敛系数设1,有效电极数为60个,采用温纳四极工作模式,测线上电极间距均为4 m。

    (3)裂缝表面宽度监测:本次除在裂缝两侧设置固定标志点,采用钢尺测量标志点间的相对位移外,为了实现对裂缝宽度变化的自动化监测,设计了一种电测式裂缝宽度监测装置,该装置由位移计、位移传递杆、套管、伸缩波纹管、扶正导向器、锚固板和数据自动采集传输系统等组成,其结构如图2所示,各组件说明如下:

    ①位移计:采用电感调频式位移传感器,量程为400 mm,精度为1‰FS.。

    ②位移传递杆:采用外径26.9 mm无缝钢管加工,位移传递杆与锚固板连接。

    ③套管:采用外径53 mm的测斜管加工,内壁带有十字导槽。

    ④伸缩波纹管:采用内径为55 mm的金属波纹管,波纹管纵向能自由伸缩,外套于套管上,将套管与周围土体分开,防止泥土进入套管内。

    ⑤扶正导向器:由导向杆和导向轮组成,长度为50 cm,导向轮由扭簧撑开,导向轮位于导槽内,使位移传递杆位于套管轴线。

    ⑥锚固板:采用直径300 mm、厚度5 mm的钢板加工,由水泥砂浆浇筑到安装槽两端的坑槽中,使锚固板与裂缝两侧土体成为一体。

    ⑦数据自动采集传输系统:由数据采集控制模块、无线传输模块、太阳能供电系统、监控中心服务器等组成。

    图  2  电测式裂缝宽度监测装置结构示意图
    Figure  2.  Schematic diagram of electronic measurement device for measuring width of ground fissures

    本裂缝宽度监测装置的工作原理是:当裂缝宽度变化时,土层将带动锚固板同步变形,裂缝两侧锚固板之间发生相对位移,位移传递杆将相对位移传递给位移计进行测量,位移计前后两次测量值之差即为裂缝表面宽度的变化量。

    试验场地于2013年11月15日起进入冬歇期停工,2013年12月14日在场地巡察时发现1B-LF1号裂缝,2013年12月17日在该裂缝处安装了裂缝表面宽度监测装置,裂缝宽度监测点布置情况如图3所示。

    图3所示,1B-LF1号裂缝上共设置了7组监测点,除监测位置LFJC-2采用电测式裂缝宽度监测装置外,其余监测位置均通过钢尺测量裂缝两侧固定标志点间的相对位移变化,其中监测位置LFJC-0与LFJC-2用于对比两种监测方法的观测效果,二者之间水平相距0.4 m。裂缝表面宽度的监测工作,自2013年12月22日开始至2014年3月15日复工后结束。

    试验场地中出现的裂缝有干缩裂缝、冻融裂缝、沉降裂缝等,其中干缩裂缝、冻融裂缝都发生浅表层,裂缝的长度较短和深度较浅,对工程影响很小,而沉降裂缝发育较多,且在地表下一定深度,对工程影响较大。试验场地内的典型沉降裂缝照片如图4所示。典型裂缝形态与组合如图5所示。由图5可知,场地内裂缝的形态主要为直线状、弧线状、波纹状和分叉状等,平面组合方式主要有侧列式、侧现式和断续式等形式。

    图  3  1B-LF1号裂缝上裂缝宽度监测点的布置图
    Figure  3.  Layout of monitoring positions
    图  4  试验场地内的典型裂缝
    Figure  4.  Typical fissures in the testing site
    图  5  裂缝的典型形态与组合
    Figure  5.  The typical forms and combinations of fissures

    通过实地调查发现,裂缝的裂口呈上宽下窄的尖楔形,壁面粗糙不平,两壁无明显错动迹象,部分裂缝下部被上部风干或脱落的土颗粒填充,从地面肉眼可见部分出露深度一般不超过2 m,但其向下部延伸可能更深。由于黄土高填方场地中的裂缝带土体松散破碎,孔隙较大,当有地表水入渗时,裂缝带容易形成冲沟或低洼地带,而这些负地形又成为地表水的汇聚点和入渗的优势通道,为此,一些地势较低的区域,裂缝有时会伴生有塌陷落水洞。试验场地中某典型裂缝及伴生落水洞的现场照片如图6所示。为了查明该典型裂缝(含伴生落水洞)在地下的延伸情况,本次采高密度电法对该裂缝的内部发育特征进行探测,探测线的布设情况如图7所示。

    图  6  裂缝及伴生落水洞
    Figure  6.  The fissures and associated sinkholes
    图  7  高密度电法探测线布置图
    Figure  7.  Detection lines for high-density resistivity method

    图7所示,除测线CX4完全在挖方区外,其它测线CX1、CX2、CX3、CX5、CX6均跨越挖方区和填方区。图8为高密度电法反演电阻率剖面图。由CX1~CX6测线的反演电阻率值范围统计可知,挖方区电阻率范围一般为10~50 Ω·m,填方区电阻率变化范围一般为40~90 Ω·m,填方区电阻率总体高于挖方区。CX4测点无高阻异常区,表明该测线的地下无明显裂缝带或落水洞发育;CX1、CX3、CX5、CX6在浅部地层(深度5 m范围内)有向上开口的密集、高阻半闭合圈;CX2测线横穿裂缝延伸线,当向地下供电探测时,电流线在距起点50~70 m,深度0~10 m范围内,产生强烈的排斥作用,存在明显的高阻异常区,其电阻率达到90~186 Ω·m,反映在地电剖面上电阻率等值线为闭合高阻圈。根据类似工程场地的探测经验,可初步判定该区域地面下可能存在隐伏落水洞,后经人工洛阳铲探测证实,6.5~7.5 m处土层明显松散,洛阳铲头易于贯入。

    图  8  测线的电阻率剖面图
    Figure  8.  Resistivity profile of each detection line

    综合各测线的电阻率测试结果可知,裂缝及伴生的隐伏落水洞(或松散填充体)主要沿原沟谷与填筑体接茬面顺谷坡发育,发育区域主要集中在测线CX1、CX3之间与测线CX4、CX6之间的各测线交汇形成四边形范围内,作为未来裂缝及其伴生落水洞采用强夯法处理的重点区域,强夯影响深度应不小于8.0 m。

    截止2014年8月13日,试验场地内共发现沉降裂缝84条,其中最长的裂缝延伸达283 m,最大缝宽达52 mm。裂缝的统计分析结果显示,分布在填方区的裂缝占总数的94%,而分布在挖方区的裂缝仅占总数的6%。裂缝数量在不同填土厚度区间的分布情况如图9所示。填方厚度为0~5 m、5~10 m、10~15 m、15~20 m和>20 m区间内的裂缝数量分别占裂缝总数量的63.3%、25.3%、6.3%、0%和5.1%。通过统计填方区裂缝与挖填交界线距离,得到裂缝数量在不同距离区间的分布情况如图10所示。裂缝与挖填分界线距离为0~5 m、5~10 m、10~15 m、15~20 m和>20 m区间内的裂缝数量分别占裂缝总数量的19.0%、25.3%、15.2%、12.7%和27.9%。裂缝延伸长度的统计情况如图11所示。裂缝延展长度主要集中在0~60 m,以20~40 m为最多(占裂缝总数的40%),其余裂缝以20 m为差值区间,发育数量大致相当,裂缝的平均长度约49 m。各裂缝最大张开宽度的统计结果如图12所示。由图可知,裂缝宽度普遍较小,其中宽度在5~15 mm的裂缝,超过总数的一半,裂缝的最大宽度约为52 mm,平均约为21 mm。

    图  9  裂缝数量在不同填土厚度区间的分布
    Figure  9.  The number of fissures in different intervals of filling thickness
    图  10  裂缝数量在不同距离区间的分布
    Figure  10.  Nnumber of fissures in different distance intervals from excavation-filling boundary
    图  11  裂缝数量在不同长度区间的分布
    Figure  11.  Number of fissures in different intervals of length
    图  12  裂缝最大张开宽度情况统计
    Figure  12.  Statistics of the maximum opening width of fissures

    基于上述统计结果可知,裂缝主要发生在挖填分界线填方区一侧,填方厚度小于15 m以及距离挖填分界线20 m以内的条带状区域内,且以挖填交界面过渡带(挖填厚度≤5 m)范围为主。从裂缝分布及地形资料分析发现,裂缝的空间分布、发育时间和发育产状具有如下特点:

    (1) 成带性:裂缝在空间分布上集中分布在挖填交界过渡带,在原地基地形变化较大的地段一般会出现主干裂缝和伴生裂缝组成的裂缝带。

    (2) 时效性:根据现场调查发现,填方竣工或阶段性停工初期(一般是1个月后开始出现)是裂缝高发期,这时填方区会有较大的差异沉降,裂缝多在该时段集中出现,且有持续开裂、相互贯通的趋势。随着地基变形逐步稳定,因差异沉降引起的裂缝,出现的数量逐步减少。此外,由于填筑区域范围大,工段多,工作面分散,各工作面起始填筑标高不一,不可避免的存在工作面搭接,工作面搭接部位因填筑时序不同,产生差异沉降,形成的裂缝仅在施工停歇期出现,竣工后尚未发现。

    (3) 方向性:裂缝发育产状与原地基地形有明显的对应关系,裂缝倾向大致与原沟谷坡体倾向近乎垂直,裂缝走向几乎与挖填界线或原地基等高线基本一致,并随原沟谷斜坡地形曲折变化。

    典型裂缝表面宽度的历时曲线如图13所示。由图可知,监测位置LFJC-0与LFJC-2的监测结果基本一致,表明设计的裂缝宽度监测新装置的测试结果可靠。裂缝表面宽度在停工初期变化较快,约1个月后裂缝表面宽度增大速率明显降低,并逐步趋于稳定。监测区域的裂缝表面宽度变化规律表明,裂缝从出现到趋于缓慢需要约3个月时间,在此期间,裂缝两侧的差异沉降增大较快,对应裂缝宽度也将持续增大,若过早的对裂缝进行处理,则反而会因该区域的沉降尚未稳定,显露裂缝大概率会再次出现。因此,在裂缝处理前应防止地表水沿缝汇集下渗,宜待裂缝宽度基本稳定后,再对裂缝发育区域采取强夯处理。

    图  13  裂缝宽度随时间变化曲线
    Figure  13.  Curves of fissures width with time

    黄土高填方场地的沉降变形由原地基沉降和填筑体沉降两部分组成。原地基沟谷中存在人工填土层、湿陷性黄土层和淤积土层等,虽然经过夯实处理,但在上覆大厚度填土荷载作用下,仍会产生较大的固结压缩沉降。填筑体为非饱和土,采取分层填筑施工,在自重压力的作用下会产生压密沉降,虽然施工期已完成大部分沉降变形,但工后期仍会有工后沉降。

    试验场地内某典型沟谷横断面的工后沉降曲线如图14所示。图中沟谷横断面方向的回填土厚度由沟谷中心向斜坡方向逐步减小,对应沟谷横剖面方向的沉降变形从沟中线向沟谷两侧逐步减小,呈现出中间大、两边小的盆腔形态,在挖方区甚至有回弹变形。沟谷形的黄土高填方场地,虽然沿原沟谷中心向沟谷两侧原地基体土层厚度逐步增大,但填土厚度逐步减小,中部沉降仍大于两侧,表明高填方沉降量主要受填土厚度控制。前人以沟谷地形中黄土高填方场地为原型,开展的大型离心模型试验结果显示[17]:填筑体浅层变形较深层变形更为明显,填筑体顶面沉降基本呈现下“凹”弯沉盆形式;远离沟谷斜坡处的填土厚度相对均匀,填土变形以竖直方向沉降为主,而靠近沟谷斜坡位置,土体还会发生指向沟谷中心方向的水平位移。上述变形特征,会使挖填交界带附近产生较大的拉张应力,当拉张应力超过土体的抗拉强度后,最终导致挖填交接带附近形成裂缝(图15)。

    图  14  典型横断面的工后沉降曲线
    Figure  14.  Curves of post-construction settlement of typical cross section
    图  15  挖填交接带的裂缝示意图
    Figure  15.  Schematic diagram of fissures in the transition zone between excavation and filling ground

    (1) 沟谷地形中的黄土高填方场地裂缝在平面形态上可分为直线状、弧线状、波纹状、交叉状等,裂缝的空间分布具有成带性,发育时间具有时效性,发育产状具有方向性等特点。

    (2) 裂缝主要分布于填方厚度小于15 m及距离挖填分界线20 m以内的区域内,以挖填交界过渡带(挖填厚度≤5 m)为主,裂缝走向与挖填界线或原地基的等高线近似一致。

    (3) 典型裂缝的高密度电法探测结果显示,试验场地裂缝及伴生的隐伏型落水洞主要沿原谷坡与填筑体接茬面发育,对其进行强夯处理时,强夯影响深度不应少于8 m。

    (4) 试验场地的裂缝出现在土方填筑施工停止1个月后,裂缝宽度增大速率逐渐降低,从出现到趋于稳定约需3个月时间,因此建议处理时机选择在裂缝宽度变化趋于稳定后实施。

    (5) 沟谷地形、填土厚度变化引起的差异沉降和沟谷两侧填土发生朝向沟谷中心的水平位移,导致挖填交界带土体内产生的拉张力超过土体抗拉强度,是裂缝产生的主要原因。

  • 图  1   深孔测斜曲线的特征类型

    Figure  1.   Schematic view of the characteristic types of deep-hole inclinometer curve

    图  2   概化模型示意图

    Figure  2.   Schematic diagram of the generalized model

    图  3   力学模型示意图

    Figure  3.   Schematic diagram of the mechanical strut model

    图  4   深孔测斜曲线

    Figure  4.   Deep-hole inclinometer curve

    图  5   相对位移-深度曲线

    Figure  5.   Relative displacement-depth curve

    图  6   曲线局部放大图

    Figure  6.   Partial enlarged drawing of curve

    图  7   相对位移-深度散点图

    Figure  7.   Relative displacemen-depth scatter plot

    图  8   箱型图图示

    Figure  8.   Box diagram illustration

    图  9   相对位移-深度箱型图

    Figure  9.   Relative displacement-depth box diagram

    图  10   平均相对位移-深度点线图

    Figure  10.   Average relative displacement-depth diagram

    图  11   单调区间平均相对位移-深度散点图

    Figure  11.   Average relative displacement-depth scatter plot in Monotonic interval

    图  12   滑动面位置示意图

    Figure  12.   Schematic diagram of the sliding surface position

    图  13   “r”型曲线平均相对位移点线图

    Figure  13.   Point line diagram of the average relative displacement of the "r" curve

    表  1   深孔测斜曲线典型类型

    Table  1   Typical types of deep-hole inclinometer curve

    曲线类型坡体破坏类型曲线特征滑坡变形破坏情况滑动面发展程度
    钟摆型倾倒变形累计位移在整个深度范围内于初测值附近摆动,
    摆动幅度一般小于10 mm
    滑坡岩土体的深部位移很小,
    边坡处于稳定状态
    未贯通
    “V”型顺层溃屈上部位移较大而底部位移很小,曲线总体呈线性特征滑坡内部没有形成明显的滑动面,
    处于蠕动变形阶段
    未贯通
    “r”型切层滑移、顺层滑移、崩塌累计位移在一个较浅的位置产生较为明显的突变,
    而其下部的位置则相对较小
    滑坡岩土体在浅部形成明显的滑动面贯通
    “D”型切层滑移、顺层溃屈累计位移在某一个较深的位置产生突变,
    而其上部产生近似整体的移动
    滑坡深部产生了一个明显的滑动面接近贯通
    “B”型顺层滑移累计位移在多个位置产生较为明显的突变,
    曲线呈现类似“阶梯”或“波浪”状
    滑坡岩土体内部形成了多个滑动面接近贯通
    下载: 导出CSV
  • [1] 徐邦栋. 滑坡分析与防治[M]. 北京: 中国铁道出版社, 2001

    XU Bangdong. Landslide analysis and prevention[M]. Beijing: China Railway Publishing House, 2001. (in Chinese)

    [2] 陈开圣,彭小平. 测斜仪在滑坡变形监测中的应用[J]. 岩土工程技术,2006,20(1):39 − 41. [CHEN Kaisheng,PENG Xiaoping. Applications of inclinometer in monitoring deformations of landslide[J]. Geotechnical Engineering Technique,2006,20(1):39 − 41. (in Chinese with English abstract)

    CHEN Kaisheng, PENG Xiaoping. Applications of inclinometer in monitoring deformations of landslide[J]. Geotechnical Engineering Technique, 2006, 20(1): 39-41. (in Chinese with English abstract)

    [3]

    ZHAO Xin,LI Guo,ZHAO Zhifang,et al. Identifying the spatiotemporal characteristics of individual red bed landslides:A case study in western Yunnan,China[J]. Journal of Mountain Science,2022,19(6):1748 − 1766. DOI: 10.1007/s11629-022-7339-0

    [4]

    JIN Xiaoguang, HONG Wei, ZHU Ling, et al. Study on time-space motivation and operation mechanic of landslide: A case of Zhenzilin landslide in Sichuan-Tibet highway[J]. Advanced Materials Research, 2011, 243/244/245/246/247/248/249: 2811-2818.

    [5]

    HAI Dongjiang. Study on statistical characteristics of deep displacement of monitoring data for soil slope[J]. Environmental and Earth Sciences Research Journal,2015,2(4):11 − 16.

    [6] 靳晓光,王兰生,李晓红. 滑坡滑动面位置的确定及超前预测[J]. 中国地质灾害与防治学报,2001,12(1):10 − 12. [JIN Xiaoguang,WANG Lansheng,LI Xiaohong. Determination and advanced forcasting on slide plane position for landslide[J]. The Chinese Journal of Geological Hazard and Control,2001,12(1):10 − 12. (in Chinese with English abstract)

    JIN Xiaoguang, WANG Lansheng, LI Xiaohong. Determination and advanced forcasting on slide plane position for landslide[J]. The Chinese Journal of Geological Hazard and Control, 2001, 12(1): 10-12. (in Chinese with English abstract)

    [7]

    FEARNHEAD N,MANISCALCO K,STANDING J R,et al. Deep excavations:Monitoring mechanisms of ground displacement[J]. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering,2014,167(2):117 − 129. DOI: 10.1680/geng.13.00047

    [8] 陈贺, 汤华, 葛修润, 等. 基于深部位移的蠕滑型滑坡预警指标及预警预报研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3015 − 3024

    CHEN He, TANG Hua, GE Xiurun, et al. Research on early warning of creep landslide by early-warning indictors based on deep displacements[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Sup 1): 3015 − 3024. (in Chinese with English abstract)

    [9] 李聪,朱杰兵,汪斌,等. 滑坡不同变形阶段演化规律与变形速率预警判据研究[J]. 岩石力学与工程学报,2016,35(7):1407 − 1414. [LI Cong,ZHU Jiebing,WANG Bin,et al. Critical deformation velocity of landslides in different deformation phases[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1407 − 1414. (in Chinese with English abstract)

    LI Cong, ZHU Jiebing, WANG Bin, et al. Critical deformation velocity of landslides in different deformation phases[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1407-1414. (in Chinese with English abstract)

    [10] 许强,曾裕平,钱江澎,等. 一种改进的切线角及对应的滑坡预警判据[J]. 地质通报,2009,28(4):501 − 505. [XU Qiang,ZENG Yuping,QIAN Jiangpeng,et al. Study on a improved tangential angle and the corresponding landslide pre-warning criteria[J]. Geological Bulletin of China,2009,28(4):501 − 505. (in Chinese with English abstract)

    XU Qiang, ZENG Yuping, QIAN Jiangpeng, et al. Study on a improved tangential angle and the corresponding landslide pre-warning criteria[J]. Geological Bulletin of China, 2009, 28(4): 501-505. (in Chinese with English abstract)

    [11] 吴香根,夏阳,邢志会. 深孔位移监测技术在滑坡勘察中的应用[J]. 路基工程,2010(5):195 − 198. [WU Xianggen,XIA Yang,XING Zhihui. Application of deep hole displacement monitoring technique in landslide survey[J]. Subgrade Engineering,2010(5):195 − 198. (in Chinese with English abstract)

    WU Xianggen, XIA Yang, XING Zhihui. Application of deep hole displacement monitoring technique in landslide survey[J]. Subgrade Engineering, 2010(5): 195-198. (in Chinese with English abstract)

    [12] 陈云生,刘光彬,张一铭,等. 阳鹿高速公路K52新滑坡变形特征与成因机理分析[J]. 中国地质灾害与防治学报,2022,33(1):83 − 91. [CHEN Yunsheng, LIU Guangbin, ZHANG Yiming, et al. Deformation characteristics and genetic mechanism of a new landslide at K52 of Luyang freeway[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):83 − 91. (in Chinese with English abstract)

    CHEN Yunsheng, LIU Guangbin, ZHANG Yiming, et al. Deformation characteristics and genetic mechanism of a new landslide at K52 of Luyang freeway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 83-91.(in Chinese with English abstract)

    [13] 张位华,刘勇,彭小平. 钻孔测斜成果曲线在贵州省晴隆滑坡稳定性判识中的应用[J]. 中国地质灾害与防治学报,2009,20(1):108 − 112. [ZHANG Weihua,LIU Yong,PENG Xiaoping. Application of borehole deep displacement measuring production curve in stability discrimination of Qinglong landslide[J]. The Chinese Journal of Geological Hazard and Control,2009,20(1):108 − 112. (in Chinese with English abstract)

    ZHANG Weihua, LIU Yong, PENG Xiaoping. Application of borehole deep displacement measuring production curve in stability discrimination of Qinglong landslide[J]. The Chinese Journal of Geological Hazard and Control, 2009, 20(1): 108-112. (in Chinese with English abstract)

    [14] 靳晓光,李晓红,王兰生,等. 滑坡深部位移曲线特征及稳定性判识[J]. 山地学报,2000,18(5):440 − 444. [JIN Xiaoguang,LI Xiaohong,WANG Lansheng,et al. Characteristics of landslide deep displacement curve and stability discriminant[J]. Journal of Mountain Science,2000,18(5):440 − 444. (in Chinese with English abstract)

    Jin Xiaoguang, Li Xiaohong, Wang Lansheng, et al. Characteristics of landslide deep displacement curve and stability discriminant[J]. Journal of Mountain Science, 2000, 18(5): /span>440-444spanstyle=color: rgb(51. (in Chinese with English abstract)

    [15] 胡瑞林,王珊珊. 滑坡滑面(带)的辩识[J]. 工程地质学报,2010,18(1):35 − 40. [HU Ruilin,WANG Shanshan. Main features and identification method of sliding-surfaces in soil and rock slopes[J]. Journal of Engineering Geology,2010,18(1):35 − 40. (in Chinese with English abstract)

    HU Ruilin, WANG Shanshan. Main features and identification method of sliding-surfaces in soil and rock slopes[J]. Journal of Engineering Geology, 2010, 18(1): 35-40. (in Chinese with English abstract)

    [16] 潘惠芳. 基于深部位移曲线形态的边坡变形特征分析[J]. 福建建筑,2019(5):54 − 61. [PAN Huifang. Analysis of slope deformation characteristics based on deep displacement curves[J]. Fujian Architecture & Construction,2019(5):54 − 61. (in Chinese with English abstract)

    PAN Huifang. Analysis of slope deformation characteristics based on deep displacement curves[J]. Fujian Architecture & Construction, 2019(5): 54-61. (in Chinese with English abstract)

    [17] 朱泽奇,胡琪堂,龚擎玉,等. 基于深部位移曲线特征的公路边坡稳定性评价方法研究[J]. 公路,2019,64(1):13 − 19. [ZHU Zeqi,HU Qitang,GONG Qingyu,et al. Evaluation method of highway slope stability based on deep displacement curve characteristics[J]. Highway,2019,64(1):13 − 19. (in Chinese with English abstract)

    ZHU Zeqi, HU Qitang, GONG Qingyu, et al. Evaluation method of highway slope stability based on deep displacement curve characteristics[J]. Highway, 2019, 64(1): 13-19. (in Chinese with English abstract)

    [18] 中国铁道科学研究院集团有限公司, 红层地区典型地质灾害失稳机理与新型防治方法技术研究[R]. 2019

    China Academy of Railway Sciences, Study on instability mechanism and new prevention methods and technologies of typical geological disasters in red bed area[R]. 2019. (in Chinese))

    [19] 孙志彬,杨小礼. 基于深部位移的边坡滑动特征分析[J]. 长沙理工大学学报(自然科学版),2010,7(2):43 − 47. [SUN Zhibin,YANG Xiaoli. Sliding characteristics analysis of land slide based on the deep displacement[J]. Journal of Changsha University of Science & Technology (Natural Science),2010,7(2):43 − 47. (in Chinese with English abstract)

    SUN Zhibin, YANG Xiaoli. Sliding characteristics analysis of land slide based on the deep displacement[J]. Journal of Changsha University of Science & Technology (Natural Science), 2010, 7(2): 43-47. (in Chinese with English abstract)

    [20] 靳晓光. 山区公路建设中的岩土工程监测与信息化控制[D]. 成都: 成都理工大学, 2000

    JIN Xiaoguang. Geotechnical engineering monitoring and information controlling in intermontane highway construction[D]. Chengdu: Chengdu University of Technology, 2000. (in Chinese with English abstract)

    [21] 朱琪. 高次插值的龙格现象的测试[J]. 湖南科技学院学报,2005,26(11):206 − 208. [ZHU Qi. The runger phenomenal test of the high order interpolation[J]. Journal of Hunan University of Science and Engineering,2005,26(11):206 − 208. (in Chinese with English abstract)

    ZHU Qi. The Runger phenomenal test of the high order interpolation[J]. Journal of Hunan University of Science and Engineering, 2005, 26(11): 206-208. (in Chinese with English abstract)

    [22] 陈辉. 插值法在测斜数据处理中的应用[J]. 福建建设科技,2020(2):19 − 20. [CHEN Hui. Application of interpolation method in inclinometer data processing[J]. Fujian Construction Science & Technology,2020(2):19 − 20. (in Chinese with English abstract)

    CHEN Hui. Application of interpolation method in inclinometer data processing[J]. Fujian Construction Science & Technology, 2020(2): 19-20. (in Chinese with English abstract)

    [23] 李守定,李晓,吴疆,等. 大型基岩顺层滑坡滑带形成演化过程与模式[J]. 岩石力学与工程学报,2007,26(12):2473 − 2480. [LI Shouding,LI Xiao,WU Jiang,et al. Evolution process and pattern of sliding zone in large consequent bedding rock landslide[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(12):2473 − 2480. (in Chinese with English abstract)

    LI Shouding, LI Xiao, WU Jiang, et al. Evolution process and pattern of sliding zone in large consequent bedding rock landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2473-2480. (in Chinese with English abstract)

    [24] 许强. 滑坡的变形破坏行为与内在机理[J]. 工程地质学报,2012,20(2):145 − 151. [XU Qiang. Theoretical studies on prediction of landslides using slope deformation process data[J]. Journal of Engineering Geology,2012,20(2):145 − 151. (in Chinese with English abstract)

    XU Qiang. Theoretical studies on prediction of landslides using slope deformation process data[J]. Journal of Engineering Geology, 2012, 20(2): 145-151. (in Chinese with English abstract)

    [25] 叶咸,高瑜,李果,等. 滑坡深部位移监测孔合位移计算与分析[J]. 公路,2020,65(10):5 − 10. [YE Xian,GAO Yu,LI Guo,et al. Calculation and analysis of combined displacement of deep displacement monitoring holes in landslide[J]. Highway,2020,65(10):5 − 10. (in Chinese with English abstract)

    YE Xian, GAO Yu, LI Guo, et al. Calculation and analysis of combined displacement of deep displacement monitoring holes in landslide[J]. Highway, 2020, 65(10): 5-10. (in Chinese with English abstract)

    [26] 陈贺, 李亚军, 房锐, 等. 滑坡深部位移监测新技术及预警预报研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4063 − 4070

    CHEN He, LI Yajun, FANG Rui, et al. A novel technique for monitoring deep displacement and early-warning of landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Sup 2): 4063 − 4070. (in Chinese with English abstract)

    [27] 董秀军,许强,唐川,等. 滑坡位移-时间曲线特征的物理模拟试验研究[J]. 工程地质学报,2015,23(3):401 − 407. [DONG Xiujun,XU Qiang,TANG Chuan,et al. Characteristics of landslide displacement-time curve by physical simulation experiment[J]. Journal of Engineering Geology,2015,23(3):401 − 407. (in Chinese with English abstract)

    DONG Xiujun, XU Qiang, TANG Chuan, et al. Characteristics of landslide displacement-time curve by physical simulation experiment[J]. Journal of Engineering Geology, 2015, 23(3): 401-407. (in Chinese with English abstract)

    [28] 熊超,孙红月. 基于多因素-多尺度分析的阶跃型滑坡位移预测[J]. 吉林大学学报(地球科学版),2023,53(4):1175 − 1184. [XIONG Chao, SUN Hongyue. Step-like landslide displacement prediction based on multi-factor and multi-scale analysis[J]. Journal of Jilin University (Earth Science Edition),2023,53(4):1175 − 1184. (in Chinese with English abstract)

    XIONG Chao, SUN Hongyue. Step-like landslide displacement prediction based on multi-factor and multi-scale analysis[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(4): 1175-1184.(in Chinese with English abstract)

    [29] 顾春生,杨磊,闵望,等. 江苏常州地面沉降监测与发展趋势分析[J]. 中国地质灾害与防治学报,2023,34(2):82 − 91. [GU Chunsheng, YANG Lei, MIN Wang, et al. Monitoring and analyzing the development trend of land subsidence in Changzhou City, Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):82 − 91. (in Chinese with English abstract)

    GU Chunsheng, YANG Lei, MIN Wang, et al. Monitoring and analyzing the development trend of land subsidence in Changzhou City, Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 82-91.(in Chinese with English abstract)

    [30] 赵振宇. 基于数值计算的测斜仪监测误差分析[J]. 水文地质工程地质,2021,48(3):157 − 161. [ZHAO Zhenyu. Error analysis of an inclinometer based on numerical analysis[J]. Hydrogeology & Engineering Geology,2021,48(3):157 − 161. (in Chinese with English abstract)

    ZHAO Zhenyu. Error analysis of an inclinometer based on numerical analysis[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 157-161.(in Chinese with English abstract)

    [31] 杨志华,吴瑞安,郭长宝,等. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J]. 中国地质,2022,49(2):355 − 368. [YANG Zhihua, WU Ruian, GUO Changbao, et al. Geo-hazard effects and typical landslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China,2022,49(2):355 − 368. (in Chinese with English abstract)

    YANG Zhihua, WU Ruian, GUO Changbao, et al. Geo-hazard effects and typical landslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China, 2022, 49(2): 355-368.(in Chinese with English abstract)

    [32]

    HERRERA G,FERNÁNDEZ-MERODO J A,MULAS J,et al. A landslide forecasting model using ground based SAR data:The Portalet case study[J]. Engineering Geology,2009,105(3/4):220 − 230.

    [33]

    N D ROSE,O HUNGR. Forecasting potential rock slope failure in open pit minesusing the inverse-velocity method[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44:308 − 320. DOI: 10.1016/j.ijrmms.2006.07.014

    [34] 朱赛楠,魏英娟,王平,等. 大型单斜层状基岩滑坡变形特征与失稳机制研究—以重庆石柱县龙井滑坡为例[J]. 岩石力学与工程学报,2021,40(4):739 − 750. [ZHU Sainan,WEI Yingjuan,WANG Ping,et al. Research on deformation characteristics and instability mechanisms of large monoclinal layered bedrock landslides:A case study of the Longjing landslide in Shizhu County,Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(4):739 − 750. (in Chinese with English abstract)

    ZHU Sainan, WEI Yingjuan, WANG Ping, et al. Research on deformation characteristics and instability mechanisms of large monoclinal layered bedrock landslides: a case study of the Longjing landslide in Shizhu County, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 739-750. (in Chinese with English abstract)

    [35] 黄秋香, 汪家林, 邓建辉. 基于多点位移计监测成果的坡体变形特征分析[J]. 岩石力学与工程学报, 2009, 28(增刊1): 2667 − 2673

    HUANG Qiuxiang, WANG Jialin, DENG Jianhui. Slope deformation character analysis based on monitoring results of multiple multi-point borehole extensometer[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup 1): 2667 − 2673. (in Chinese with English abstract)

    [36]

    CROSTA G B,AGLIARDI F. How to obtain alert velocity thresholds for large rockslides[J]. Physics and Chemistry of the Earth,Parts A/B/C,2002,27(36):1557 − 1565. DOI: 10.1016/S1474-7065(02)00177-8

    [37] 焦龙进,李磊,姜德民. 滑坡勘查中滑动面判定方法分析[J]. 建筑技术开发,2019,46(11):134 − 135. [JIAO Longjin,LI Lei,JIANG Demin. Simple analysis of sliding surface determination method in landslide exploration[J]. Building Technology Development,2019,46(11):134 − 135. (in Chinese with English abstract)

    JIAO Longjin, LI Lei, JIANG Demin. Simple analysis of sliding surface determination method in landslide exploration[J]. Building Technology Development, 2019, 46(11): 134-135. (in Chinese with English abstract)

    [38]

    VAN ASCH T W J,VAN BEEK L P H,BOGAARD T A. Problems in predicting the mobility of slow-moving landslides[J]. Engineering Geology,2007,91(1):46 − 55. DOI: 10.1016/j.enggeo.2006.12.012

    [39]

    HE Chuncan,HU Xinli,TANNANT D D,et al. Response of a landslide to reservoir impoundment in model tests[J]. Engineering Geology,2018,247:84 − 93. DOI: 10.1016/j.enggeo.2018.10.021

    [40]

    SONG Jian,FAN Qingqing,FENG Tugen,et al. A multi-block sliding approach to calculate the permanent seismic displacement of slopes[J]. Engineering Geology,2019,255:48 − 58. DOI: 10.1016/j.enggeo.2019.04.012

    [41]

    STEAD D,WOLTER A. A critical review of rock slope failure mechanisms:the importance of structural geology[J]. Journal of Structural Geology,2015,74:1 − 23. DOI: 10.1016/j.jsg.2015.02.002

    [42]

    HUNGR O,LEROUEIL S,PICARELLI L. The Varnes classification of landslide types,an update[J]. Landslides,2014,11(2):167 − 194. DOI: 10.1007/s10346-013-0436-y

    [43]

    ZHANG Shilin,ZHU Zhaohui,QI Shunchao,et al. Deformation process and mechanism analyses for a planar sliding in the Mayanpo massive bedding rock slope at the Xiangjiaba Hydropower Station[J]. Landslides,2018,15(10):2061 − 2073. DOI: 10.1007/s10346-018-1041-x

    [44]

    ZHAN Liangtong,GUO Xiaogang,SUN Qianqian,et al. The 2015 Shenzhen catastrophic landslide in a construction waste dump:analyses of undrained strength and slope stability[J]. Acta Geotechnica,2021,16(4):1247 − 1263. DOI: 10.1007/s11440-020-01083-8

  • 期刊类型引用(4)

    1. 刘阳,王飞永,贺鸣,赵玺. 表水侵蚀地裂缝物理模型试验研究. 工程地质学报. 2024(01): 183-193 . 百度学术
    2. 刘振华,何付兵,崔玉斌,刘晓勇,王凯,张悦泽,赵艳英. 平谷地裂缝基本特征与成因分析. 科学技术与工程. 2023(04): 1436-1446 . 百度学术
    3. 孟振江,彭建兵,李超,乔建伟,王飞永,康尘云,赵俊彦,张凡. 耦合型地裂缝活动特征与成因机制模拟研究——以北京宋庄地裂缝为例. 水文地质工程地质. 2023(03): 138-148 . 百度学术
    4. 王晗,邓亚虹,慕焕东,薛捷. 西安典型地裂缝场地地脉动测试及地震响应特征分析. 中国地质灾害与防治学报. 2022(04): 55-64 . 本站查看

    其他类型引用(1)

图(13)  /  表(1)
计量
  • 文章访问数:  2048
  • HTML全文浏览量:  657
  • PDF下载量:  187
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-10-19
  • 修回日期:  2022-11-04
  • 录用日期:  2023-05-03
  • 网络出版日期:  2023-05-13
  • 刊出日期:  2024-08-24

目录

/

返回文章
返回