ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

地质灾害易发性评价因子分级的AIFFC算法优化

陈宾, 李颖懿, 张联志, 屈添强, 魏娜, 刘宁, 黄春林

陈宾,李颖懿,张联志,等. 地质灾害易发性评价因子分级的AIFFC算法优化[J]. 中国地质灾害与防治学报,2024,35(1): 72-81. DOI: 10.16031/j.cnki.issn.1003-8035.202210048
引用本文: 陈宾,李颖懿,张联志,等. 地质灾害易发性评价因子分级的AIFFC算法优化[J]. 中国地质灾害与防治学报,2024,35(1): 72-81. DOI: 10.16031/j.cnki.issn.1003-8035.202210048
CHEN Bin,LI Yingyi,ZHANG Lianzhi,et al. Classification optimization of geological hazard susceptibility evaluation factors based on AIFFC algorithm[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1): 72-81. DOI: 10.16031/j.cnki.issn.1003-8035.202210048
Citation: CHEN Bin,LI Yingyi,ZHANG Lianzhi,et al. Classification optimization of geological hazard susceptibility evaluation factors based on AIFFC algorithm[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1): 72-81. DOI: 10.16031/j.cnki.issn.1003-8035.202210048

地质灾害易发性评价因子分级的AIFFC算法优化

基金项目: 湖南省创新性省份建设专项(2019RS1059);国家自然科学基金项目(51774131;41972282)
详细信息
    作者简介:

    陈 宾(1977—),男,河南驻马店人,教授,博士,主要从事地质灾害防治方面的研究工作。E-mail:403021235@qq.com

    通讯作者:

    张联志(1988—),男,江苏沛县人,硕士,工程师,主要研究方向为水工环地质。E-mail:2149859375@qq.com

  • 中图分类号: P694

Classification optimization of geological hazard susceptibility evaluation factors based on AIFFC algorithm

  • 摘要:

    针对地质灾害易发性评价因子分级数不确定的问题,引入自适应膨胀因子模糊覆盖分级方法(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)对易发性评价因子分级进行优化。以湖南省湘乡市为研究区,提取了坡度、坡向、高程、年平均降雨量、归一化植被指数、道路、断层、岩性和土地利用9类评价因子,运用AIFFC及自然断点法(natural breakpoint classification,NBC)对连续型因子进行分级,并分别代入加权信息量模型和随机森林模型,获取研究区易发性区划图。采用单因子分级结果精度、灾积比分析和易发性分区结果对AIFFC分级法的优越性进行检验,结果表明:各因子采用AIFFC算法分级的AUC值均高于自然断点法;基于AIFFC的随机森林模型及加权信息量模型的高易发区灾积比分别提升了56.3%、74.6%,低易发区灾积比分别降低了48%、58.1%,AUC值分别提升了7.6%、2.7%。采用AIFFC分级方法优化了地质灾害易发性评价因子分级,显著提高了地质灾害易发性评价的合理性。

    Abstract:

    This paper addresses the issue of uncertainty in the grading of geological hazard susceptibility evaluation factors and introduces the adaptive expansion factor fuzzy coverage grading method (AIFFC) to optimize the grading of geological hazard susceptibility evaluation factors. Taking Xiangxiang City, Hunan Province as the research area, nine evaluation factors, including slope, slope direction, elevation and average annual rainfall, normalized difference vegetation index for land use, roads, faults, lithology, were extracted. The AIFFC method and the natural breakpoint method were used to grade continuous factors. These graded factors were then incorporated into a weighted information model and random forest model to obtain a susceptibility zoning map for the study area. The superiority of the AIFFC classification method was tested through the comparison of single-factor grading results, disaster product ratio analysis,and ROC curve comparison of susceptibility zoning results. Based on AIFFC, the hazard accumulation ratio of the random forest model and the weighted information entropy model in the high susceptibility areas increased by 56.3% and 74.6%, respectively, while in the low susceptibility areas, it decreased by 48% and 58.1%, respectively. The AUC values increased by 7.6% and 2.7%, respectively. The AIFFC classification method is used to optimize the evaluation factor classification of geological disaster susceptibility, which significantly improves the rationality of the evaluation of geological disaster susceptibility.

  • 我国是地质灾害频发的国家,地质灾害易发性评价是我国重要的防灾减灾工作之一。地质灾害易发性评价因子厘定及其分级的合理性是易发性评价的工作基础和精度保障。目前,常用的因子分级方法有自然断点法[1]、专家经验法[2]、等间距法[3]、频率比法[4]等。孙德亮等[5]、杨得虎等[6]、解明礼等[7]通过对比不同分级方法获得的地质灾害易发性评价结果证明了灾害因子分级对评价精度的影响。鉴于此,凌晓等[8] 、郭建华等[9]、陈绪钰等[10]、陈伟等[11]分别采用对称分级法、方差分析法、迭代自组织聚类法、K-means聚类算法对现有分级方法进行了改进,但如何根据地质灾害分布特征客观确定各评价因子分级数的研究较为缺少。

    自适应膨胀因子模糊覆盖分级(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)算法是一种确定一维数据分级数的自适应膨胀因子的模糊覆盖分级方法,最早被应用于地图制图领域[12],其能够根据数据分布特征,动态生成分级数及分级区间,有效的解决分级数确定受主观影响的问题。孙娟娟[13]通过数据实例证明了AIFFC算法分级数的最优性及分级结果的精确性;姚宇婕等[14]基于AIFFC算法优化了引导型专题数据分级处理模式;张涵斐[15]将AIFFC算法应用于多尺度地理信息数据的分级处理,实现了多尺度地理信息分级显示的效果。

    本文以湖南省湘乡市为研究区,分别采用自然断点法和AIFFC分级法对坡度、坡向、高程、年平均降雨量、归一化植被指数等评价因子进行分级赋值,并分别代入加权信息量模型及随机森林模型对研究区进行地质灾害易发性区划评价。从单因子ROC曲线分析、易发性区划结果ROC曲线分析及灾积比对比三个方面对区划评价结果进行精度对比与分析,从而获取最优分级方法。

    AIFFC其核心思想是对一个覆盖ρi定义相应的膨胀因子αi和覆盖中心m,对其进行扩张形成一个新的覆盖ρi[12, 16]。依次进行下去,直到所有的数据被某个ρi覆盖,则有X=Uiρi,(ρiρj=,ij)。AIFFC算法具体计算步骤如下:

    步骤一:输入历史地质灾害点评价因子数据集X,并将各评价因子Xi从小到大排列,取评价因子模糊覆盖半径λl = 1m=1。

    λ={λ1,λ1<dmaxdmax,λ1dmax (1)

    其中,di=d(xi,xi+1)d(x,y)=|xy|dmaxdi的最大值。各评价因子距离序列{di}降序排序后仍记各元素为diλ1的取值分为以下3种情况:

    1) 若[di/di1][1,2],取c=n

    λ1=i=1n1[1exp((di/dmax)2/2)]di (2)

    2)若dmax远远大于di,从dmax处将评价因子数据分为两部分,若两部分数据分布均匀,λ1按1)中步骤分别运用算法分级。

    3)否则,取dmid=1n1i=1n1dic=1。

    λ1=i=1n1{exp[(di/dmid)2/2]/2}di (3)

    步骤二:从第m个历史地质灾害点元素起定义模糊覆盖,设nl=|ρl|ρl内历史地质灾害点个数,k=1。

    ρl={yd(xm,y)<λ,yX} (4)

    步骤三:X=X/ ρl,若X=,转步骤四;否则,重新定义评价因子ρl向外膨胀的中心及半径为:

    xl(k)=(nl1nl)nl1xm+(nl1nl)nl21nlxm+1++1nlxnl (5)

    λl(k)=αl(k)λ

    αl(k)=[1nl1nlln(1+1ck)]k (6)

    其中,k为覆盖膨胀的次数,c为常数,代表膨胀的大小。再作xl(k)的覆盖:

    ρl(k)={yd(xl(k),y)<λl(k),yX} (7)

    ρl(k)nl=nl+|ρl(k)|ρl=ρlρl(k)k=k+1,继续步骤三;否则,若ρl(k) = ,则令m=m+nll=l+1,转步骤二。

    步骤四:输出lρll为各评价因子的分级数,{ρl}为各评级因子的分级结果。

    NBC法是由乔治·弗雷德里克·詹克斯提出的一种基于聚类思维的单变量分组方法[17]。其核心思想是通过迭代对比各分组及分组中元素的均值与观测值之间的平方差之和确定每个数据在分组中的最佳排列。在确定的分级数下,计算出数据分布中的中断点,给出最佳分类区间,使组间差异化最大,组内差异化最小,较好的保护数据的统计特性。NBC计算原理如下[18]

    DNB=1ni=1nDNBi (8)
    SDAM=i=1nj=1m(DNBiDNBj)2 (9)

    其中,SDAM为研究区数组平均值的偏差平方和;DNBi为研究区内数据值;DNB为平均数据值。迭代每个数据值范围组合,计算类别均值的平方偏差平方和SDCM_ALL,找到最小值,并计算方差拟合优度GVFGVF值的范围在0~1,其值代表分类结果是否类内差异最小,类间差异最大,1表示拟合极好,0表示拟合极差。

    GVF=(SDAMSDCM)/(SDAMSDCM)SDAMSDAM (10)

    通过熵权法得到各评价因子的权重,再结合信息量法得到的各评价因子的信息量值,两者相乘得到评价因子的最终信息量[1921]。MIV计算方法如下:

    I=i=1nωiIi=i=1nωilnNi/NSi/S (11)

    式中:I——n种评价因子组合下各地质灾害易发性栅格 单元的加权信息量值;

    Ii——评价因子i的信息量值;

    ωi——通过熵权法计算的评价因子i的权重值;

    N——研究区内历史灾害点总个数;

    Ni——各分级区间内历史灾害点个数;

    S——研究区总面积/km2

    Si——各分级区间面积/km2

    RF是由Breiman[22]首次提出的一种集成方法。随机森林模型的基本思想是将n个独立的决策树组合建立一个模型,森林中的n棵决策树具有相同的分布,且每棵决策树都由独立采样的随机向量值决定,运用模型中的决策树对输入的样本进行预测和判断,通过机器训练形成不同的分类模型x1(Y),x2(Y),,xn(Y),从而建立随机森林模型[23]。计算公式如下:

    γ(y)=argZmaxi=1kI(xi(Y)=Z) (12)

    式中:γ(y)——随机森林模型;

    xi(Y)——单个决策树模型;

    Z——输出变量;

    I——显函数。

    湘乡市总面积1 967.4 km2,居湘中偏东,靠近北回归线,属亚热带季风湿润气候,年平均降雨量1 408.6 mm;境内主要由涟水、沩水和靳水组成,水系较为发育。主要出露地层为三叠系、石炭系、泥盆系和震旦系等;区域构造根据其力学性质、空间展布规律及组合关系分为东西向构造、北东向构造、弧形构造、北西向构造四类,境内以北东向构造为主。湘乡市在气象水文、地形地貌、地质构造、新构造运动与地震等自然条件和采矿、修路等人为活动的共同作用下,境内发生各类地质灾害共270处(图1),主要以滑坡灾害为主,对湘乡市的人类生命财产安全造成了重大威胁,有效的预测和治理地质灾害成为了相关部门有待解决的问题。

    图  1  湘乡市地质灾害分布图
    Figure  1.  Geological disaster distribution map of Xiangxiang City

    以湘乡市地质灾害分布规律及孕灾环境分析[2426]为基础,选取坡度、坡向、高程、年平均降雨量、归一化植被指数、道路、断层、地层岩性和土地利用作为地质灾害易发性评价因子(图2)。采用30 m×30 m的栅格单元作为评价研究和空间分析的基本单元,利用ArcGIS中栅格转点工具将栅格文件转化为点文件,然后用多值提取至点对所有评价因子图层进行值提取,得到每个栅格的评价因子数据。其中,坡度、坡向和高程因子通过ArcGIS对研究区的DEM数据进行空间分析得到;年平均降雨量通过统计研究区各站点的年平均降雨量数据,利用反距离权重工具获取;地层岩性评价因子通过研究区工程地质图得到;归一化植被指数是利用ENVI软件提取遥感影像,然后在ArcGIS中赋值分类得到;道路、断层因子通过ArcGIS中的多环缓冲区工具获取;土地利用评价因子根据研究区土地利用类型图提取分析得到。离散型评价因子地层岩性和土地利用根据其原有的类型等级划分如图2(h)、(i),其他7个连续型评价因子分别进行AIFFC分级划分及NBC分级划分。

    图  2  易发性各评价因子图层
    Figure  2.  Layers of susceptibility evaluation factors

    根据湘乡市270个已发生地质灾害点的原始数据,统计各灾害点的坡度、坡向、高程、年平均降雨量、归一化植被指数、道路和断层7个连续型评价因子值。根据1.1节各步骤通过Java工具对AIFFC分级算法进行迭代编程,利用程序对各评价因子进行分级计算,各评价因子AIFFC分级参数、分级数和分级区间见表1。历史灾害点数据是离散型数据,评价因子的范围是连续性数据,通过历史灾害点数据分析,研究区内坡度高于70°,灾害点高程高于456.70 m,年平均降雨量大于1 554.89 mm,归一化植被指数高于0.417,以及灾害点距离道路和断层在3.48 km及4.63 km以外,未见地质灾害发生,设定为地质灾害不易发范围,统一为一级。对应评价因子分级数在原来分级数上增加一级,分级区间采用大于各评价因子最大值的方法表示,得到AIFFC最终分级结果见表2

    表  1  各评价因子AIFFC分级参数
    Table  1.  AIFFC classification parameters for each evaluation factor
    评价因子 研究区范围 灾害点分布范围 di λ 分级数 分级区间({ρl})
    坡度/(°) [0,71.26] [2,70] 1.0~2.0 8 7 {1, 12, 125, 35, 14, 49, 34}
    坡向/(°) [0,360] [0,360] 1.0~1.67 20 12 {10, 11, 19, 23, 38, 52, 25, 30, 25, 15, 9, 13}
    高程/m [31.90,800.44] [113.12,456.70] 1.0~2.0 40.33 8 {112, 92, 34, 22, 5, 3, 1, 1}
    年平均降雨量/mm [1202.78,1600.43] [1221.03,1554.89] 1.0~1.9 22.81 10 {1, 2, 14, 19, 59, 70, 60, 36, 8, 1}
    归一化植被指数 [0,0.61] [0.015,0.417] 1.0~1.5 0.04 6 {7, 27, 48, 89, 85, 14}
    距道路距离/m [0,>3483.20] [326.11,3483.20] 1.0~1.79 230.84 10 {102, 55, 33, 37, 16, 10, 10, 5, 1, 1}
    距断层距离/m [0,>4634.35] [423.71,4634.35] 1.0~1.5 236.17 11 {75, 57, 43, 38, 10, 16, 10, 6, 5, 5, 5}
    下载: 导出CSV 
    | 显示表格
    表  2  AIFFC分级结果
    Table  2.  AIFFC classification results
    评价因子 分级数 分级结果
    坡度/(°) 8 >0~2;>2~22;>22~35;>35~48;>48~55;>55~65;>65~70;>70
    坡向/(°) 12 >0~30;>30~68;>68~90;>90~125;>125~162;>162~190;>190~225;>225~260;>260~280;
    >280~310;>310~338;>338~360
    高程/m 9 >31.9~113.12;>113.12~165.57;>165.57~221.23;>221.23~278.54;>278.54~333.59;>333.59~367.50;
    >367.50~408.51;>408.51~456.70;>456.70
    年平均降雨量/mm 11 >1 202.70~1 221.03;>1 221.03~1 283.85;>1 283.85~1 336.92;>1 336.92~1 368.54;>1 368.54~1 410.03;
    >1 410.03~1 446.28;>1 446.28~1 484.91;>1 484.91~1 516.62;>1 516.62~1 536.87;>1 536.87~1 554.89;
    >1 554.89
    归一化植被指数 7 >0~0.015;>0.015~0.180;>0.180~0.246;>0.246~0.316;>0.316~0.377;>0.377~0.417;>0.417
    距道路距离/m 11 0~326.11;>326.11~664.23;>664.23~989.03;>989.03~1368.63;>1 368.63~1 688.75;>1 688.75~2 075.72;
    >2 075.72~2 497.47;>2 497.47~2 831.94;>2 831.94~3 065.30;>3 065.30~3 483.20;>3 483.20
    距断层距离/m 12 0~423.71;>423.71~850.88;>850.88~1 272.26;1 272.27~1 694.48;1 694.49~2 150.42;2 150.43~2 485.00;
    2 485.01~3 005.74;3 005.75~3 523.15;3 523.16~4 107.21;4 107.22~4 248.58;4 248.59~4 634.35;>4 634.35
    下载: 导出CSV 
    | 显示表格

    为保证AIFFC分级法及NBC法分级数变量的统一,以AIFFC算法计算的分级数为基础,对7个连续型评价因子利用ArcGIS重分类工具中的自然断点分级法进行自然断点法分级,结果见表3

    表  3  NBC分级结果
    Table  3.  Natural break point method grading results
    评价因子 分级数 分级结果
    坡度/(°) 8 0~3.91;>3.91~9.50;>9.50~15.37;>15.37~20.95;>20.95~26.26;>26.26~31.85;>31.85~38.56;>38.56~71.26
    坡向/(°) 12 0~24.48;>24.48~ 57.04;>57.04~88.18;>88.18~ 117.91;>117.91~147.64;>147.64~ 177.37;>177.37~ 208.52;>208.52~239.66;>239.66~269.39;>269.39~ 299.12;>299.12~ 328.85;>328.85~ 360.00
    高程/m 9 31.90~79.93;>79.93~121.96;>121.96~166.99;>166.99~218.03;>218.03~275.07;>275.07~341.11;>341.11~425.17;>425.17~542.26;>542.26~800.44
    年平均降雨量/mm 11 1 202.70~1 289.62;>1 289.62~1 333.91;>1 333.91~1 363.46;>1 363.46~1 386.40;>1 386.40~1 405.55;>1 405.55~
    1 425.18;>1 425.18~1 444.75;>1 444.75~1 463.71;>1 463.71~1 488.88;>1 488.88~1 523.98;>1 523.98~1 600.42
    归一化植被指数 7 0~0.051;>0.051~0.152;>0.152~0.208;>0.208~0.259;>0.259~0.303;>0.303~0.347;>0.347~0.611
    距道路距离/m 11 0~71.14;>71.14~167.93;>167.93~287.96;>287.96~398.67;>398.67~534.77;>534.77~757.79;>757.79~1 088.95;
    >1 088.95~1 532.08;>1 532.08~2 160.22;>2 160.22~3 483.20;>3 483.20
    距断层距离/m 12 0~93.41;>93.41~195.93;>195.93~317.53;>317.53~464.40;>464.40~667.68;>667.68~850.88;>850.88~1 059.58;
    >1 059.58~1 363.72;>1 363.72~1 914.46;>1 914.46~2 795.16;>2 795.16~4 634.35;>4 634.35
    下载: 导出CSV 
    | 显示表格

    将AIFFC和NBC法分级结果分别代入加权信息量模型及随机森林模型计算,得到基于AIFFC的加权信息量模型(AIFFC-MIV)、基于NBC法的加权信息量模型(NBC-MIV)、基于AIFFC的随机森林模型(AIFFC-RF)和基于自然断点法的随机森林模型(NBC-RF),对其评价结果进行低、中、高易发性区间划分,见图3

    图  3  各模型易发性分区图
    Figure  3.  Susceptibility zoning maps of each model

    由四个模型易发性分区图可知:各模型的分区结果存在一些差异,但是高易发区、中易发区及低易发区的趋势范围基本相同,分区结果符合湘乡市历史灾害点的分布特征。高易发区主要分布在西北及南部的构造侵蚀剥蚀花岗岩低山地区和构造侵蚀剥蚀变质岩-碎屑岩低山地区,岩石风化强烈,残坡积层发育,地形起伏较大;低易发区主要分布在中部的河流侵蚀堆积河谷平原地区和侵蚀剥蚀碎屑岩-碳酸盐岩丘陵地区,地形相对平坦,植被及构造相对不发育。且高易发区人口密度相对集中,城乡建设频繁,矿山开采及人类工程经济活动较强烈,表明人类活动对地质灾害的发生具有较大的影响。

    采用单因子ROC曲线法对每个因子的分级结果进行评价,根据各评价因子二级区间信息量值由高至低的面积比和对应的信息量值所处单元中的灾害点的百分比做单因子ROC曲线图,曲线下方面积(AUC值)越大,说明该分级结果更合理[2729]。由AIFFC及NBC法的7个连续型因子分级结果ROC曲线图,见图4(a)、(b),及AUC值对比图,见图4(c),可知:AIFFC分级曲线AUC值介于0.546~0.911,NBC法分级AUC值介于0.541~0.895,均高于0.5具有较好的准确性。采用AIFFC法分级的各因子AUC值皆高于NBC法,提升精度介于1.8%~6.3%,说明AIFFC分级结果更趋合理。

    图  4  单因子ROC曲线分析图
    Figure  4.  Single-factor ROC curve analysis

    通过对四种区划评价结果的灾积比对比分析(表4)可知,AIFFC-MIV模型与AIFFC-RF模型区划的高易发区灾积比分别为0.955与1.318,高于NBC-MIV模型与NBC-RF模型的0.611与0.755,并分别提升了56.3%和74.6%。AIFFC-MIV模型与AIFFC-RF模型区划的低易发区灾积比分别为0.026与0.013,低于NBC-MIV模型与NBC-RF模型的0.050与0.031,并分别降低了48.0%和58.1%。

    表  4  易发性评价结果灾积比统计表
    Table  4.  Statistical table of disaster accumulation ratio - product ratio for susceptibility evaluation results
    评价
    模型
    易发性
    分区
    面积
    占比/%
    灾积比 评价
    模型
    易发性
    分区
    面积
    占比/%
    灾积比
    NBC-MIV 高易发 13.62 0.611 AIFFC-MIV 高易发 11.73 0.955
    中易发 25.42 0.178 中易发 19.61 0.147
    低易发 60.96 0.050 低易发 68.76 0.026
    NBC-RF 高易发 15.03 0.755 AIFFC-RF 高易发 9.68 1.318
    中易发 28.53 0.096 中易发 25.86 0.083
    低易发 56.44 0.031 低易发 64.45 0.013
    下载: 导出CSV 
    | 显示表格

    因此,无论采用MIV模型或RF模型,基于AIFFC算法的灾害因子分级方法均大幅提升了高易发区的灾积比并降低了低易发区的灾积比,评价结果更具合理性。

    对易发性评价结果进行ROC曲线分析(图5)可知:各模型AUC值均超过0.5,评价结果预测精度满足要求[30]。其中,AIFFC-MIV模型与AIFFC-RF模型区划结果的AUC值分别为0.835与0.905,高于NBC-MIV模型与NBC-RF模型区划结果的0.776与0.880,并分别提升了7.6%和2.7%。

    图  5  各模型ROC曲线图
    Figure  5.  ROC curve for various models

    (1)通过单因子评价精度对比可知,各因子采用AIFFC算法分级比NBC法分级的AUC值均有提高,提升幅度介于1.8%~6.3%,AIFFC分级方法更具合理性。

    (2)4种模型易发性区划评价结果中,基于AIFFC的评价结果相比基于NBC法的评价结果高易发区灾积比分别提升了56.3%、74.6%,低易发区灾积比分别降低了48%、58.1%,AUC值分别提高了0.059(7.6%)、0.025(2.7%),基于AIFFC的易发性评价精确性和预测能力更佳。

    (3)AIFFC分级方法在地质灾害易发性评价运用中,不仅能根据地质灾害数据特征与分布规律合理确定各因子的分级数,其分级区间划分的精度也具有一定的准确性。为今后确定易发性评价因子的合理分级数及分级方法提供了参考。

  • 图  1   湘乡市地质灾害分布图

    Figure  1.   Geological disaster distribution map of Xiangxiang City

    图  2   易发性各评价因子图层

    Figure  2.   Layers of susceptibility evaluation factors

    图  3   各模型易发性分区图

    Figure  3.   Susceptibility zoning maps of each model

    图  4   单因子ROC曲线分析图

    Figure  4.   Single-factor ROC curve analysis

    图  5   各模型ROC曲线图

    Figure  5.   ROC curve for various models

    表  1   各评价因子AIFFC分级参数

    Table  1   AIFFC classification parameters for each evaluation factor

    评价因子 研究区范围 灾害点分布范围 di λ 分级数 分级区间({ρl})
    坡度/(°) [0,71.26] [2,70] 1.0~2.0 8 7 {1, 12, 125, 35, 14, 49, 34}
    坡向/(°) [0,360] [0,360] 1.0~1.67 20 12 {10, 11, 19, 23, 38, 52, 25, 30, 25, 15, 9, 13}
    高程/m [31.90,800.44] [113.12,456.70] 1.0~2.0 40.33 8 {112, 92, 34, 22, 5, 3, 1, 1}
    年平均降雨量/mm [1202.78,1600.43] [1221.03,1554.89] 1.0~1.9 22.81 10 {1, 2, 14, 19, 59, 70, 60, 36, 8, 1}
    归一化植被指数 [0,0.61] [0.015,0.417] 1.0~1.5 0.04 6 {7, 27, 48, 89, 85, 14}
    距道路距离/m [0,>3483.20] [326.11,3483.20] 1.0~1.79 230.84 10 {102, 55, 33, 37, 16, 10, 10, 5, 1, 1}
    距断层距离/m [0,>4634.35] [423.71,4634.35] 1.0~1.5 236.17 11 {75, 57, 43, 38, 10, 16, 10, 6, 5, 5, 5}
    下载: 导出CSV

    表  2   AIFFC分级结果

    Table  2   AIFFC classification results

    评价因子 分级数 分级结果
    坡度/(°) 8 >0~2;>2~22;>22~35;>35~48;>48~55;>55~65;>65~70;>70
    坡向/(°) 12 >0~30;>30~68;>68~90;>90~125;>125~162;>162~190;>190~225;>225~260;>260~280;
    >280~310;>310~338;>338~360
    高程/m 9 >31.9~113.12;>113.12~165.57;>165.57~221.23;>221.23~278.54;>278.54~333.59;>333.59~367.50;
    >367.50~408.51;>408.51~456.70;>456.70
    年平均降雨量/mm 11 >1 202.70~1 221.03;>1 221.03~1 283.85;>1 283.85~1 336.92;>1 336.92~1 368.54;>1 368.54~1 410.03;
    >1 410.03~1 446.28;>1 446.28~1 484.91;>1 484.91~1 516.62;>1 516.62~1 536.87;>1 536.87~1 554.89;
    >1 554.89
    归一化植被指数 7 >0~0.015;>0.015~0.180;>0.180~0.246;>0.246~0.316;>0.316~0.377;>0.377~0.417;>0.417
    距道路距离/m 11 0~326.11;>326.11~664.23;>664.23~989.03;>989.03~1368.63;>1 368.63~1 688.75;>1 688.75~2 075.72;
    >2 075.72~2 497.47;>2 497.47~2 831.94;>2 831.94~3 065.30;>3 065.30~3 483.20;>3 483.20
    距断层距离/m 12 0~423.71;>423.71~850.88;>850.88~1 272.26;1 272.27~1 694.48;1 694.49~2 150.42;2 150.43~2 485.00;
    2 485.01~3 005.74;3 005.75~3 523.15;3 523.16~4 107.21;4 107.22~4 248.58;4 248.59~4 634.35;>4 634.35
    下载: 导出CSV

    表  3   NBC分级结果

    Table  3   Natural break point method grading results

    评价因子 分级数 分级结果
    坡度/(°) 8 0~3.91;>3.91~9.50;>9.50~15.37;>15.37~20.95;>20.95~26.26;>26.26~31.85;>31.85~38.56;>38.56~71.26
    坡向/(°) 12 0~24.48;>24.48~ 57.04;>57.04~88.18;>88.18~ 117.91;>117.91~147.64;>147.64~ 177.37;>177.37~ 208.52;>208.52~239.66;>239.66~269.39;>269.39~ 299.12;>299.12~ 328.85;>328.85~ 360.00
    高程/m 9 31.90~79.93;>79.93~121.96;>121.96~166.99;>166.99~218.03;>218.03~275.07;>275.07~341.11;>341.11~425.17;>425.17~542.26;>542.26~800.44
    年平均降雨量/mm 11 1 202.70~1 289.62;>1 289.62~1 333.91;>1 333.91~1 363.46;>1 363.46~1 386.40;>1 386.40~1 405.55;>1 405.55~
    1 425.18;>1 425.18~1 444.75;>1 444.75~1 463.71;>1 463.71~1 488.88;>1 488.88~1 523.98;>1 523.98~1 600.42
    归一化植被指数 7 0~0.051;>0.051~0.152;>0.152~0.208;>0.208~0.259;>0.259~0.303;>0.303~0.347;>0.347~0.611
    距道路距离/m 11 0~71.14;>71.14~167.93;>167.93~287.96;>287.96~398.67;>398.67~534.77;>534.77~757.79;>757.79~1 088.95;
    >1 088.95~1 532.08;>1 532.08~2 160.22;>2 160.22~3 483.20;>3 483.20
    距断层距离/m 12 0~93.41;>93.41~195.93;>195.93~317.53;>317.53~464.40;>464.40~667.68;>667.68~850.88;>850.88~1 059.58;
    >1 059.58~1 363.72;>1 363.72~1 914.46;>1 914.46~2 795.16;>2 795.16~4 634.35;>4 634.35
    下载: 导出CSV

    表  4   易发性评价结果灾积比统计表

    Table  4   Statistical table of disaster accumulation ratio - product ratio for susceptibility evaluation results

    评价
    模型
    易发性
    分区
    面积
    占比/%
    灾积比 评价
    模型
    易发性
    分区
    面积
    占比/%
    灾积比
    NBC-MIV 高易发 13.62 0.611 AIFFC-MIV 高易发 11.73 0.955
    中易发 25.42 0.178 中易发 19.61 0.147
    低易发 60.96 0.050 低易发 68.76 0.026
    NBC-RF 高易发 15.03 0.755 AIFFC-RF 高易发 9.68 1.318
    中易发 28.53 0.096 中易发 25.86 0.083
    低易发 56.44 0.031 低易发 64.45 0.013
    下载: 导出CSV
  • [1] 焦伟之,张明,谢鑫鹏,等. 基于GIS与加权信息量模型的城镇地质灾害易发性评价——以大新镇为例[J]. 安全与环境工程,2022,29(4):119 − 128. [JIAO Weizhi,ZHANG Ming,XIE Xinpeng,et al. Susceptibility evaluation of urban geological disaster based on GIS and weighted information value model:A case study of Daxin Town[J]. Safety and Environmental Engineering,2022,29(4):119 − 128. (in Chinese with English abstract)]

    JIAO Weizhi, ZHANG Ming, XIE Xinpeng, et al. Susceptibility evaluation of urban geological disaster based on GIS and weighted information value model: A case study of Daxin Town[J]. Safety and Environmental Engineering, 2022, 294): 119128. (in Chinese with English abstract)

    [2] 赵魁. 基于ArcGIS的云安区地质灾害易发性分区评价[J]. 地质灾害与环境保护,2020,31(4):38 − 42. [ZHAO Kui. The study of geological disaster susceptible division in Yun’an District based on ArcGIS[J]. Journal of Geological Hazards and Environment Preservation,2020,31(4):38 − 42. (in Chinese with English abstract)]

    ZHAO Kui. The study of geological disaster susceptible division in Yun’an District based on ArcGIS[J]. Journal of Geological Hazards and Environment Preservation, 2020, 314): 3842. (in Chinese with English abstract)

    [3] 许冲,戴福初,姚鑫,等. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报,2010,18(1):15 − 26. [XU Chong,DAI Fuchu,YAO Xin,et al. GIS platform and certainty factor analysis method based Wenchuan earthquake-induced landslide susceptibility evaluation[J]. Journal of Engineering Geology,2010,18(1):15 − 26. (in Chinese with English abstract)]

    XU Chong, DAI Fuchu, YAO Xin, et al. GIS platform and certainty factor analysis method based Wenchuan earthquake-induced landslide susceptibility evaluation[J]. Journal of Engineering Geology, 2010, 181): 1526. (in Chinese with English abstract)

    [4] 刘福臻,王灵,肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报,2021,32(6):98 − 106. [LIU Fuzhen,WANG Ling,XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):98 − 106. (in Chinese with English abstract)]

    LIU Fuzhen, WANG Ling, XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 326): 98106. (in Chinese with English abstract)

    [5] 孙德亮,马祥龙,唐小娅,等. 基于不同因子分级的滑坡易发性区划对比——以万州区为例[J]. 重庆师范大学学报(自然科学版),2021,38(5):43 − 54. [SUN Deliang,MA Xianglong,TANG Xiaoya,et al. Comparison of landslide susceptibility mapping based on different factor classifications:Taking Wanzhou District as an example[J]. Journal of Chongqing Normal University (Natural Science),2021,38(5):43 − 54. (in Chinese with English abstract)]

    SUN Deliang, MA Xianglong, TANG Xiaoya, et al. Comparison of landslide susceptibility mapping based on different factor classifications: Taking Wanzhou District as an example[J]. Journal of Chongqing Normal University (Natural Science), 2021, 385): 4354. (in Chinese with English abstract)

    [6] 杨得虎, 朱杰勇, 刘帅, 等. 基于信息量、加权信息量与逻辑回归耦合模型的云南罗平县崩滑灾害易发性评价对比分析[J]. 中国地质灾害与防治学报,2023,34(5):43 − 53. [YANG Dehu, ZHU Jieyong, LIU Shuai, et al. Comparative analyses of susceptibility assessment for landslide disasters based on information value, weighted information value and logistic regression coupled model in Luoping County, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):43 − 53. (in Chinese with English abstract)]

    YANG Dehu, ZHU Jieyong, LIU Shuai, et al. Comparative analyses of susceptibility assessment for landslide disasters based on information value, weighted information value and logistic regression coupled model in Luoping County, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 345): 4353. (in Chinese with English abstract)

    [7] 解明礼,巨能攀,赵建军,等. 区域地质灾害易发性分级方法对比分析研究[J]. 武汉大学学报(信息科学版),2021,46(7):1003 − 1014. [XIE Mingli,JU Nengpan,ZHAO Jianjun,et al. Comparative analysis on classification methods of geological disaster susceptibility assessment[J]. Geomatics and Information Science of Wuhan University,2021,46(7):1003 − 1014. (in Chinese with English abstract)]

    XIE Mingli, JU Nengpan, ZHAO Jianjun, et al. Comparative analysis on classification methods of geological disaster susceptibility assessment[J]. Geomatics and Information Science of Wuhan University, 2021, 467): 10031014. (in Chinese with English abstract)

    [8] 凌晓,刘甲美,王涛,等. 基于致灾因子对称法分级的信息量模型在地震滑坡危险性评价中的应用[J]. 国土资源遥感,2021,33(2):172 − 181. [LING Xiao,LIU Jiamei,WANG Tao,et al. Application of information value model based on symmetrical factors classification method in landslide hazard assessment[J]. Remote Sensing for Land & Resources,2021,33(2):172 − 181. (in Chinese with English abstract)]

    LING Xiao, LIU Jiamei, WANG Tao, et al. Application of information value model based on symmetrical factors classification method in landslide hazard assessment[J]. Remote Sensing for Land & Resources, 2021, 332): 172181. (in Chinese with English abstract)

    [9] 郭建华,刘初群,刘翠. 基于遗传算法优化的城市标准循环工况构建[J]. 科学技术与工程,2017,17(15):327 − 333. [GUO Jianhua,LIU Chuqun,LIU Cui. The construction of standard driving cycle based on genetic algorithm optimization[J]. Science Technology and Engineering,2017,17(15):327 − 333. (in Chinese with English abstract)]

    GUO Jianhua, LIU Chuqun, LIU Cui. The construction of standard driving cycle based on genetic algorithm optimization[J]. Science Technology and Engineering, 2017, 1715): 327333. (in Chinese with English abstract)

    [10] 陈绪钰,倪化勇,李明辉,等. 基于加权信息量和迭代自组织聚类的地质灾害易发性评价[J]. 灾害学,2021,36(2):71 − 78. [CHEN Xuyu,NI Huayong,LI Minghui,et al. Geo-hazard susceptibility evaluation based on weighted information value model and ISODATA cluster[J]. Journal of Catastrophology,2021,36(2):71 − 78. (in Chinese with English abstract)]

    CHEN Xuyu, NI Huayong, LI Minghui, et al. Geo-hazard susceptibility evaluation based on weighted information value model and ISODATA cluster[J]. Journal of Catastrophology, 2021, 362): 7178. (in Chinese with English abstract)

    [11] 陈伟. 山区村镇滑坡灾害风险评估研究[D]. 武汉:武汉大学,2019. [CHEN Wei. Study on landslide risk assessment in mountainous villages and towns[D]. Wuhan:Wuhan University,2019. (in Chinese with English abstract)]

    CHEN Wei. Study on landslide risk assessment in mountainous villages and towns[D]. Wuhan: Wuhan University, 2019. (in Chinese with English abstract)

    [12] 孙娟娟, 江南, 刘缵武. 基于自适应膨胀因子的模糊覆盖分级方法[J]. 测绘科学技术学报,2007,24(5):384 − 386. [SUN Juanjuan, JIANG Nan, LIU Zuanwu. Fuzzy cover approach for clustering based on adaptive inflation factor[J]. Journal of Geomatics Science and Technology,2007,24(5):384 − 386. (in Chinese with English abstract)]

    SUN Juanjuan, JIANG Nan, LIU Zuanwu. Fuzzy cover approach for clustering based on adaptive inflation factor[J]. Journal of Geomatics Science and Technology, 2007, 245): 384386. (in Chinese with English abstract)

    [13] 孙娟娟. 专题地图数据分级模型的研究——现代数学在地图数据分级中的应用[D]. 郑州:解放军信息工程大学,2007. [SUN Juanjuan. Research of classification model for thematic mapping data[D]. Zhengzhou:PLA Information Engineering University,2007. (in Chinese with English abstract)]

    SUN Juanjuan. Research of classification model for thematic mapping data[D]. Zhengzhou: PLA Information Engineering University, 2007. (in Chinese with English abstract)

    [14] 姚宇婕,陈毓芬. 引导型专题数据分级处理研究[J]. 测绘工程,2012,21(1):25 − 29. [YAO Yujie,CHEN Yufen. Research on guiding thematic data classification[J]. Engineering of Surveying and Mapping,2012,21(1):25 − 29. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-7949.2012.01.007

    YAO Yujie, CHEN Yufen. Research on guiding thematic data classification[J]. Engineering of Surveying and Mapping, 2012, 211): 2529. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-7949.2012.01.007

    [15] 张涵斐. 多尺度地理信息显示处理与发布技术研究[D]. 郑州:解放军信息工程大学,2012. [ZHANG Hanfei. Research on the display processing and publish technology of multi-scale geographic information[D]. Zhengzhou:PLA Information Engineering University,2012. (in Chinese with English abstract)]

    ZHANG Hanfei. Research on the display processing and publish technology of multi-scale geographic information[D]. Zhengzhou: PLA Information Engineering University, 2012. (in Chinese with English abstract)

    [16] 牟廉明,黄国兴. 一种基于自适应膨胀因子的聚类新方法[J]. 计算机工程,2003,29(9):100 − 102. [MOU Lianming,HUANG Guoxing. New approach of clustering based on adaptive inflation factor[J]. Computer Engineering,2003,29(9):100 − 102. (in Chinese with English abstract)]

    MOU Lianming, HUANG Guoxing. New approach of clustering based on adaptive inflation factor[J]. Computer Engineering, 2003, 299): 100102. (in Chinese with English abstract)

    [17] 赖冠中,陈文音. 基于自然断点法分析的城乡建设用地整理潜力分区研究——以汕头市濠江区为例[J]. 广西城镇建设,2019(12):123 − 127. [LAI Guanzhong,CHEN Wenyin. Study on potential zoning of urban and rural construction land consolidation based on natural breakpoint analysis:A case study of Haojiang District,Shantou City[J]. Cities and Towns Construction in Guangxi,2019(12):123 − 127. (in Chinese)] DOI: 10.3969/j.issn.1672-7045.2019.12.016

    LAI Guanzhong, CHEN Wenyin. Study on potential zoning of urban and rural construction land consolidation based on natural breakpoint analysis: A case study of Haojiang District, Shantou City[J]. Cities and Towns Construction in Guangxi, 201912): 123127. (in Chinese) DOI: 10.3969/j.issn.1672-7045.2019.12.016

    [18] 尹子虚. 基于夜光数据的城市空间特征提取尺度研究[D]. 大连:辽宁师范大学,2021. [YIN Zixu. Study on the scale of urban spatial feature extraction based on nighttime light data[D]. Dalian:Liaoning Normal University,2021. (in Chinese with English abstract)]

    YIN Zixu. Study on the scale of urban spatial feature extraction based on nighttime light data[D]. Dalian: Liaoning Normal University, 2021. (in Chinese with English abstract)

    [19] 孟晓捷,张新社,曾庆铭,等. 基于加权信息量法的黄土滑坡易发性评价——以1∶5万天水市麦积幅为例[J]. 西北地质,2022,55(2):249 − 259. [MENG Xiaojie,ZHANG Xinshe,ZENG Qingming,et al. The susceptibility evaluation of loess landslide based on weighted information value method:Taking 1∶50 000 map of Maiji District of Tianshui City as an example[J]. Northwestern Geology,2022,55(2):249 − 259. (in Chinese with English abstract)]

    MENG Xiaojie, ZHANG Xinshe, ZENG Qingming, et al. The susceptibility evaluation of loess landslide based on weighted information value method: Taking 1∶50 000 map of Maiji District of Tianshui City as an example[J]. Northwestern Geology, 2022, 552): 249259. (in Chinese with English abstract)

    [20] 孙滨,祝传兵,康晓波,等. 基于信息量模型的云南东川泥石流易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):119 − 127. [SUN Bin,ZHU Chuanbing,KANG Xiaobo,et al. Susceptibility assessment of debris flows based on information model in Dongchuan,Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):119 − 127. (in Chinese with English abstract)]

    SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 335): 119127. (in Chinese with English abstract)

    [21] 束龙仓,黄蕾,陈华伟,等. 基于AHP-EWM的莱州市海岸带海水入侵灾害风险评价与区划[J]. 吉林大学学报(地球科学版),2023,53(6):1864 − 1879. [SHU Longcang,HUANG Lei,CHEN Huawei,et al. Risk assessment and zoning of seawater intrusion hazard in coastal region of Laizhou city based on AHP-EWM method[J]. Journal of Jilin University (Earth Science Edition),2023,53(6):1864 − 1879. (in Chinese with English abstract)]

    SHU Longcang, HUANG Lei, CHEN Huawei, et al. Risk assessment and zoning of seawater intrusion hazard in coastal region of Laizhou city based on AHP-EWM method[J]. Journal of Jilin University (Earth Science Edition), 2023, 536): 18641879. (in Chinese with English abstract)

    [22]

    BREIMAN L. Bagging predictors[J]. Machine Learning,1996,24(2):123 − 140.

    [23] 马啸,王念秦,李晓抗,等. 基于RF-FR模型的滑坡易发性评价——以略阳县为例[J]. 西北地质,2022,55(3):335 − 344. [MA Xiao,WANG Nianqin,LI Xiaokang,et al. Assessment of landslide susceptibility based on RF-FR model:Taking Lueyang County as an example[J]. Northwestern Geology,2022,55(3):335 − 344. (in Chinese with English abstract)]

    MA Xiao, WANG Nianqin, LI Xiaokang, et al. Assessment of landslide susceptibility based on RF-FR model: Taking Lueyang County as an example[J]. Northwestern Geology, 2022, 553): 335344. (in Chinese with English abstract)

    [24] 温鑫,范宣梅,陈兰,等. 基于信息量模型的地质灾害易发性评价——以川东南古蔺县为例[J]. 地质科技通报,2022,41(2):290 − 299. [WEN Xin,FAN Xuanmei,CHEN Lan,et al. Susceptibility assessment of geological disasters based on an information value model:A case of Gulin County in southeast Sichuan[J]. Bulletin of Geological Science and Technology,2022,41(2):290 − 299. (in Chinese with English abstract)]

    WEN Xin, FAN Xuanmei, CHEN Lan, et al. Susceptibility assessment of geological disasters based on an information value model: A case of Gulin County in southeast Sichuan[J]. Bulletin of Geological Science and Technology, 2022, 412): 290299. (in Chinese with English abstract)

    [25] 李萍,叶辉,谈树成. 基于层次分析法的永德县地质灾害易发性评价[J]. 水土保持研究,2021,28(5):394 − 399. [LI Ping,YE Hui,TAN Shucheng. Evaluation of geological hazards in Yongde County based on analytic hierarchy process[J]. Research of Soil and Water Conservation,2021,28(5):394 − 399. (in Chinese with English abstract)]

    LI Ping, YE Hui, TAN Shucheng. Evaluation of geological hazards in Yongde County based on analytic hierarchy process[J]. Research of Soil and Water Conservation, 2021, 285): 394399. (in Chinese with English abstract)

    [26] 贾雨霏, 魏文豪, 陈稳, 等. 基于SOM-I-SVM耦合模型的滑坡易发性评价[J]. 水文地质工程地质,2023,50(3):125 − 137. [JIA Yufei, WEI Wenhao, CHEN Wen, et al. Landslide susceptibility assessment based on the SOM-I-SVM model[J]. Hydrogeology & Engineering Geology,2023,50(3):125 − 137. (in Chinese with English abstract)]

    JIA Yufei, WEI Wenhao, CHEN Wen, et al. Landslide susceptibility assessment based on the SOM-I-SVM model[J]. Hydrogeology & Engineering Geology, 2023, 503): 125137. (in Chinese with English abstract)

    [27] 范强,巨能攀,向喜琼,等. 基于结果验证的信息量法地质灾害易发性评价——以贵州省开阳县为例[J]. 人民长江,2015,46(15):65 − 68. [FAN Qiang,JU Nengpan,XIANG Xiqiong,et al. Geohazard susceptibility assessment by using information quantity model with result validation:A case study in Kaiyang County,Guizhou Province[J]. Yangtze River,2015,46(15):65 − 68. (in Chinese with English abstract)]

    FAN Qiang, JU Nengpan, XIANG Xiqiong, et al. Geohazard susceptibility assessment by using information quantity model with result validation: A case study in Kaiyang County, Guizhou Province[J]. Yangtze River, 2015, 4615): 6568. (in Chinese with English abstract)

    [28] 陈前,晏鄂川,黄少平,等. 基于样本与因子优化的黄冈南部地区地质灾害易发性评价[J]. 地质科技通报,2020,39(2):175 − 185. [CHEN Qian,YAN Echuan,HUANG Shaoping,et al. Susceptibility evaluation of geological disasters in southern Huanggang based on samples and factor optimization[J]. Bulletin of Geological Science and Technology,2020,39(2):175 − 185. (in Chinese with English abstract)]

    CHEN Qian, YAN Echuan, HUANG Shaoping, et al. Susceptibility evaluation of geological disasters in southern Huanggang based on samples and factor optimization[J]. Bulletin of Geological Science and Technology, 2020, 392): 175185. (in Chinese with English abstract)

    [29] 刘月,王宁涛,周超,等. 基于ROC曲线与确定性系数法集成模型的三峡库区奉节县滑坡易发性评价[J]. 安全与环境工程,2020,27(4):61 − 70. [LIU Yue,WANG Ningtao,ZHOU Chao,et al. Evaluation of landslide susceptibility based on ROC and certainty factor method in Fengjie County,Three Gorges Reservoir[J]. Safety and Environmental Engineering,2020,27(4):61 − 70. (in Chinese with English abstract)]

    LIU Yue, WANG Ningtao, ZHOU Chao, et al. Evaluation of landslide susceptibility based on ROC and certainty factor method in Fengjie County, Three Gorges Reservoir[J]. Safety and Environmental Engineering, 2020, 274): 6170. (in Chinese with English abstract)

    [30]

    WANG Liangjie,SAWADA K,MORIGUCHI S. Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy[J]. Computers & Geosciences,2013,57:81 − 92.

  • 期刊类型引用(7)

    1. 赵翠,覃红亮,朱昱桦,黄广才,吴波,何纯田,徐安全. 贵州龙潭组地层煤矿开采引发的地质灾害特点及成因机理. 中国地质灾害与防治学报. 2025(01): 182-190 . 本站查看
    2. 吴季寰,李旭光,张艳飞,马天宇,石绍山,臧延庆,邹君. 蓄水条件下抚顺西露天矿边坡变形失稳与涌浪强烈程度分析. 地球学报. 2025(02): 419-428 . 百度学术
    3. 彭华锋,张钦礼. 固化回填过程对露天边坡的稳定性影响. 采矿技术. 2024(01): 50-55 . 百度学术
    4. 刘泉,王晨. 降雨条件下某矿山排土场边坡稳定性分析. 黄金. 2024(04): 96-98 . 百度学术
    5. 马诗文,孙鸿昌,侯成恒. 积水露天煤矿边坡稳定性研究. 露天采矿技术. 2023(03): 10-13 . 百度学术
    6. 靳鹏,申力,韩晓极,郭霁,王毛毛. 辽宁抚顺西露天矿地质灾害时空分布特征及影响因素分析. 中国地质灾害与防治学报. 2022(03): 68-76 . 本站查看
    7. 杨伟东,王再旺,赵涵卓,侯岳峰. 基于APSO-SVR-GRU模型的白水河滑坡周期项位移预测. 中国地质灾害与防治学报. 2022(06): 20-28 . 本站查看

    其他类型引用(9)

图(5)  /  表(4)
计量
  • 文章访问数:  471
  • HTML全文浏览量:  38
  • PDF下载量:  129
  • 被引次数: 16
出版历程
  • 收稿日期:  2022-10-27
  • 修回日期:  2022-11-12
  • 网络出版日期:  2023-11-19
  • 刊出日期:  2024-01-31

目录

/

返回文章
返回