Analysis on the formation of the Moli landslide and river blockage risk in Guoye Town, Zhouqu County of Gansu Province
-
摘要: 受降雨的影响,2021年2月26—28日,舟曲县果耶镇磨里滑坡发生蠕动变形,坡体裂缝发育,变形迹象明显,共造成92户402人受灾,直接经济损失约1 446.3万元。文中以舟曲县果耶镇磨里滑坡为研究对象,通过遥感解译、无人机航拍和地质勘察等方法,深入了解磨里滑坡所处的地质环境、土体物理力学性质等,对该滑坡的成因进行了详细分析、对滑坡的稳定进行了理论计算和位移监测分析。在野外调查和钻探分析的基础上,采用Massflow数值模型对舟曲县果耶镇磨里滑坡进行数值模拟与预测,确定物源区范围及厚度以预测滑坡的堆积过程和堵江风险,预测了滑坡堵江的高度、对上下游造成的危害。结果表明:(1)磨里滑坡呈长舌状,有清晰的形态和变形特征,滑体由碎石土和破碎千枚岩组成,平均深度40 m,总体积2 120×104 m3,属特大型深层滑坡。(2)不利的地形条件、岩土体的软化、强烈的构造运动、降雨的入渗和前缘河水冲刷下切形成的临空面是发生滑坡主要因素。(3)该滑坡存在摧毁房屋道路和堵江的风险,建议尽快对受威胁采取避险搬迁措施。本研究可为类似滑坡地质灾害链的成因机制和应急防控等提供参考。Abstract: Due to the heavy rainfall, from February 26th to 28th 2021, the Moli landslide in Guoye Town, Zhouqu County, experienced creeping deformation with the development of slope cracks and obnious signs of deformation. A total of of 92 households with 402 people were affected, causing a direct economic loss of approximately 14.463 million yuan. This study focuses on the Moli landslide in Guoye Town, where the geological environment and physical and mechanical properties of the soil were deeply understood through remote sensing interpretation, aerial photography, and geological investigation. The cause of the landslide formation was analyzed in detail, and the stability of the landslide was calculated theoretically and analyzed for displacement monitoring. Based on field investigation and drilling analysis, the Massflow numerical model was used to simulate and predict the Moli landslide in Guoye Town, Zhouqu County. The range and thickness of the source area were determined to predict the accumulation process of the landslide and the risk of river blocking. The height of the river blocking and the harm caused by the landslide to the upstream and downstream regions were predicted. The results showed that: (1) Moli landslide is a super-large deep landslide with a long tongue shape, clear shape and deformation, and composed of broken phyllite and broken stone soil. The average depth of the slide body is 40m, and the total volume is 21.2 million stere. (2) The main factors of landslide formation are unfavorable topographic conditions, softening of rock and soil, strong tectonic movement, rainfall infiltration, and front river erosion. (3) The landslide has the risk of destroying the landslide houses, roads, and blocking the river. It is suggested that the residents threatened by the Moli landslide should take measures to avoid danger and relocate as soon as possible. This study can provide reference for the formation mechanism and emergency prevention and control of similar landslide geological disaster chains.
-
0. 引言
地质环境质量是判定和评价一个区域地质环境总体条件和建设适宜性好坏的指标,能够为区域地质环境规划和地质环境问题的治理提供决策支持[1-2]。层次分析法是一种多要素综合评价方法,在地质环境质量评价中发挥着重要作用[3-5],其中评价指标体系的建立是利用层次分析法评价地质环境质量的关键。目前的研究多是利用一套评价指标体系对包含多种地貌类型的区域开展地质环境质量评价[6-7],而不同地貌类型的地质环境影响因子有所不同,因此导致地质环境质量评价结果在不同的地貌类型间有较明显的差异,评价结果不能有效体现研究区域不同地貌类型的地质环境质量特征。
针对上述问题,本研究以北京地区为例,根据北京地区地质环境特点,采用层次分析法建立基于不同地貌类型的地质环境质量评价体系,分别对山区和平原区开展地质环境质量评价。评价结果与基于单一评价体系的评价结果进行比较,探索更加合理的地质环境质量评价指标体系,有利于北京市地质环境的总体保护与防治。
1. 研究区地质环境概况
北京市位于东经115°25′~117°30′,北纬39°28′~41°05′,地处华北平原北部,总体地势西北高、东南低(图1)。西北部为太行山脉和燕山山脉交汇形成的中低山地貌,东南部为各大水系冲洪积形成的平原地貌,其中山区面积广泛,占总面积的62%。
北京地区存在的主要地质环境问题分为山区和平原区两部分。在山区主要表现为矿山开发导致的环境破坏,突发地质灾害隐患分布广泛。北京市各类矿点共计386处,矿山占地面积100.59 km2,虽然绝大多数矿点已关停,但是以往的矿业活动仍严重影响着当地的地质环境。另一方面,北京市突发地质灾害较为发育,有数量多、分布广、种类多的特点;目前北京市各类地质灾害隐患点达5037处,主要分布在北部和西部山区的10个郊区县内,隐患数量以密云区、房山区、怀柔区居多,地质灾害隐患种类包括崩塌、滑坡、不稳定斜坡、泥石流和地面塌陷5种类型。
在平原区主要为活动断裂引起的地表位移和失稳,以及地下水过度开采导致的地面沉降。北京平原区活动断裂主要包括:南口孙河断裂带、高丽营断裂带和夏垫断裂带,其中高丽营断裂带在高丽营附近断裂面直达地表,近地表断距1.58 m[8]。截至2014年,北京平原区共发育7个地面沉降中心,主要分布在朝阳区、昌平区、顺义区、大兴区和通州区,最大累积沉降量(1955—2014年)1585 mm,历史最大沉降速率达:159.6 mm/a。
2. 研究方法
本研究的总体思路是,针对北京市山区和平原区的地质环境特点,分别建立两套不同地貌类型下的评价指标体系开展地质环境质量评价。具体方法是,将研究区域划分为一系列独立的评价单元,采用层次分析法对每一个评价单元进行地质环境质量要素的评价,形成评价单元的属性数据库,通过空间分析技术生成北京市全域地质环境质量综合评价结果。
层次分析法AHP(Analytic Hierarchy Process)是一种定性分析和定量分析相结合的决策分析方法[9-10],通过构建地质环境质量评价指标体系层次结构模型及其重要性判断矩阵,获取各评价指标的权重值[11-13],运用综合指数法[14]建立研究区地质环境质量评价综合指数计算模型,开展区域地质环境质量综合评价模型公式:
式中:
—地质环境质量综合指数; —各要素的评分值; —各要素的权重; —要素总个数。3. 地质环境质量评价
3.1 数据获取
本研究全面收集了近五年与北京市地质环境相关的数据资料。主要分为属性数据和空间数据两类。其中属性数据主要包括地质灾害资料、社会人口资料、矿业生产资料等;空间数据主要包括区域地质资料、遥感影像资料、DEM高程数据、水文地质资料等。
3.2 指标体系的建立
评价地质环境质量涉及的因素主要有区域地质环境背景、地质条件的稳定性、地质环境问题及人类工程活动等诸多因素,但影响地质环境质量的优劣是相对的,目前尚无统一的标准去衡量和描述地质环境质量的好坏[15]。选择对评价目标起主导作用、比较稳定、可量化的参评指标,构建合理的评价指标体系是地质环境质量评价工作的关键[16]。
本次地质环境质量指标的选取在参考《区域水文地质工程地质环境地质综合勘查规范》和《生态环境质量评价技术规定》等相关规范[17-18]的同时,结合研究区地质环境现状和存在的地质环境问题,遵循科学性、系统性、独立性和方便性的地质环境质量评价指标体系构建的基本原则,筛选出了13个评价指标,分别构建了北京市山区和平原区三层次的地质环境质量评价指标体系(图2、图3)。第一层为目标层,即北京市地质环境质量;第二层为准则层,包括地质条件、资源环境和人类活动3个评价准则;第三层为指标层,即每个准则所包含的具体的评价指标(表1)。
表 1 评价指标及其含义Table 1. Evaluation indexes序号 评价指标 含义 1 地表高程/m 地表海拔高度,影响地质环境的基础因素之一,它控制着水文、植被、人类活动等因素。 2 地形坡度/(°) 反映地形起伏的地形定量指标,水土流失、地质灾害、水资源等都与坡度有很大的关系。 3 岩土类型 人类生存的最基本的物质条件,评判依据是人类对岩土体的适应性,一般而言,岩性越软,人类的适应性越强。 4 地震烈度 地震时某一地区的地面和各类建筑物遭受到一次地震影响的强弱程度,表征地壳稳定性的重要因素。 5 活动断裂距离/m 某一地区活动断裂对人类活动建设存在的影响程度,用与活动断裂的距离表征。 6 灾害密度/(个·km−2) 对地区地质灾害严重程度的表征,用每平方公里地质灾害的数量表示。 7 地面沉降量/mm 地面沉降是影响人类工程活动建设的重要因素之一,用累积沉降量表示。 8 植被指数 某一地区的植被覆盖程度,用NDVI指数表征,植被是影响区域地质环境质量的重要因素之一。 9 水体面积指数 某地区地表水资源量,用水体面积指数表征,一般情况下,地表水资源量越大,对环境质量的有益贡献就越大。 10 土壤质量 指土壤在一定生态系统内支持生物的生产能力,净化环境能力,促进动植物及人类健康的能力,用土壤质量等级表征。 11 地下水质量 地下水资源的质量状况,用地下水污染的程度表征,如未受污染、轻微污染、严重污染。 12 人口密度/(人·km−2) 单位面积内的人口数量,人口是制约地区经济发展的主要因素,人口密度越大,其地质环境质量也会越差。 13 矿山密度/(个·km−2) 单位面积内的矿点数量,采矿活动严重影响着当地的地质环境质量。 3.3 指标量化分级
不同的指标数据具有不同的单位与量纲,无法直接进行比较和运算,因此必须对数据进行标准量化处理,形成数据形式统一的属性数据库,以便进行指标间的综合运算。地质环境在区域上的差异性决定了评价指标的选取和量化分级具有很强的区域特征,因此量化分级过程必须充分考虑研究区地质环境的实际情况。本研究通过现场调查和专家咨询,同时结合相关规范[19-20],将各评价指标就地质环境质量分为良好、较好、一般3个级别,分别赋值为3分、2分、1分(表2),分值越大对应的地质环境质量越好。
表 2 评价指标量化分级标准Table 2. Grading quantitative standard of geological environment quality indexes影响要素 评价指标 质量状态评分(山区) 质量状态评分(平原区) 良好(3分) 较好(2分) 一般(1分) 良好(3分) 较好(2分) 一般(1分) 地质条件 地表高程/m < 500 500~1000 > 1000 – – – 地形坡度/(°) < 5° 5°~25° > 25° – – – 岩土类型 软岩/松散土 中硬岩 坚硬岩 – – – 灾害密度(个·km−2) 0 1 > 1 – – – 地震烈度/度 < VII VII > VII < VII VII > VII 活动断裂距离/m – – – > 3000 3000~200 < 200 地面沉降量/mm – – – < 500 500~1500 > 1500 资源环境 植被指数 > 0.7 0.7~0.5 < 0.5 > 0.6 0.6~0.3 < 0.3 水体面积指数 1.0~0.5 0.5~0.1 < 0.1 1.0~0.3 0.3~0.05 < 0.05 土壤质量 – – – 优质、良好 好 中等 地下水质量 – – – 未污染 轻污染/中污染 严重污染 人类活动 人口密度/(人·km−2) < 550 550~1500 > 1500 < 1000 1000~7000 > 7000 矿山密度/(个·km−2) 0 1 > 1 0 1 > 1 将收集到的指标数据进行矢量化,并对各评价因子数据进行了1 km×1 km的重采样,即设定综合评价的基本单元大小为1 km2。根据评价指标分级量化标准,对重采样后的指标数据进行量化分级,获得每个评价指标的量化分级图,如图4所示(限于篇幅,仅列部分典型指标)。
3.4 指标权重
采用层次分析法确定各评价指标的权重。经过专家咨询,构建各层级评价要素的重要性判断矩阵,经一致性检验,各层级判断矩阵均能达到满意的一致性,此处不一一列出。根据层次单排序法获得北京市山区和平原区各评价指标的权重(表3、表4)。
表 3 山区地质环境质量评价指标权重Table 3. Geological environment quality evaluation index weight in mountain一级因子 权重 评价指标 总权重 地质条件 0.5499 地表高程/m 0.0687 地形坡度/(°) 0.1520 岩土类型 0.0962 地震烈度/度 0.0469 灾害密度(个·km−2) 0.1862 资源环境 0.2098 植被指数 0.0699 水体面积指数 0.1399 人类活动 0.2402 人口密度/(人·km−2) 0.0601 矿山密度/(个·km−2) 0.1802 表 4 平原区地质环境质量评价指标权重Table 4. Geological environment quality evaluation index weight in plain一级因子 权重 评价指标 总权重 地质条件 0.4434 活动断裂距离/m 0.1774 地震烈度/(°) 0.0887 地面沉降量/mm 0.1774 资源环境 0.3874 植被指数 0.0655 水体面积指数 0.0793 土壤质量 0.1311 地下水质量 0.1115 人类活动 0.1692 人口密度/(人·km−2) 0.0423 矿山密度/(个·km−2) 0.1269 3.5 评价结果
各评价指标的权重值确定后,利用综合指数法模型公式,获得北京山区和平原区地质环境质量评价综合指数计算模型,通过空间分析技术获得各单元的地质环境质量综合评价结果(图5)。利用自然断点法,分别对北京山区和平原区地质环境质量指数进行等级区划,总体上将北京地区地质环境质量划分为3个区:地质环境良好区、地质环境较好区和地质环境一般区(图6-a)。
4. 讨论
利用上述方法和指标因子建立针对北京市全域的单一地质环境质量评价指标体系(图7),通过层次分析和专家评判确定指标权重,利用综合指数法开展北京市全域地质环境质量评价,评价结果(图6-b)与基于地貌的多重评价指标体系评价结果(图6-a)进行比较。
在单一评价指标体系的评价结果中,山区大部为地质环境一般区,山前丘陵-平原地带地质环境良好区,中部平原区为地质环境较好区,地质环境质量区划显示出了明显的地貌特征,地质环境质量评价结果的分带性较为明显,空间分异性较差。在多重评价指标体系的评价结果中,地质环境质量的空间分异性明显得到了增强,山区地质环境良好区和较好区的范围明显增大,地质环境质量的空间分布体现了多种指标因素的影响;平原区活动断裂、地面沉降两大因素的影响得到增强,地质环境一般区的面积明显扩大,地质环境良好区也不局限于山前丘陵-平原,综合体现了土壤质量、地下水质量等因素的影响。
分析上述结果,在参与地质环境质量评价的指标因素中,部分指标受地貌影响具有空间上的局限性,不能代表北京全域的特征,如灾害密度、地形坡度、矿山密度等指标偏重于影响山区地质环境,而活动断裂、地面沉降则只存在于平原区。这些受地貌影响明显的指标因子在同一评价指标体系中被赋予权重值,降低了其对某个地貌类型的影响程度,因此导致地质环境质量评价结果在不同的地貌类型间有较明显的差异,评价结果不能有效体现研究区域不同地貌类型的地质环境质量特征,地质环境质量评价结果的合理性和准确性较差。
5. 结论
不同的地貌类型影响地质环境质量的因素有所不同。在区域地质环境质量评价中,相比于单一评价指标体系,建立基于地貌类型的多重评价指标体系,评价结果能够更加合理、准确地反映研究区的地质环境质量及空间分布状况。
-
表 1 滑块滑带土取值表
Table 1 Property table of the soils at slide block slip zone
状态 容重/( kN·m−3) 强度指标 实验标准值 反演值 采用值 天然 18 c/kPa 20.5 19.9 20.2 φ/(°) 16.3 15.9 16.1 饱和 24 c/kPa 18.5 17.9 18.2 φ/(°) 15.3 14.9 15.1 表 2 滑坡体稳定性成果汇总表
Table 2 Summary table of landslide stability results
计算工况 稳定系数 稳定状态 工况1:自重 1.070 基本稳定 工况2:自重+暴雨 0.925 不稳定 工况3:自重+地震 0.835 不稳定 表 3 滑坡动力过程模拟假设情景与参数
Table 3 Simulation scenarios and parameters for landslide dynamic process
情景 滑带土含水率/% 黏聚力/kPa 内摩擦角/(°) 情景一 6 54.79 35 情景二 18 23.05 24 情景三 30 0.21 15 表 4 溃决洪水演进过程模拟假设情景与参数
Table 4 Simulation scenarios and parameters for evaluation of outburst flood
情景 河流流量
/(m3·s−1)曼宁
系数抗剪强度
系数床负载
系数模拟时长
/h情景四 20 0.04 0.13 1.5 15 情景五 15 0.04 0.13 1.5 15 -
[1] 胡卸文,黄润秋,朱海勇,等. 唐家山堰塞湖库区马铃岩滑坡地震复活效应及其稳定性研究[J]. 岩石力学与工程学报,2009,28(6):1270 − 1278. [HU Xiewen,HUANG Runqiu,ZHU Haiyong,et al. Earthquake reactivation effects and stability study of Malingyan landslide in Tangjiashan dammed lake[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1270 − 1278. (in Chinese with English abstract) HU Xiewen, HUANG Runqiu, ZHU Haiyong, et al. Earthquake reactivation effects and stability study of malingyan landslide in Tangjiashan dammed lake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1270-1278. (in Chinese with English abstract)
[2] 卢万年. 用空气动力学分析坡体高速滑坡的滑行问题[J]. 地球科学与环境学报,1991,13(4):77 − 85. [LU Wannian. Airo-dynamic approach to sliding problems of high landslide[J]. Journal of Earth Science and Enivronmental,1991,13(4):77 − 85. (in Chinese with English abstract) LU Wannian. Airo-dynamic approach to sliding problems of high landslide[J]. Journal of Earth Science and Enivronmental, 1991, 13(4): 77-85. (in Chinese with English abstract)
[3] 黄润秋, 王士天, 张悼元. 斜坡岩体高速滑动的“滚动摩擦”机制[C]//工程地质科学新进展. 成都: 成都科技大学出版社, 1989: 318 − 325 HUANG Runqiu, WANG Shitian, ZHANG Daoyuan. “Rolling friction” mechanism “A” for high-speed sliding of slope rock mass[C]//New Progress in engineering geology. Chengdu: Chengdu University of Science and Technology Press, 1989: 318 − 325. (in Chinese)
[4] 胡广韬,赵法锁,李丽,等. 基岩地区高速滑坡的多级冲程与超前溅泥气浪[J]. 地球科学与环境学报,1988,10(1):79 − 87. [HU Guangtao,ZHAO Fasuo,LI Li,et al. Multiple-stroking of high-speed landslides and overstepping gas billows including mud in bed rock areas[J]. Journal of Earth Science and Enivronmental,1988,10(1):79 − 87. (in Chinese with English abstract) HU Guangtao, ZHAO Fasuo, LI Li, et al. Multiple-stroking of high-speed landslides and overstepping gas billows including mud in bed rock areas[J]. Journal of Earth Science and Enivronmental, 1988, 10(1): 79-87. (in Chinese with English abstract)
[5] 廖军,邓涛,周越良,等. 降雨作用下第四系堆积体路堤稳定性[J]. 科学技术与工程,2021,21(23):10090 − 10097. [LIAO Jun,DENG Tao,ZHOU Yueliang,et al. Stability of quaternary accumulation embankment under rainfall[J]. Science Technology and Engineering,2021,21(23):10090 − 10097. (in Chinese with English abstract) LIAO Jun, DENG Tao, ZHOU Yueliang, et al. Stability of quaternary accumulation embankment under rainfall[J]. Science Technology and Engineering, 2021, 21(23): 10090-10097. (in Chinese with English abstract)
[6] 云烨,吕孝雷,付希凯,等. 星载InSAR技术在地质灾害监测领域的应用[J]. 雷达学报,2020,9(1):73 − 85. [YUN Ye,LYU Xiaolei,FU Xikai,et al. Application of spaceborne interferometric synthetic aperture radar to geohazard monitoring[J]. Journal of Radars,2020,9(1):73 − 85. (in Chinese with English abstract) YUN Ye, LÜ Xiaolei, FU Xikai, et al. Application of spaceborne interferometric synthetic aperture radar to geohazard monitoring[J]. Journal of Radars, 2020, 9(1): 73-85. (in Chinese with English abstract)
[7] 代聪,李为乐,陆会燕,等. 甘肃省舟曲县城周边活动滑坡InSAR探测[J]. 武汉大学学报(信息科学版),2021,46(7):994 − 1002. [DAI Cong,LI Weile,LU Huiyan,et al. Active landslides detection in Zhouqu County,Gansu Province using InSAR technology[J]. Geomatics and Information Science of Wuhan University,2021,46(7):994 − 1002. (in Chinese with English abstract) DAI Cong, LI Weile, LU Huiyan, et al. Active landslides detection in Zhouqu County, Gansu Province using InSAR technology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 994-1002. (in Chinese with English abstract)
[8] 张国帅,王晓亮,夏建新. 入渗条件下颗粒堆积体稳定性试验研究[J]. 泥沙研究,2021,46(5):68 − 73. [ZHANG Guoshuai,WANG Xiaoliang,XIA Jianxin. Experimental study on stability of particle accumulation under infiltration[J]. Journal of Sediment Research,2021,46(5):68 − 73. (in Chinese with English abstract) ZHANG Guoshuai, WANG Xiaoliang, XIA Jianxin. Experimental study on stability of particle accumulation under infiltration[J]. Journal of Sediment Research, 2021, 46(5): 68-73. (in Chinese with English abstract)
[9] 石固林,徐浪,张璇钰,等. 西山村滑坡时序形变的SBAS-InSAR监测[J]. 测绘科学,2021,46(2):93 − 98. [SHI Gulin,XU Lang,ZHANG Xuanyu,et al. Monitoring time series deformation of Xishancun landslide with SBAS-InSAR[J]. Science of Surveying and Mapping,2021,46(2):93 − 98. (in Chinese with English abstract) SHI Gulin, XU Lang, ZHANG Xuanyu, et al. Monitoring time series deformation of Xishancun landslide with SBAS-InSAR[J]. Science of Surveying and Mapping, 2021, 46(2): 93-98. (in Chinese with English abstract)
[10] 朱庆,曾浩炜,丁雨淋,等. 重大滑坡隐患分析方法综述[J]. 测绘学报,2019,48(12):1551 − 1561. [ZHU Qing,ZENG Haowei,DING Yulin,et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica,2019,48(12):1551 − 1561. (in Chinese with English abstract) ZHU Qing, ZENG Haowei, DING Yulin, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1551-1561. (in Chinese with English abstract)
[11] 张雨林,石惊涛,涂国祥,等. 粗、巨颗粒富集位置对堆积体降雨入渗的影响[J]. 水利水运工程学报,2021(5):76 − 83. [ZHANG Yulin,SHI Jingtao,TU Guoxiang,et al. Influence of coarse and giant particles enrichment position on rainfall infiltration of accumulation body[J]. Hydro-Science and Engineering,2021(5):76 − 83. (in Chinese with English abstract) ZHANG Yulin, SHI Jingtao, TU Guoxiang, et al. Influence of coarse and giant particles enrichment position on rainfall infiltration of accumulation body[J]. Hydro-Science and Engineering, 2021(5): 76-83. (in Chinese with English abstract)
[12] 柴贺军,刘汉超,张倬元. 中国滑坡堵江的类型及其特点[J]. 成都理工学院学报,1998,25(3):411 − 416. [CHAI Hejun,LIU Hanchao,ZHANG Zhuoyuan. Study on the categories of landslide damming of rivers and their characteristics[J]. Journal of Chengdu University of Technology,1998,25(3):411 − 416. (in Chinese with English abstract) CHAI Hejun, LIU Hanchao, ZHANG Zhuoyuan. Study on the categories of landslide damming of rivers and their characteristics[J]. Journal of Chengdu University of Technology, 1998, 25(3): 411-416. (in Chinese with English abstract)
[13] 李娜. 云南省滑坡堵江灾害及其对策[C]// 滑坡文集(9). 北京: 铁道出版社, 1992 LI Na. Landslide Blocking River disaster in Yunnan Province and its countermeasures[C]// Landslide Essays (9). Beijing: Railway Press, 1992. (in Chinese)
[14] 柴贺军,刘汉超,张倬元. 滑坡堵江的基本条件[J]. 地质灾害与环境保护,1996,7(1):41 − 46. [CHAI Hejun,LIU Hanchao,ZHANG Zhuoyuan. The main conditions of landslide dam[J]. Journal of Geological Hazards and Enveronment Preservation,1996,7(1):41 − 46. (in Chinese with English abstract) CHAI Hejun, LIU Hanchao, ZHANG Zhuoyuan. The main conditions of landslide dam[J]. Journal of Geological Hazards and Enveronment Preservation, 1996, 7(1): 41-46. (in Chinese with English abstract)
[15] 于宝国,边波,李春龙,等. 基于知识图谱的碎石土堆积体滑坡研究热点及发展趋势[J]. 地球科学前沿(汉斯),2021(10):1326 − 1340. [YU Baoguo,BIAN Bo,LI Chunlong,et al. Research hotspot and development trend of gravel soil accumulation landslide based on knowledge graph[J]. Frontiers of Earth Science (Hans),2021(10):1326 − 1340. (in Chinese with English abstract) YU B G, BIAN B, LI C L, et al. Research hotspot and development trend of gravel soil accumulation landslide based on knowledge graph[J]. Frontiers of Earth Science (Hans), 2021(10): 1326-1340. (in Chinese with English abstract)
[16] 李忠生. 国内外地震滑坡灾害研究综述[J]. 灾害学,2003,18(4):64 − 70. [LI Zhongsheng. The state of the art of the research on seismic landslide hazard at home and abroad[J]. Journal of Catastrophology,2003,18(4):64 − 70. (in Chinese with English abstract) LI Zhongsheng. The state of the art of the research on seismic landslide hazard at home and abroad[J]. Journal of Catastrophology, 2003, 18(4): 64-70. (in Chinese with English abstract)
[17] 方玉树. 超大型滑坡动力学问题研究[J]. 水文地质工程地质, 1988, 15(6): 20 − 24 FANG Yushu. Study on dynamic problems of super-large landslide[J]. Hydrogeology & Engineering Geology, 1988, 15(6): 20 − 24. (in Chinese with English abstrac)
[18] 刘建康,程尊兰,佘涛. 云南鲁甸红石岩堰塞湖溃坝风险及其影响[J]. 山地学报,2016,34(2):208 − 215. [LIU Jiankang,CHENG Zunlan,SHE Tao. Assessment of dam failure and secondary hazards for hongshiyan dammed lake caused by Ludian earthquake in Niulanjiang river[J]. Mountain Research,2016,34(2):208 − 215. (in Chinese with English abstract) LIU Jiankang, CHENG Zunlan, SHE Tao. Assessment of dam failure and secondary hazards for hongshiyan dammed lake caused by Ludian earthquake in niulanjiang river[J]. Mountain Research, 2016, 34(2): 208-215. (in Chinese with English abstract)
[19] 贺小黑,彭鑫,谭建民,等. 地下水渗流对崩坡积滑坡稳定性和变形的影响—以湖南安化春风滑坡群为例[J]. 中国地质灾害与防治学报,2020,31(6):96 − 103. [HE Xiaohei,PENG Xin,TAN Jianmin,et al. Influence of groundwater seepage on stability and deformation of colluvial deposit landslide:Taking Chunfeng landslide group in Anhua County of Hunan Province as an example[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):96 − 103. (in Chinese with English abstract) HE Xiaohei, PENG Xin, TAN Jianmin, et al. Influence of groundwater seepage on stability and deformation of colluvial deposit landslide: taking Chunfeng Landslide group in Anhua County of Hunan Province as an example[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 96-103. (in Chinese with English abstract)
[20] TANG Y M,SHU H P,XUE Q A,et al. Field monitoring-based and theoretical analysis of Baota Mountain landslide stability[J]. Advances in Civil Engineering,2021:1 − 16.
[21] FLAGEOLLET J C,MAQUAIRE O,MARTIN B,et al. Landslides and climatic conditions in the Barcelonnette and Vars Basins (Southern French Alps,France)[J]. Geomorphology,1999,30(1/2):65 − 78.
[22] 杨伟东, 王再旺, 赵涵卓, 等. 基于APSO-SVR-GRU模型的白水河滑坡周期项位移预测[J]. 中国地质灾害与防治学报,2022,33(6):20 − 28. [YANG Weidong, WANG Zaiwang, ZHAO Hanzhuo, et al. Displacement prediction of periodic term of Baishuihe landslide based on APSO-SVR-GRU model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):20 − 28. (in Chinese with English abstract) YANG Weidong, WANG Zaiwang, ZHAO Hanzhuo, et al. Displacement prediction of periodic term of Baishuihe landslide based on APSO-SVR-GRU model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 20-28.(in Chinese with English abstract)
[23] 郭富赟, 周小龙, 火飞飙, 等. 舟曲断裂带滑坡灾害效应与防治对策研究[J]. 中国地质灾害与防治学报,2022,33(6):80 − 89. [GUO Fuyun, ZHOU Xiaolong, HUO Feibiao, et al. Study on the disaster effect and prevention countermeasures of landslide in Zhouqu fault zone[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):80 − 89. (in Chinese with English abstract) GUO Fuyun, ZHOU Xiaolong, HUO Feibiao, et al. Study on the disaster effect and prevention countermeasures of landslide in Zhouqu fault zone[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 80-89.(in Chinese with English abstract)
[24] 李彩虹, 李雪, 郭长宝, 等. 青藏高原东部鲜水河断裂带地震滑坡危险性评价[J]. 地质通报,2021,41(8):1473 − 1486. [LI Caihong, LI Xue, GUO Changbao, et al. Seismic landslide hazards assessment along the Xianshuihe fault zone, Tibetan Plateau, China[J]. Geological Bulletin of China,2021,41(8):1473 − 1486. (in Chinese with English abstract) LI Caihong, LI Xue, GUO Changbao, et al. Seismic landslide hazards assessment along the Xianshuihe fault zone, Tibetan Plateau, China[J]. Geological Bulletin of China, 2022, 41(8): 1473-1486.(in Chinese with English abstract)
[25] 魏占玺, 谢东武, 毋远召, 等. 基于动态残余强度的不同含水率条件下滑坡稳定性研究[J]. 水文地质工程地质,2022,49(2):126 − 136. [WEI Zhanxi, XIE Dongwu, WU Yuanzhao, et al. Research on landslide stability under different water content conditions based on the dynamic residual strength[J]. Hydrogeology & Engineering Geology,2022,49(2):126 − 136. (in Chinese with English abstract) WEI Zhanxi, XIE Dongwu, WU Yuanzhao, et al. Research on landslide stability under different water content conditions based on the dynamic residual strength[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 126-136.(in Chinese with English abstract)
[26] 田尤, 陈龙, 黄海, 等. 西藏澜沧江流域察雅县城滑坡群成因及现状稳定性[J]. 地质通报,2021,40(12):2034 − 2042. [TIAN You, CHEN Long, HUANG Hai, et al. Origin and stability of landslides in Chaya County, Lancang River Basin, Tibet[J]. Geological Bulletin of China,2021,40(12):2034 − 2042. (in Chinese with English abstract) TIAN You, CHEN Long, HUANG Hai, et al. Origin and stability of landslides in Chaya County, Lancang River Basin, Tibet[J]. Geological Bulletin of China, 2021, 40(12): 2034-2042.(in Chinese with English abstract)
[27] 韩旭东, 付杰, 李严严, 等. 舟曲江顶崖滑坡的早期判识及风险评估研究[[J]. 水文地质工程地质,2021,48(6):180 − 186. [HAN Xudong, FU Jie, LI Yanyan, et al. A study of the early identification and risk assessment of the Jiangdingya landslide in Zhouqu County[J]. Hydrogeology & Engineering Geology,2021,48(6):180 − 186. (in Chinese with English abstract) HAN Xudong, FU Jie, LI Yanyan, et al. A study of the early identification and risk assessment of the Jiangdingya landslide in Zhouqu County[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 180-186.(in Chinese with English abstract)
-
期刊类型引用(2)
1. 姜鑫,张卫雄,杨校辉,陈昆全,丁保艳. 甘肃舟曲县江顶崖滑坡抗滑桩变形监测与治理效果分析. 中国地质灾害与防治学报. 2024(05): 174-182 . 本站查看
2. 汪美华,赵慧,倪天翔,余洋,陈红旗. 近30年滑坡研究文献图谱可视化分析. 中国地质灾害与防治学报. 2023(04): 75-85 . 本站查看
其他类型引用(2)