ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

机器学习模型在地质灾害遥感调查数据分析中的应用现状

张凯翔, 蒋道君, 吕小宁, 张曦

张凯翔,蒋道君,吕小宁,等. 机器学习模型在地质灾害遥感调查数据分析中的应用现状[J]. 中国地质灾害与防治学报,2024,35(4): 126-134. DOI: 10.16031/j.cnki.issn.1003-8035.202302029
引用本文: 张凯翔,蒋道君,吕小宁,等. 机器学习模型在地质灾害遥感调查数据分析中的应用现状[J]. 中国地质灾害与防治学报,2024,35(4): 126-134. DOI: 10.16031/j.cnki.issn.1003-8035.202302029
ZHANG Kaixiang,JIANG Daojun,LYU Xiaoning,et al. Current application of machine learning models in the analysis of remote sensing survey data for geological hazards[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4): 126-134. DOI: 10.16031/j.cnki.issn.1003-8035.202302029
Citation: ZHANG Kaixiang,JIANG Daojun,LYU Xiaoning,et al. Current application of machine learning models in the analysis of remote sensing survey data for geological hazards[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4): 126-134. DOI: 10.16031/j.cnki.issn.1003-8035.202302029

机器学习模型在地质灾害遥感调查数据分析中的应用现状

基金项目: 国家重点研发计划项目(2021YFB2600402);中国铁建股份有限公司科技重大专项(2022-A02)
详细信息
    作者简介:

    张凯翔(1989—),男,湖北武汉人,测绘科学与技术专业,博士,高级工程师,主要从事遥感工程地质勘察、地理地质信息系统研发相关研究。E-mail:dr_setsuna@163.com

  • 中图分类号: P237;P642

Current application of machine learning models in the analysis of remote sensing survey data for geological hazards

  • 摘要:

    为研究机器学习模型在地质灾害遥感调查中的应用现状,基于中国知网(CNKI)数据库,采用文献计量法进行可视化分析,从发文量、研究热点、研究机构等多视角详述机器学习模型、地质灾害遥感调查技术的研究进展。利用VOSviewer软件分析机器学习模型与地质灾害遥感调查技术高频关键词及其关联度,并通过分类统计定量化分析得出研究热点、关联性和发展趋势。结果表明:中国地质灾害遥感调查技术正由“图谱测量”向“图谱与几何测量”逐步转变,新一代机器学习算法伴随着无人机遥感技术的进步,已成为本领域最热门的研究方向,推动着地质灾害体自动识别和智能提取技术发展;未来的地质灾害遥感调查技术必然是围绕“空−天−地”协同应用与应急监测的综合技术体系。研究认为,针对不同遥感影像数据的特点,综合研究不同机器学习模型在各种遥感解译工作场景中的应用是未来的主要发展趋势。

    Abstract:

    To investigate the current landscape of the application of machine learning in remote sensing surveys of geological disasters and to support the development of intelligent remote sensing survey technologies for geological disasters, a bibliometric analysis of machine learning and geological disaster remote sensing survey technology was conducted using the China National Knowledge Infrastructure (CNKI) database. Visual analysis was performed from multiple perspectives, including the number of publications, research hotspots, and research institutions, to describe the research progress of machine learning and geological disaster remote sensing survey technology. VOSviewer software was utilized to scrutinize the high-frequency keywords and their associations between machine learning and geological disaster remote sensing survey technology. The results showed that remote sensing survey technology for geological disasters in China is gradually shifting from traditional “topographic measurement” towards more holistic “topographic and geometric measuremen” approaches. With the advancement of unmanned aerial vehicle remote sensing technology, the new generation of intelligent learning algorithms have emerged as the predominant research direction, fostering the growth of automated geological disaster recognition and intelligent extraction techniques. Nevertheless, the future of remote sensing survey technology for geological disasters is poised to evolve into a comprehensive technical system that emphasizes the synergistic “air-space-ground” application and emergency monitoring. Considering the diverse characteristics of remote sensing image data, the primary developmental trajectory will involve an extensive exploration of various machine learning algorithms across different remote sensing interpretation scenarios.

  • 图  1   2003—2022年地质灾害遥感调查技术应用研究领域发文量分布

    Figure  1.   Distribution of published papers in the fields of geological hazard remote sensing survey technology application from 2003 to 2022

    图  2   2003—2022年地质灾害遥感调查技术应用研究领域高发文机构

    Figure  2.   High-volume institutions in the field of geological hazard remote sensing survey technology application research from 2003 to 2022

    图  3   2003—2022年主要地质灾害遥感调查技术发文量分布

    Figure  3.   Distribution of research publications on major geological hazard remote sensing survey technologies from 2003 to 2022

    图  4   2003—2022年主要地质灾害遥感调查技术发文量逐年发展趋势

    Figure  4.   Annual development trends of research publications on major geological hazard remote sensing survey technologies from 2003 to 2022

    图  5   2003—2022年主要机器学习发文量分布

    Figure  5.   Distribution of research publications on major artificial intelligence algorithms from 2003 to 2022

    图  6   2003—2022年主要机器学习发文量逐年发展趋势

    Figure  6.   Annual development trends of research publications on major machine learning from 2003 to 2022

    图  7   2003—2022年无人机遥感技术与各种机器学习关键词关联度

    Figure  7.   Association between unmanned aerial vehicle remote sensing technology and various artificial intelligence algorithm keywords from 2003 to 2022

    图  8   2003—2022年SAR技术与各种机器学习关键词关联度

    Figure  8.   Association between sar (synthetic aperture radar) technology and various artificial intelligence algorithm keywords from 2003 to 2022

    图  9   2003—2022年高分辨率遥感技术与各种机器学习关键词关联度

    Figure  9.   Association between high-resolution remote sensing technology and various artificial intelligence algorithm keywords from 2003 to 2022

    图  10   2003—2022年高光谱遥感技术与各种机器学习关键词关联度

    Figure  10.   Association between hyperspectral remote sensing technology and various artificial intelligence algorithm keywords from 2003 to 2022

  • [1] 万佳威,褚宏亮,李滨,等. 西藏嘉黎断裂带沿线高位链式地质灾害发育特征分析[J]. 中国地质灾害与防治学报,2021,32(3):51 − 60. [WAN Jiawei,CHU Hongliang,LI Bin,et al. Analysis on the development characteristics of high-level chain geological disasters along the Jiali fault zone in Tibet[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):51 − 60. (in Chinese with English abstract)]

    WAN Jiawei, CHU Hongliang, LI Bin, et al. Analysis on the development characteristics of high-level chain geological disasters along the Jiali fault zone in Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 51 − 60. (in Chinese with English abstract)

    [2] 张凯翔,张占荣,于宪煜. SBAS-InSAR和PS-InSAR技术在鲁西南某线性工程沿线地面沉降成因分析中的应用[J]. 中国地质灾害与防治学报,2022,33(4):65 − 76. [ZHANG Kaixiang,ZHANG Zhanrong,YU Xianyu. Application of SBAS-InSAR and PS-InSAR technologies in analysis of landslide subsidence along a linear infrastructure in Southwestern Shandong[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):65 − 76. (in Chinese with English abstract)]

    ZHANG Kaixiang, ZHANG Zhanrong, YU Xianyu. Application of SBAS-InSAR and PS-InSAR technologies in analysis of landslide subsidence along a linear infrastructure in Southwestern Shandong[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 65 − 76. (in Chinese with English abstract)

    [3] 赖积保,康旭东,鲁续坤,等. 新一代人工智能驱动的陆地观测卫星遥感应用技术综述[J]. 遥感学报,2022,26(8):1530 − 1546. [LAI Jibao,KANG Xudong,LU Xukun,et al. A review of land observation satellite remote sensing application technology with new generation artificial intelligence[J]. National Remote Sensing Bulletin,2022,26(8):1530 − 1546. (in Chinese with English abstract)] DOI: 10.11834/j.issn.1007-4619.2022.8.ygxb202208004

    LAI Jibao, KANG Xudong, LU Xukun, et al. A review of land observation satellite remote sensing application technology with new generation artificial intelligence[J]. National Remote Sensing Bulletin, 2022, 26(8): 1530 − 1546. (in Chinese with English abstract) DOI: 10.11834/j.issn.1007-4619.2022.8.ygxb202208004

    [4] 黄昕,李家艺. 人工智能-遥感大数据时代的《遥感图像智能解译》课程教学设计与思考[J]. 测绘地理信息,2022,47(增刊1):219 − 222. [HUANG Xin,LI Jiayi. Discussion on teaching design of intelligent interpretation of remote sensing images in the era of artificial intelligence and remote sensing big data[J]. Journal of Geomatics,2022,47(Sup 1):219 − 222. (in Chinese with English abstract)]

    HUANG Xin, LI Jiayi. Discussion on teaching design of intelligent interpretation of remote sensing images in the era of artificial intelligence and remote sensing big data[J]. Journal of Geomatics, 2022, 47(Sup 1): 219 − 222. (in Chinese with English abstract)

    [5] 龚健雅,张觅,胡翔云,等. 智能遥感深度学习框架与模型设计[J]. 测绘学报,2022,51(4):475 − 487. [GONG Jianya,ZHANG Mi,HU Xiangyun,et al. The design of deep learning framework and model for intelligent remote sensing[J]. Acta Geodaetica et Cartographica Sinica,2022,51(4):475 − 487. (in Chinese with English abstract)] DOI: 10.11947/j.issn.1001-1595.2022.4.chxb202204002

    GONG Jianya, ZHANG Mi, HU Xiangyun, et al. The design of deep learning framework and model for intelligent remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475 − 487. (in Chinese with English abstract) DOI: 10.11947/j.issn.1001-1595.2022.4.chxb202204002

    [6] 汉秋,王敬宇,赵理华. 基于人工智能的自然资源要素遥感解译的建设应用[J]. 中国测绘,2021(7):66 − 69. [HAN Qiu,WANG Jingyu,ZHAO Lihua. Construction and application of remote sensing interpretation of natural resources elements based on artificial intelligence[J]. China Surveying and Mapping,2021(7):66 − 69. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1005-6831.2021.07.017

    HAN Qiu, WANG Jingyu, ZHAO Lihua. Construction and application of remote sensing interpretation of natural resources elements based on artificial intelligence[J]. China Surveying and Mapping, 2021(7): 66 − 69. (in Chinese with English abstract) DOI: 10.3969/j.issn.1005-6831.2021.07.017

    [7] 欧阳松. 地学知识嵌入的遥感影像深度语义分割方法研究[D]. 武汉:武汉大学,2021. [OUYANG Song. Research on depth semantic segmentation method of remote sensing image embedded with geoscience knowledge[D]. Wuhan:Wuhan University,2021. (in Chinese with English abstract)]

    OUYANG Song. Research on depth semantic segmentation method of remote sensing image embedded with geoscience knowledge[D]. Wuhan: Wuhan University, 2021. (in Chinese with English abstract)

    [8] 人工智能正成为遥感大数据的“解译侠”[J]. 电子技术与软件工程,2019(15):12. [Artificial intelligence is becoming the “interpreter” of remote sensing big data[J]. Electronic Technology & Software Engineering,2019(15):12. (in Chinese)]

    Artificial intelligence is becoming the “interpreter” of remote sensing big data[J]. Electronic Technology & Software Engineering, 2019(15): 12. (in Chinese)

    [9] 葛大庆. 地质灾害早期识别与监测预警中的综合遥感应用[J]. 城市与减灾,2018(6):53 − 60. [GE Daqing. Application of integrated remote sensing in early identification,monitoring and early warning of geological disasters[J]. City and Disaster Reduction,2018(6):53 − 60. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-0495.2018.06.011

    GE Daqing. Application of integrated remote sensing in early identification, monitoring and early warning of geological disasters[J]. City and Disaster Reduction, 2018(6): 53 − 60. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-0495.2018.06.011

    [10] 许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报,2020,28(2):360 − 374. [XU Qiang. Understanding the landslide monitoring and early warning:consideration to practical issues[J]. Journal of Engineering Geology,2020,28(2):360 − 374. (in Chinese with English abstract)] DOI: 10.13544/j.cnki.jeg.2020-025

    XU Qiang. Understanding the landslide monitoring and early warning: consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360 − 374. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2020-025

    [11] 葛大庆,戴可人,郭兆成,等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版),2019,44(7):949 − 956. [GE Daqing,DAI Keren,GUO Zhaocheng,et al. Early identification of serious geological hazards with integrated remote sensing technologies:thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University,2019,44(7):949 − 956. (in Chinese with English abstract)]

    GE Daqing, DAI Keren, GUO Zhaocheng, et al. Early identification of serious geological hazards with integrated remote sensing technologies: thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949 − 956. (in Chinese with English abstract)

    [12] 朱建军,杨泽发,李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报,2019,48(2):135 − 144. [ZHU Jianjun,YANG Zefa,LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica,2019,48(2):135 − 144. (in Chinese with English abstract)] DOI: 10.11947/j.AGCS.2019.20180188

    ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 135 − 144. (in Chinese with English abstract) DOI: 10.11947/j.AGCS.2019.20180188

    [13] 郭庆华,胡天宇,刘瑾,等. 轻小型无人机遥感及其行业应用进展[J]. 地理科学进展,2021,40(9):1550 − 1569. [GUO Qinghua,HU Tianyu,LIU Jin,et al. Advances in light weight unmanned aerial vehicle remote sensing and major industrial applications[J]. Progress in Geography,2021,40(9):1550 − 1569. (in Chinese with English abstract)] DOI: 10.18306/dlkxjz.2021.09.010

    GUO Qinghua, HU Tianyu, LIU Jin, et al. Advances in light weight unmanned aerial vehicle remote sensing and major industrial applications[J]. Progress in Geography, 2021, 40(9): 1550 − 1569. (in Chinese with English abstract) DOI: 10.18306/dlkxjz.2021.09.010

    [14] 许强,郭晨,董秀军. 地质灾害航空遥感技术应用现状及展望[J]. 测绘学报,2022,51(10):2020 − 2033. [XU Qiang,GUO Chen,DONG Xiujun. Application status and prospect of aerial remote sensing technology for geohazards[J]. Acta Geodaetica et Cartographica Sinica,2022,51(10):2020 − 2033. (in Chinese with English abstract)]

    XU Qiang, GUO Chen, DONG Xiujun. Application status and prospect of aerial remote sensing technology for geohazards[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2020 − 2033. (in Chinese with English abstract)

    [15] 王昆,杨鹏,吕文生,等. 无人机遥感在矿业领域应用现状及发展态势[J]. 工程科学学报,2020,42(9):1085 − 1095. [WANG Kun,YANG Peng,LYU Wensheng,et al. Current status and development trend of UAV remote sensing applications in the mining industry[J]. Chinese Journal of Engineering,2020,42(9):1085 − 1095. (in Chinese with English abstract)]

    WANG Kun, YANG Peng, LYU Wensheng, et al. Current status and development trend of UAV remote sensing applications in the mining industry[J]. Chinese Journal of Engineering, 2020, 42(9): 1085 − 1095. (in Chinese with English abstract)

    [16] 汪美华,赵慧,倪天翔, 等. 近30年滑坡研究文献图谱可视化分析[J]. 中国地质灾害与防治学报,2023,34(4):75 − 85. [WANG Meihua, ZHAO Hui, NI Tianxiang, et al. Visualization analysis of research literature map on landslides in the past 30 years[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):75 − 85. (in Chinese with English abstract)]

    WANG Meihua, ZHAO Hui, NI Tianxiang, et al. Visualization analysis of research literature map on landslides in the past 30 years[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 75 − 85. (in Chinese with English abstract)

    [17] 董文,潘建平,阳振宇,等. 高分二号卫星数据在地质灾害调查中的应用——以重庆万州区为例[J]. 中国地质灾害与防治学报,2019,30(1):106 − 111. [DONG Wen,PAN Jianping,YANG Zhenyu,et al. Application of GF-2 satellite data in geological hazard survey:A case study in Wanzhou District of Chongqing City[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):106 − 111. (in Chinese with English abstract)] DOI: 10.16031/j.cnki.issn.1003-8035.2019.01.13

    DONG Wen, PAN Jianping, YANG Zhenyu, et al. Application of GF-2 satellite data in geological hazard survey: A case study in Wanzhou District of Chongqing City[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(1): 106 − 111. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2019.01.13

    [18] 张幼莹,余江宽,张丹丹,等. 国产卫星影像本底数据更新的实用方案——以地质灾害易发区遥感影像为例[J]. 国土资源遥感,2017,29(1):149 − 157. [ZHANG Youying,YU Jiangkuan,ZHANG Dandan,et al. Practical solution for background data update of domestic satellite images:A case study of remote sensing images of geological hazard prone areas[J]. Remote Sensing for Land & Resources,2017,29(1):149 − 157. (in Chinese with English abstract)]

    ZHANG Youying, YU Jiangkuan, ZHANG Dandan, et al. Practical solution for background data update of domestic satellite images: A case study of remote sensing images of geological hazard prone areas[J]. Remote Sensing for Land & Resources, 2017, 29(1): 149 − 157. (in Chinese with English abstract)

    [19] 许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报(信息科学版),2020,45(11):1651 − 1659. [XU Qiang. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1651 − 1659. (in Chinese with English abstract)]

    XU Qiang. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1651 − 1659. (in Chinese with English abstract)

    [20] 许强,董秀军,李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版),2019,44(7):957 − 966. [XU Qiang,DONG Xiujun,LI Weile. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University,2019,44(7):957 − 966. (in Chinese with English abstract)]

    XU Qiang, DONG Xiujun, LI Weile. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957 − 966. (in Chinese with English abstract)

    [21] 段杰斌. 基于循环神经网络的太原西山山区滑坡预测研究[D]. 西安:西安科技大学,2020. [DUAN Jiebin. Study on landslide prediction in Xishan Mountain area of Taiyuan based on cyclic neural network[D]. Xi’an:Xi’an University of Science and Technology,2020. (in Chinese with English abstract)]

    DUAN Jiebin. Study on landslide prediction in Xishan Mountain area of Taiyuan based on cyclic neural network[D]. Xi’an: Xi’an University of Science and Technology, 2020. (in Chinese with English abstract)

    [22] 孙启新. 面向卷积神经网络场景解译的地质灾害遥感影像样本库建设研究[D]. 成都:西南交通大学,2019. [SUN Qixin. Research on the construction of geological disaster remote sensing image sample database for convolutional neural network scene interpretation[D]. Chengdu:Southwest Jiaotong University,2019. (in Chinese with English abstract)]

    SUN Qixin. Research on the construction of geological disaster remote sensing image sample database for convolutional neural network scene interpretation[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese with English abstract)

    [23] 张茂省,贾俊,王毅,等. 基于机器学习(machine learning)的地质灾害防控体系建设[J]. 西北地质,2019,52(2):103 − 116. [ZHANG Maosheng,JIA Jun,WANGYi,et al. Construction of geological disaster prevention and control system base on machine learning[J]. Northwestern Geology,2019,52(2):103 − 116. (in Chinese with English abstract)]

    ZHANG Maosheng, JIA Jun, WANGYi, et al. Construction of geological disaster prevention and control system base on machine learning[J]. Northwestern Geology, 2019, 52(2): 103 − 116. (in Chinese with English abstract)

    [24] 葛涛涛. 基于机器学习算法的日喀则地区泥石流易发性研究[D]. 南京:南京信息工程大学,2019. [GE Taotao. Study on the susceptibility of debris flow in Xigaze area based on machine learning algorithm[D]. Nanjing:Nanjing University of Information Science & Technology,2019. (in Chinese with English abstract)]

    GE Taotao. Study on the susceptibility of debris flow in Xigaze area based on machine learning algorithm[D]. Nanjing: Nanjing University of Information Science & Technology, 2019. (in Chinese with English abstract)

    [25] 梁柱. 机器学习在浅层滑坡敏感性评价中的综合应用与研究[D]. 长春:吉林大学,2021. [LIANG Zhu. Comprehensive application and research of machine learning in sensitivity evaluation of shallow landslide[D]. Changchun:Jilin University,2021. (in Chinese with English abstract)]

    LIANG Zhu. Comprehensive application and research of machine learning in sensitivity evaluation of shallow landslide[D]. Changchun: Jilin University, 2021. (in Chinese with English abstract)

    [26] 程刚,王振雪,李刚强,等. 我国滑坡监测文献计量研究的可视化分析[J]. 中国安全科学学报,2022,32(7):172 − 179. [CHENG Gang,WANG Zhenxue,LI Gangqiang,et al. Visual analysis of bibliometric research on landslide monitoring in China[J]. China Safety Science Journal,2022,32(7):172 − 179. (in Chinese with English abstract)] DOI: 10.16265/j.cnki.issn1003-3033.2022.07.2766

    CHENG Gang, WANG Zhenxue, LI Gangqiang, et al. Visual analysis of bibliometric research on landslide monitoring in China[J]. China Safety Science Journal, 2022, 32(7): 172 − 179. (in Chinese with English abstract) DOI: 10.16265/j.cnki.issn1003-3033.2022.07.2766

    [27] 白青林,刘烜良,张军华,等. 基于CV-XGBoost的水下分流河道砂体厚度预测及应用[J]. 吉林大学学报(地球科学版),2023,53(5):1602 − 1610. [BAI Qinglin, LIU Xuanliang, ZHANG Junhua, et al. Sand body thickness prediction of underwater distributary channel based on CV-XGBoost method[J]. Journal of Jilin University (Earth Science Edition),2023,53(5):1602 − 1610. (in Chinese with English abstract)]

    BAI Qinglin, LIU Xuanliang, ZHANG Junhua, et al. Sand body thickness prediction of underwater distributary channel based on CV-XGBoost method[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(5): 1602 − 1610. (in Chinese with English abstract)

    [28] 欧阳渊,刘洪,李光明,等. 基于随机森林算法的找矿预测——以冈底斯成矿带西段斑岩——浅成低温热液型铜多金属矿为例[J]. 中国地质,2023,50(2):303 − 330. [OUYANG Yuan, LIU Hong, LI Guangming, et al. Mineral search prediction based on Random Forest algorithm:A case study on porphyry-epithermal copper polymetallic deposits in the western Gangdise meatallogenic belt[J]. Geology in China,2023,50(2):303 − 330. (in Chinese with English abstract)]

    OUYANG Yuan, LIU Hong, LI Guangming, et al. Mineral search prediction based on Random Forest algorithm: A case study on porphyry-epithermal copper polymetallic deposits in the western Gangdise meatallogenic belt[J]. Geology in China, 2023, 50(2): 303 − 330. (in Chinese with English abstract)

  • 期刊类型引用(52)

    1. 刘传正,米文忠,黄帅. 论灾害事故预防应对的调查评估问题. 灾害学. 2025(01): 1-7+85 . 百度学术
    2. 曹禄来,瞿帅,万红军,余鹏琪,陈舒阳. 岗丘谷地弃土场倒葫芦形滑坡原因分析及处治措施. 路基工程. 2025(01): 213-218 . 百度学术
    3. 张新,王建文,方舒,李敏. 基于随机场理论的多组分弃渣场可靠度研究. 山西建筑. 2025(07): 6-11 . 百度学术
    4. 邓锡保,宋欣,马蕾梦醒,刘建友,张振波,陈亚东. 隧道弃渣场格宾生态挡墙碳排放分析及减碳技术. 铁道标准设计. 2024(06): 114-120 . 百度学术
    5. 张清,何毅,陈学业,高秉海,张立峰,赵占骜,路建刚,张雅蕾. 基于多尺度卷积神经网络的深圳市滑坡易发性评价. 中国地质灾害与防治学报. 2024(04): 146-162 . 本站查看
    6. 钟兴荣. 低势能滑坡束口聚能启程剧动机制研究——以深圳光明新区红坳建筑弃渣场滑坡为例. 岩石力学与工程学报. 2024(10): 2485-2496 . 百度学术
    7. 李蔚霖. 贵州山区软基型弃渣场失稳机理探究. 交通科技. 2024(05): 62-65 . 百度学术
    8. 刘传正,王建新. 崩塌滑坡泥石流灾害链分类研究. 工程地质学报. 2024(05): 1573-1596 . 百度学术
    9. 聂峰,史超. 西南地区生产建设项目弃渣场水土保持现状. 长江技术经济. 2024(05): 31-37 . 百度学术
    10. 夏清,窦志荣,尹小涛. 山区公路典型弃渣边坡灾变机制和综合安全控制技术. 施工技术(中英文). 2023(04): 29-33+38 . 百度学术
    11. 王晓伟,朱兴旺,李卓. 矿山排土场边坡稳定性影响因素分析. 西部探矿工程. 2023(06): 11-14 . 百度学术
    12. 许宁,陈铭,蔺威威,边涛,杜旭东,简东明. 泥岩地层盾构渣土免烧砖制备技术研究. 新型建筑材料. 2023(06): 80-82+94 . 百度学术
    13. 沈剑羽,肖建庄,高琦,王浩通. 工程弃土复配及再生砖性能试验. 应用基础与工程科学学报. 2023(04): 990-1005 . 百度学术
    14. 廖江林,黄家华. 压力注浆钢管桩在运营高速公路膨胀土路堤滑坡处治中的应用. 西部交通科技. 2022(10): 80-83 . 百度学术
    15. 高琦,肖建庄,沈剑羽. 园林垃圾对工程弃土烧结砖性能的影响. 建筑材料学报. 2022(11): 1195-1202 . 百度学术
    16. 李沁书,温家华,柴建峰,周喜军,闫宾,凌超. 抽水蓄能电站弃渣场勘察设计中若干问题的探讨. 水电与抽水蓄能. 2021(02): 90-94 . 百度学术
    17. 王开科,闫浩静,赵国情,冯兴伟,张磊,何承浩. 极端暴雨工况下弃渣场稳定性分析. 中国水运(下半月). 2021(06): 153-155 . 百度学术
    18. 洪振宇,何玉琼,李明,孙荣,朱莎莎. 降雨-地震耦合作用下某大型弃渣场稳定性分析. 矿业研究与开发. 2021(06): 43-47 . 百度学术
    19. 王树英,占永杰,杨秀竹,付循伟,令凡琳. 淤泥质粉质黏土地层盾构渣土免烧空心砖固化机理与质量评价. 北京工业大学学报. 2021(07): 710-718 . 百度学术
    20. 徐龙旺. 沿河膨胀填(弃)土滑坡群成因机制分析及处治研究. 西部交通科技. 2021(05): 24-27 . 百度学术
    21. 刘志明. 弃渣场扩容条件下渣体边坡稳定性影响因素研究. 铁道建筑技术. 2021(08): 24-27+55 . 百度学术
    22. 薛青松. 自密水泥土在基坑肥槽回填工程的现场试验研究. 江西建材. 2021(12): 28-30 . 百度学术
    23. 王开科,闫浩静,赵国情,冯兴伟,张磊,何承浩. 极端暴雨工况下弃渣场稳定性分析. 中国水运(下半月). 2021(12): 153-155 . 百度学术
    24. 肖建宇,谢忠勇,张著伦. 挡墙基底换填对弃土场边坡稳定性影响分析. 地质灾害与环境保护. 2020(01): 81-86 . 百度学术
    25. 姚天雨,赵建平. 基于STAMP模型的深圳“12·20”滑坡事故致因分析. 系统科学学报. 2020(02): 73-78+89 . 百度学术
    26. 郭小雨,陈枝东,裴立宅,李家茂,樊传刚. 改性矿渣水泥-渣土免烧砖的制备与性能表征. 新型建筑材料. 2020(05): 75-79 . 百度学术
    27. 彭庆华,朱绍奇,张胜勇. 滑坡削坡卸载综合整治技术研究. 四川建筑. 2020(02): 118-119+122 . 百度学术
    28. 邱海军,马舒悦,崔一飞,杨冬冬,裴艳茜,刘子敬. 重新认识滑坡作用. 西北大学学报(自然科学版). 2020(03): 377-385 . 百度学术
    29. 林文华,叶诚耿,王浩. 考虑堆填界面软化及地下水位波动的大型弃渣场边坡稳定性分析. 铁道建筑. 2020(05): 84-88 . 百度学术
    30. 王良民,郭向前,奚春华,李勇,程起敏. 实景三维地质灾害管理信息平台的设计与实现. 地理空间信息. 2020(08): 7-9+30+6 . 百度学术
    31. 王盈,曾江波,姚文敏,李长冬. 基于可靠度理论的阻滑键加固渣土边坡多目标优化设计方法. 中国地质灾害与防治学报. 2020(05): 88-97 . 本站查看
    32. 陈柯霖,卿伟宸,朱勇. 浅论环保新形势下艰险山区弃渣场系统设计. 高速铁路技术. 2020(05): 87-91 . 百度学术
    33. 谢亦红,尹祖超,李亮,蔡鹏. 砂土静动力液化特性的数值模拟. 公路交通科技. 2020(12): 33-39 . 百度学术
    34. 柴建峰,周喜军,江献玉,刘殿海,王震洲,凌超,闫宾,李沁书. 固体废弃物堆场深层缓倾角推移式破坏实例分析. 水电与抽水蓄能. 2020(06): 73-77+85 . 百度学术
    35. 高杨,卫童瑶,李滨,贺凯,刘铮,王学良. 深圳“12.20”渣土场远程流化滑坡动力过程分析. 水文地质工程地质. 2019(01): 129-138+147 . 百度学术
    36. 张睿骁,樊晓一,姜元俊. 滑坡碎屑流冲击拦挡结构的离散元模拟. 水文地质工程地质. 2019(01): 148-155 . 百度学术
    37. 王韬,叶咸,吴晓南. 浅议西南山区高速公路弃渣场工程. 公路交通科技(应用技术版). 2019(01): 110-114 . 百度学术
    38. 王昱,闫宾,曹畅,柴建峰. 弃渣体潜在失稳滑动面探讨. 水电与抽水蓄能. 2019(04): 106-112 . 百度学术
    39. 沈明祥,罗红明,刘志鹏,穆日盛,彭坤杰. 贵州省六盘水至威宁高速公路弃土场稳定性评估. 中国岩溶. 2019(04): 559-564 . 百度学术
    40. 曾江波,杨龙,姚文敏,肖林超,鲁健. 基于非线性规划的渣土边坡坡形优化. 中国地质灾害与防治学报. 2019(06): 105-112 . 本站查看
    41. 余东亮,王庆,王爱玲,吴东容,吴森. 西南山区管道某典型滑坡变形演化研究. 油气田地面工程. 2019(12): 65-69 . 百度学术
    42. 李明阳,柴建峰. 浅析弃渣体设计参数. 水电与抽水蓄能. 2018(03): 103-105 . 百度学术
    43. 龚鹏,张洪岩. 深圳市地质灾害详细调查工作思路与建议. 中国矿业. 2018(09): 36-40 . 百度学术
    44. 陈鹏飞,姜文杰,魏益平,陈阳. 水位变化与降雨耦合条件下四川某渣场边坡稳定性研究. 山西建筑. 2018(35): 73-75 . 百度学术
    45. 刘传正. 论崩塌滑坡—碎屑流高速远程问题. 地质论评. 2017(06): 1563-1575 . 百度学术
    46. 刘传正. 论地质灾害风险识别问题. 水文地质工程地质. 2017(04): 1-7 . 百度学术
    47. 张一希,许强,彭大雷,赵宽耀,郭晨. 深圳“12·20”滑坡土体渗透性模拟试验研究. 水文地质工程地质. 2017(05): 131-136+149 . 百度学术
    48. 赖国泉,任庆钊,张俊德. 甘肃兰州某黄土建筑高边坡失稳原因及补强治理方案. 中国地质灾害与防治学报. 2017(01): 36-42 . 本站查看
    49. 胡建华,黄超然,习智琴,杨春. 基于系统思考的深圳“12·20”滑坡事故分析及应对措施. 灾害学. 2017(01): 142-148 . 百度学术
    50. 彭璐. 花岗岩地区滑坡特征及防治对策——以湖南省平江县花岗岩滑坡为例. 国土资源导刊. 2016(04): 20-24 . 百度学术
    51. 柴建峰,王珏. 抽蓄工程弃渣场稳定性计算现状及问题分析. 山西建筑. 2016(27): 46-47 . 百度学术
    52. 刘传正. 论地质灾害防治文化培育问题. 中国地质灾害与防治学报. 2016(03): 1-6 . 本站查看

    其他类型引用(25)

图(10)
计量
  • 文章访问数:  408
  • HTML全文浏览量:  118
  • PDF下载量:  197
  • 被引次数: 77
出版历程
  • 收稿日期:  2023-02-26
  • 修回日期:  2023-10-17
  • 录用日期:  2023-10-22
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2024-08-24

目录

    /

    返回文章
    返回