ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

四川省喜德县地质灾害“点面双控”体系探索与实践

徐伟, 铁永波, 王家柱, 郑玄, 白永健, 徐如阁, 梁东波, 欧文

徐伟,铁永波,王家柱,等. 四川省喜德县地质灾害“点面双控”体系探索与实践[J]. 中国地质灾害与防治学报,2023,34(5): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202302031
引用本文: 徐伟,铁永波,王家柱,等. 四川省喜德县地质灾害“点面双控”体系探索与实践[J]. 中国地质灾害与防治学报,2023,34(5): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202302031
XU Wei,TIE Yongbo,WANG Jiazhu,et al. Exploration and practice of the “dual control of point and zone” system for geological hazards in Xide County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202302031
Citation: XU Wei,TIE Yongbo,WANG Jiazhu,et al. Exploration and practice of the “dual control of point and zone” system for geological hazards in Xide County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202302031

四川省喜德县地质灾害“点面双控”体系探索与实践

基金项目: 中国地质调查局地质调查项目(DD20221746)
详细信息
    作者简介:

    徐 伟(1986-),男,山东淄博人,地质工程专业,硕士,高级工程师,主要从事地质灾害调查评价和岩土体稳定性方向研究。E-mail:052054@163.com

  • 中图分类号: P642.2

Exploration and practice of the “dual control of point and zone” system for geological hazards in Xide County, Sichuan Province

  • 摘要: 地质灾害隐患点和风险区双控是我国“十四五”期间地质灾害防治的重要任务之一,各试点省份和地区均在探索如何有效开展“点面双控”,并逐渐形成点面双控的管理制度、责任体系和技术方法。在归纳四川省喜德县地质环境条件和前期防灾减灾工作成效的基础上,总结了在喜德县开展地质灾害隐患点和风险区双控工作的做法和经验,结合我国现有地质灾害四大体系,提出了包含五个板块的点面双控体系:风险调查评价与动态调整板块,提高“点面双控”针对性、时效性、可操作性;监测预警与响应处置板块,提高“点面双控”监测覆盖面、预警准确度和响应效率;风险常态管理与防御板块,提升“点面双控”常态防御能力与管理水平,推动防御和管理向数字化和智能化转变;科普宣传与培训演练板块,提升“点面双控”全民认知水平和避灾能力;制度建设板块,完善责任体系,制定双控制度。通过上述工作,实现了喜德县风险隐患动态监测与常态化防御,提升了喜德县地质灾害防控能力,可为其他地区提供科学参考。
    Abstract: The dual control of geological hazard hidden points and risk zones is one of the important tasks for geological hazard prevention during China’s 14th Five-Year Plan period. Pilot provinces and regions are actively exploring effective approaches to implement the “dual control of point and zone”, leading to the establishment of management systems, responsibility frameworks, and technical methods for this purpose. Drawing on the geological environmental conditions and the outcomes of hazard prevention and reduction efforts in Xide County, Sichuan Province, this paper summarizes the practices and experiences of “dual control” for geological hazards in the region. Integrating with the existing four geological hazard systems, a comprehensive “dual control of point and zone” framework comprising five components is proposed, including: (1) The “investigation, evaluation and dynamic adjustment” component aims to enhance the pertinence, timeliness, operability, and adaptability of the “dual control of point and zone”. (2) The “monitoring, early warning and response processing” component focus on improving the monitoring coverage, warning accuracy, and response efficiency of the “dual control of point and zone”. (3) The “normal management and defense” component seeks to elevate the regular defense capability and management level of the “dual control of point and zone”, promoting the transformation of defense and management towards digitalization and intelligence. (4) The “science popularization, training and drills” component aims to enhance the national cognition level and hazard avoidance capability regarding the “dual control of point and zone”. (5) The “system construction” component seeks to improve the responsibility system, and establish the “dual control” mechanism. The above achievements have realized the dynamic monitoring of risks and hidden dangers and regular defense in Xide County, enhancing the geological hazards prevention and control capabilities in the area, which can serve as a scientific reference for other regions.
  • 滑坡的突发性强,危害性大[1],是一种在陆地环境中普遍存在的地质灾害,对人类社会具有较大影响和威胁[2]。滑坡预警的研究一直以来都备受国内外学者的关注[34],很多国家在滑坡灾害的应对中,都选择布设了早期监测预警系统[5]。通过预警系统得到的相关位移数据,可直观地体现滑坡的变形演化。由此可见,监测预警数据在滑坡的预警预报中起到了至关重要的作用。

    在这个信息技术快速发展的时代,人工智能被广泛应用,而机器学习是其中的一个重要分支。从20世纪80年代以来,机器学习已在算法、理论和应用等方面获得了巨大的成功[6]。近年来,机器学习也在预测领域中得到了广泛的运用,常见的几种算法如随机森林[7]、支持向量机[8]、人工神经网络[9]和循环神经网络[10]等在环境、金融、电力和交通等方面都有相关的应用。长短期记忆网络(long short term memory network,LSTM)是一种时间循环神经网络,是循环神经网络(recurrent neural network,RNN)中的一个变体,但与传统RNN不同,LSTM的记忆单元更复杂,对于时间跨度较大的时间序列有良好的记忆[11],同时也解决了神经网络的易陷入局部最小值、梯度消失和梯度爆炸等问题[12]。LSTM在语音识别[13]、图像处理[14]以及最常见的股票预测[1516]中运用广泛,但目前在滑坡的位移时序预测中较少。

    本文将LSTM应用到立节北山滑坡的变形预测中,预测监测点位移数据,并将预测数据与实际数据进行对比分析,为立节北山滑坡提供新的预测参考。

    立节北山滑坡灾害位于舟曲县西部的白龙江上游左岸立节镇的北侧山体,由多个滑坡共同构成,滑坡区涵盖已经发生过变形滑动的古滑坡体、老滑坡体、正在发生变形的新滑坡体以及已有明显变形迹象的但未发生位移的潜在滑坡体的区域,共有古、老、新滑坡10处,整体范围南北长1388 m,东西宽610 m,总面积约0.85 km2

    根据立节北山的滑坡性质、地形条件、地层分布和滑动条件等特征将滑坡分为7个块体(图1),以滑坡中部的地形转折处为界,分为上下两级。上级滑坡主要是老滑坡,其覆盖区域为H1,以及已有明显变形迹象但未发生滑动的潜在滑坡H1-1和H1-2;下级滑坡主要为变形滑动明显,并且变形面积较大的H2—H7滑坡。统计数据显示,滑坡区内堆积体总体积为3.270 54×106 m3,滑坡变形量从大到小排序为:H4>H5>H3>H2>H7>H6>H1。

    图  1  立节北山滑坡GNSS分布图
    Figure  1.  The North Mountain of Lijie landslide GNSS distribution map

    LSTM早在1997年就被提出,它的出现解决了隐变量一直存在的长期信息贮存和短期输入缺失的问题。和传统神经网络相比,LSTM引入了记忆元和三种门结构(图2),其中记忆元(C)用于记录附加的信息,而门结构用于控制记忆元,分别为遗忘门(f)、输入门(i)和输出门(o)。

    图  2  LSTM模型结构
    Figure  2.  LSTM model structure

    首先在遗忘门中决定记忆或忽略隐状态的输入信息,此处的sigmoid激活函数(σ)将判断当前输入是否遗忘;其次输入门用于决定在记忆元中读取哪些信息,此处有两个分支构成,一个是记忆门决定要读入的值,另一个是tanh激活函数得到新的候选记忆元C~t,通过这两个分支得到的值以传导新的信息;然后通过前两个步骤得到的ftit·C~t以更新Ct-1得到新的记忆元Ct;最后输出门决定记忆元的哪些信息被输出,通过该处的sigmoid激活函数(σ)得到Ot,再结合tanh激活函数最后输出新的数据ht。整个过程中的详细计算如下:

    ft=σ(XtWxf+ht1Whf+bf) (1)
    it=σ(XtWxi+ht1Whi+bi) (2)
    C~t=tanh(XtWxc+ht1Whc+bc) (3)
    Ct=ftCt1+itC~t (4)
    Ot=σ(XtWxo+ht1Who+bo) (5)
    ht=Ottanh(Ct) (6)

    其中,WxfWxiWxoWxcWhfWhiWhoWhc分别是遗忘门、输入门、输出门和候选记忆元的权值向量,bfbibobc分别是遗忘门、输入门、输出门和候选记忆元的偏置向量,Xtt时刻的输入值。

    为了衡量预测结果的精度,本文采用均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R2)以及可解释方差(Evar)作为评价指标,具体表达式如下:

    RMSE=1mi=1m(yty^t)2 (7)
    MAE=1mi=1m|yty^t| (8)
    R2=11mi=1m(yty^t)21mi=1m(yty¯)2 (9)
    y¯=1mi=1myt (10)
    Evar=1Var{yty^t}Var{yt} (11)

    式中:yty^t——t时刻的真实值和预测值;

    m——数据个数;

    Var——方差。

    立节北山滑坡监测点分布如图1所示,共布设11个GNSS监测点。本文的数据来源于监测点实时监测的位移数据,数据范围为2021年3—12月的每日位移数据,其中有少量缺失数据,对其进行了采取邻日数据的中间值的填充预处理。

    立节北山滑坡稳定性除了受滑坡本身内在结构影响,也受外在因素影响。除累计位移外,图3为GNSS1监测站垂直和水平位移和雨量的相关曲线,由图可知,位移量与雨量间具有明显相关性。雨水下渗需要一定的时间,将导致滑坡体的下滑力增大,因此影响滑坡的稳定性。

    图  3  GNSS1累计位移与雨量关系
    Figure  3.  GNSS1 relationship between cumulative displacement and rainfall

    Pearson相关系数是用来表示两个变量之间线性相关程度的大小与方向的指标,数值范围为−1≤r≤1,小于0为负相关,大于0为正相关,等于0则不存在相关性,绝对值越大,则表示两变量间的相关程度越强烈。通过GNSS1位移量与雨量的Pearson相关性分析,得到相关系数值为0.993,接近于1,说明之间有显著的正相关关系,雨量对滑坡的应力状态影响明显,特征评价因子选取适宜。

    将影响因素累计位移、雨量作为模型的输入变量,因数据的类型、量纲以及取值范围不同,需先对数据进行归一化处理,进而输出模型预测值。

    本文基于LSTM模型建立了立节北山滑坡的变形预测模型,首先以GNSS1监测站为例,GNSS1监测站发出红色预警,形变量显著,通过2021年4月9日至12月2日的数据进行预测,其中GNSS1因该处形变量过大,于12月3日掉落数据中断,所以采取前八月的数据进行相应的预测试验。运用Python 3.7语言和PyTorch 1.12机器学习框架进行构建LSTM模型,在试验中,首先需要对参数进行初始化,发现采用不同的隐藏层神经元数预测结果的精度会有所不同。如图4所示,选取8、16以及几个32的倍数为不同隐藏神经元数量进行精度对比:以64为转折点,神经元数量在8~64时,RMSE呈下降趋势;神经元数量在64~128时,RMSE呈上升趋势,所以选取隐藏层神经元数为64,此时RMSE最低,精度最高。

    图  4  不同隐藏神经元数量的RMSE变化
    Figure  4.  RMSE variation with different numbers of hidden neurons

    通过参数初始化调整,设置LSTM模型循环层数为2,隐藏层神经元数为64,序列长度为30,将数据集以6∶4的比例,划分为训练集和测试集。首先对GNSS1的垂直位移进行预测,在LSTM预测模型训练中,损失函数(Loss)变化正常,随训练次数的增加,损失函数值越接近于0(图5)。

    图  5  LSTM模型训练中的损失函数数值变化
    Figure  5.  Numerical changes in loss function during LSTM model training

    测试集预测精度结果见表1,均方根误差为12.88 mm,平均绝对误差为6.56 mm,决定系数及可解释方差均达到0.99,精度评价良好,本文的LSTM模型试验性能有效。

    表  1  GNSS1垂直位移精度评价指标
    Table  1.  Evaluation metrics for vertical displacement precision of GNSS1
    评价指标 RMSE/mm MAE/mm R2 Evar
    数值 12.88 6.56 0.99 0.99
    下载: 导出CSV 
    | 显示表格

    监测站GNSS1最终预测结果见图6,分别为垂直及水平位移的预测,测试数据与预测数据的比例为5∶1。

    图  6  GNSS1位移预测结果
    Figure  6.  GNSS1 displacement prediction results

    为进一步验证本文LSTM模型在滑坡位移中预测的广泛性,又选取了蓝色预警区域GNSS8监测站数据,进行预测对比,评价指标见表23,决定系数及可解释方差均达到0.99,预测结果如图7

    表  2  GNSS8垂直位移精度评价指标
    Table  2.  Evaluation metrics for vertical displacement precision of GNSS8
    评价指标 RMSE/mm MAE/mm R2 Evar
    数值 6.63 5.66 0.99 0.99
    下载: 导出CSV 
    | 显示表格

    以GNSS1水平位移为例,见图8所示,对2021年12月2日后48 d(测试数据与预测数据的比例为2∶1)的数据进行预测,位移值超过20000 mm后,预测值增长趋势明显增加,故选取测试数据与预测数据的比例为5∶1。说明LSTM模型具有短期预测的能力,但不适用于长期预测,长期预测呈现的效果不佳,可能导致模型失去预测效能。

    表  3  GNSS8水平位移精度评价指标
    Table  3.  Evaluation metrics for horizontal displacement precision of GNSS8
    评价指标 RMSE/mm MAE/mm R2 Evar
    数值 4.00 3.79 0.99 0.99
    下载: 导出CSV 
    | 显示表格
    图  7  GNSS8位移预测结果
    Figure  7.  GNSS8 displacement prediction results
    图  8  GNSS1水平位移未来48 d预测结果
    Figure  8.  Forecasted results for horizontal displacement of GNSS1 for the next 48 days

    本文以GNSS1和GNSS8两个发出预警的典型监测站为例进行预测试验,其中GNSS1位于块体H4,其为立节北山滑坡变形量最大的块体,故以GNSS1监测站为首要监测对象进行预测试验,GNSS8监测站为辅,进行进一步验证。立节北山滑坡后续进行施工防治措施,如图9治理工程三维地表分布图所示,上部进行了格构护坡和抗滑桩等的施工措施见图9(b),下部GNSS1处进行了削坡措施,见图9(c)。施工成效显著,目前处于稳定状态,本文仅以研究新方法与应用为目的进行相关预测。

    图  9  治理工程实施GNSS三维分布图
    Figure  9.  The GNSS three-dimensional distribution map of the governance project implementation

    本文运用LSTM神经网络预测模型对立节北山滑坡的变形进行预测,并说明北山滑坡主要的影响因素,以选取恰当的特征因子,是将人工智能机器学习应用于北山滑坡变形预测的有效实验,实现了北山滑坡的定量位移预测。

    GNSS1在损坏掉落前,水平及垂直位移分别已达15 000 mm和12 000 mm,通过本次LSTM模型预测,可良好的预测出位移数值,对于测点仪器及财产安全也将起到良好的预警作用。

    预测结果性能显示良好,精度评价较高,虽然LSTM模型在长期预测中表现不突出,但短期预测的能力显著,不仅为立节北山滑坡变形预测提供了辅助参考,也为滑坡预警预测打开了新的思路,对早期预警预报和地质灾害防治具有重要的意义。LSTM模型更是在GNSS8监测站的水平位移预测值中的评价指标较为良好,均方根误差为4.00 mm,平均绝对误差为3.79 mm,体现出了在滑坡变形预测中很好的适用性,进一步说明在滑坡变形预测中引入人工智能,是一个可实行的策略方法。

  • 图  1   喜德县地质环境图

    Figure  1.   Geological environment map of Xide County

    图  2   喜德县地质灾害类型统计图

    Figure  2.   Statistical chart of geological hazard types in Xide County

    图  3   点面双控体系的组成

    Figure  3.   Composition of the dual control system of point and zone

    图  4   风险调查评价与动态调整板块

    Figure  4.   Component of risk investigation, evaluation and dynamic adjustment

    图  5   洛哈镇沿米市河高风险区雨量监测数据与预警

    Figure  5.   Rainfall monitoring data and early warning in the high-risk area along the Mishi River in Luoha Town

    图  6   I-P 降雨阈值曲线

    Figure  6.   I-P rainfall threshold curve

    图  7   不同工况下“面控”响应流程

    Figure  7.   “Zone control” response process under different working conditions

    图  8   点面双控的常态管理与防御板块

    Figure  8.   Component of normal management and defense for dual control of point and zone

    表  1   喜德县降雨型地质灾害预警模型

    Table  1   Rainfall-type geological hazard early warning model for Xide County

    降雨阈值模型
    (0.1≤D≤120 h)
    当日降雨量/
    mm
    累计降雨量/
    mm
    对应预警等级
    及形式
    I15%>0.87D−0.277 8.64 25 注意级
    I50%>3.05D−0.277 26.5 49 警示级
    I70%>4.18D−0.277 41.52 73 警戒级
    I90%>8.225 D−0.279 81.22 145 警报级
    下载: 导出CSV
  • [1] 刘传正,陈春利. 中国地质灾害防治成效与问题对策[J]. 工程地质学报,2020,28(2):375 − 383. [LIU Chuanzheng,CHEN Chunli. Achievements and countermeasures in risk reduction of geological disasters in China[J]. Journal of Engineering Geology,2020,28(2):375 − 383. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2019-232

    LIU Chuanzheng, CHEN Chunli. Achievements and countermeasures in risk reduction of geological disasters in China[J]. Journal of Engineering Geology, 2020, 282): 375383. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2019-232

    [2] 温铭生,陈红旗,张鸣之,等. 四川茂县“6•24”特大滑坡特征与成因机制分析[J]. 中国地质灾害与防治学报,2017,28(3):1 − 7. [WEN Mingsheng,CHEN Hongqi,ZHANG Mingzhi,et al. Characteristics and formation mechanism analysis of the “6•24” catastrophic landslide of the June 24 of 2017,at Maoxian,Sichuan[J]. The Chinese Journal of Geological Hazard and Control,2017,28(3):1 − 7. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2017.03.01

    WEN Mingsheng, CHEN Hongqi, ZHANG Mingzhi, et al. Characteristics and formation mechanism analysis of the “6•24” catastrophic landslide of the June 24 of 2017, at Maoxian, Sichuan[J]. The Chinese Journal of Geological Hazard and Control, 2017, 283): 17. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2017.03.01

    [3] 李爱农,南希,张正健,等. 茂县“6•24”特大高位远程崩滑灾害遥感回溯与应急调查[J]. 自然灾害学报,2018,27(2):43 − 51. [LI Ainong,NAN Xi,ZHANG Zhengjian,et al. Remote sensing research on development characteristics and emergency investigation of Mao County long range and high position landslide on June 24th,2017[J]. Journal of Natural Disasters,2018,27(2):43 − 51. (in Chinese with English abstract) DOI: 10.13577/j.jnd.2018.0205

    LI Ainong, NAN Xi, ZHANG Zhengjian, et al. Remote sensing research on development characteristics and emergency investigation of Mao County long range and high position landslide on June 24th, 2017[J]. Journal of Natural Disasters, 2018, 272): 4351. (in Chinese with English abstract) DOI: 10.13577/j.jnd.2018.0205

    [4] 张永双,巴仁基,任三绍,等. 中国西藏金沙江白格滑坡的地质成因分析[J]. 中国地质,2020,47(6):1637 − 1645. [ZHANG Yongshuang,BA Renji,REN Sanshao,et al. An analysis of geo-mechanism of the Baige landslide in Jinsha River,Tibet[J]. Geology in China,2020,47(6):1637 − 1645. (in Chinese with English abstract) DOI: 10.12029/gc20200603

    ZHANG Yongshuang, BA Renji, REN Sanshao, et al. An analysis of geo-mechanism of the Baige landslide in Jinsha River, Tibet[J]. Geology in China, 2020, 476): 16371645. (in Chinese with English abstract) DOI: 10.12029/gc20200603

    [5] 冯文凯,张国强,白慧林,等. 金沙江“10•11”白格特大型滑坡形成机制及发展趋势初步分析[J]. 工程地质学报,2019,27(2):415 − 425. [FENG Wenkai,ZHANG Guoqiang,BAI Huilin,et al. A preliminary analysis of the formation mechanism and development tendency of the huge Baige landslide in Jinsha River on October 11,2018[J]. Journal of Engineering Geology,2019,27(2):415 − 425. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2018-392

    FENG Wenkai, ZHANG Guoqiang, BAI Huilin, et al. A preliminary analysis of the formation mechanism and development tendency of the huge Baige landslide in Jinsha River on October 11, 2018[J]. Journal of Engineering Geology, 2019, 272): 415425. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2018-392

    [6] 许强,郑光,李为乐,等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报,2018,26(6):1534 − 1551. [XU Qiang,ZHENG Guang,LI Weile,et al. Study on successive landslide damming events of Jinsha River in Baige Village on octorber 11 and November 3,2018[J]. Journal of Engineering Geology,2018,26(6):1534 − 1551. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2018-406

    XU Qiang, ZHENG Guang, LI Weile, et al. Study on successive landslide damming events of Jinsha River in Baige Village on octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 266): 15341551. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2018-406

    [7] 郑琅,张欣,王立娟. 四川省甘洛县山体滑坡应急调查与成因机制分析[J]. 人民长江,2022,53(8):117 − 122. [ZHENG Lang,ZHANG Xin,WANG Lijuan. Emergency investigation and formation mechanism of landslide in Ganluo County,Sichuan Province[J]. Yangtze River,2022,53(8):117 − 122. (in Chinese with English abstract) DOI: 10.16232/j.cnki.1001-4179.2022.08.019

    ZHENG Lang, ZHANG Xin, WANG Lijuan. Emergency investigation and formation mechanism of landslide in Ganluo County, Sichuan Province[J]. Yangtze River, 2022, 538): 117122. (in Chinese with English abstract) DOI: 10.16232/j.cnki.1001-4179.2022.08.019

    [8] 张海泉,何文秀,赵波,等. 四川丹巴县“6•17”梅龙沟泥石流-阿娘寨滑坡灾害链现场调查与监测分析[J]. 科学技术与工程,2021,21(29):12481 − 12489. [ZHANG Haiquan,HE Wenxiu,ZHAO Bo,et al. Analysis of field investigation and monitoring of “6•17” meilong valley debris flow-aniangzhai landslide disaster chain in Danba County,Sichuan Province[J]. Science Technology and Engineering,2021,21(29):12481 − 12489. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2021.29.017

    ZHANG Haiquan, HE Wenxiu, ZHAO Bo, et al. Analysis of field investigation and monitoring of “6•17” meilong valley debris flow-aniangzhai landslide disaster chain in Danba County, Sichuan Province[J]. Science Technology and Engineering, 2021, 2129): 1248112489. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2021.29.017

    [9] 宋亚兵,胡桂胜,贺拿,等. 丹巴县“6•17”阿娘寨村滑坡体特征及成因初步分析[J]. 科学技术与工程,2021,21(22):9243 − 9249. [SONG Yabing,HU Guisheng,HENA,et al. Preliminary analysis on the characteristics and causes of landslide in “6•17” Aniangzhai Village in Danba County[J]. Science Technology and Engineering,2021,21(22):9243 − 9249. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2021.22.009

    SONG Yabing, HU Guisheng, HENA, et al. Preliminary analysis on the characteristics and causes of landslide in “6•17” Aniangzhai Village in Danba County[J]. Science Technology and Engineering, 2021, 2122): 92439249. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2021.22.009

    [10] 李宇嘉,陈宁生,杨溢,等. 汉源县中海村“8•21”雨后型滑坡特征与成因[J]. 成都理工大学学报(自然科学版),2022,49(2):185 − 195. [LI Yujia,CHEN Ningsheng,YANG Yi,et al. Characteristics and causes of 8•21 rainfall-induced landslide at Zhonghai Village,Hanyuan County,Sichuan,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2022,49(2):185 − 195. (in Chinese with English abstract)

    LI Yujia, CHEN Ningsheng, YANG Yi, et al. Characteristics and causes of 8•21 rainfall-induced landslide at Zhonghai Village, Hanyuan County, Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 492): 185195. (in Chinese with English abstract)

    [11] 殷跃平. 加强城镇化进程中地质灾害防治工作的思考[J]. 中国地质灾害与防治学报,2013,24(4):5 − 8. [YIN Yueping. Thoughts on strengthening the prevention and control of geological disasters in the process of urbanization[J]. The Chinese Journal of Geological Hazard and Control,2013,24(4):5 − 8. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2013.04.006

    YIN Yueping. Thoughts on strengthening the prevention and control of geological disasters in the process of urbanization[J]. The Chinese Journal of Geological Hazard and Control, 2013, 244): 58. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2013.04.006

    [12] 铁永波,徐伟,向炳霖,等. 西南地区地质灾害风险“点面双控”体系构建与思考[J]. 中国地质灾害与防治学报,2022,33(3):106 − 113. [TIE Yongbo,XU Wei,XIANG Binglin,et al. The thoughts on construction of “double-control of point and zone” system of geological hazard risk in southwest China[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):106 − 113. (in Chinese with English abstract)

    TIE Yongbo, XU Wei, XIANG Binglin, et al. The thoughts on construction of “double-control of point and zone” system of geological hazard risk in southwest China[J]. The Chinese Journal of Geological Hazard and Control, 2022, 333): 106113. (in Chinese with English abstract)

    [13] 石菊松,吴树仁,张永双,等. 应对全球变化的中国地质灾害综合减灾战略研究[J]. 地质论评,2012,58(2):309 − 318. [SHI Jusong,WU Shuren,ZHANG Yongshuang,et al. Integrated landslide mitigation strategies study for global change in China[J]. Geological Review,2012,58(2):309 − 318. (in Chinese with English abstract) DOI: 10.3969/j.issn.0371-5736.2012.02.013

    SHI Jusong, WU Shuren, ZHANG Yongshuang, et al. Integrated landslide mitigation strategies study for global change in China[J]. Geological Review, 2012, 582): 309318. (in Chinese with English abstract) DOI: 10.3969/j.issn.0371-5736.2012.02.013

    [14] 马寅生,张业成,张春山,等. 地质灾害风险评价的理论与方法[J]. 地质力学学报,2004,10(1):7 − 18. [MA Yinsheng,ZHANG Yecheng,ZHANG Chunshan,et al. Theory and approaches to the risk evaluation of geological hazards[J]. Journal of Geomechanics,2004,10(1):7 − 18. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2004.01.002

    MA Yinsheng, ZHANG Yecheng, ZHANG Chunshan, et al. Theory and approaches to the risk evaluation of geological hazards[J]. Journal of Geomechanics, 2004, 101): 718. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2004.01.002

    [15] 张茂省,薛强,贾俊,等. 山区城镇地质灾害调查与风险评价方法及实践[J]. 西北地质,2019,52(2):125 − 135. [ZHANG Maosheng,XUE Qiang,JIA Jun,et al. Methods and practices for the investigation and risk assessment of geo-hazards in mountainous towns[J]. Northwestern Geology,2019,52(2):125 − 135. (in Chinese with English abstract) DOI: 10.19751/j.cnki.61-1149/p.2019.02.013

    ZHANG Maosheng, XUE Qiang, JIA Jun, et al. Methods and practices for the investigation and risk assessment of geo-hazards in mountainous towns[J]. Northwestern Geology, 2019, 522): 125135. (in Chinese with English abstract) DOI: 10.19751/j.cnki.61-1149/p.2019.02.013

    [16] 杨柳,牟鑫亮,李晨,等. 延安市宝塔区地质灾害风险评价[J]. 山地学报,2020,38(5):679 − 690. [YANG Liu,MU Xinliang,LI Chen,et al. Risk assessment of geological hazards in Baota District,Yan’an City,Shaanxi,China[J]. Mountain Research,2020,38(5):679 − 690. (in Chinese with English abstract) DOI: 10.16089/j.cnki.1008-2786.000545

    YANG Liu, MU Xinliang, LI Chen, et al. Risk assessment of geological hazards in Baota District, Yan’an City, Shaanxi, China[J]. Mountain Research, 2020, 385): 679690. (in Chinese with English abstract) DOI: 10.16089/j.cnki.1008-2786.000545

    [17] 唐亚明,张茂省,李政国,等. 国内外地质灾害风险管理对比及评述[J]. 西北地质,2015,48(2):238 − 246. [TANG Yaming,ZHANG Maosheng,LI Zhengguo,et al. Review and comparison onInland and overseas geo-hazards risk management[J]. Northwestern Geology,2015,48(2):238 − 246. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-6248.2015.02.025

    TANG Yaming, ZHANG Maosheng, LI Zhengguo, et al. Review and comparison onInland and overseas geo-hazards risk management[J]. Northwestern Geology, 2015, 482): 238246. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-6248.2015.02.025

    [18] 刘毅飞,王欣凯,蔡廷禄,等. 福建海坛岛地质灾害特征及风险评价[J]. 灾害学,2016,31(4):122 − 127. [LIU Yifei,WANG Xinkai,CAI Tinglu,et al. Characteristic and risk assessment of geological hazard in Haitan Island,Fujian Province[J]. Journal of Catastrophology,2016,31(4):122 − 127. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2016.04.021

    LIU Yifei, WANG Xinkai, CAI Tinglu, et al. Characteristic and risk assessment of geological hazard in Haitan Island, Fujian Province[J]. Journal of Catastrophology, 2016, 314): 122127. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2016.04.021

    [19] 罗路广,裴向军,谷虎,等. 基于GIS的“8•8”九寨沟地震景区地质灾害风险评价[J]. 自然灾害学报,2020,29(3):193 − 202. [LUO Luguang,PEI Xiangjun,GU Hu,et al. Risk assessment of geohazards induced by “8•8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters,2020,29(3):193 − 202. (in Chinese with English abstract)

    LUO Luguang, PEI Xiangjun, GU Hu, et al. Risk assessment of geohazards induced by “8•8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters, 2020, 29(3): 193 − 202. (in Chinese with English abstract)

    [20] 王家柱,高延超,铁永波,等. 基于斜坡单元的山区城镇滑坡灾害易发性评价——以康定为例[J]. 沉积与特提斯地质,2023,43(3):640 − 650. [WANG Jiazhu,GAO Yanchao,TIE Yongbo,et al. Landslide susceptibility assessment based on slope units of mountainous cities and towns: A case study of Kangding city[J]. Sedimentary Geology and Tethyan Geology,2023,43(3):640 − 650.

    WANG Jiazhu, GAO Yanchao, TIE Yongbo, et al. Landslide susceptibility assessment based on slope units of mountainous cities and towns: A case study of Kangding city[J]. Sedimentary Geology and Tethyan Geology, 2023, 433): 640650.

  • 期刊类型引用(2)

    1. 伊明. 软弱围岩条件下高速公路隧道施工围岩滑坡变形检测. 科技创新与生产力. 2025(04): 144-146 . 百度学术
    2. 姜鑫,张卫雄,杨校辉,陈昆全,丁保艳. 甘肃舟曲县江顶崖滑坡抗滑桩变形监测与治理效果分析. 中国地质灾害与防治学报. 2024(05): 174-182 . 本站查看

    其他类型引用(1)

图(8)  /  表(1)
计量
  • 文章访问数:  1054
  • HTML全文浏览量:  670
  • PDF下载量:  213
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2023-04-16
  • 录用日期:  2023-08-02
  • 网络出版日期:  2023-08-07
  • 刊出日期:  2023-10-30

目录

/

返回文章
返回