ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

汉源县工业园区硝厂沟泥石流成灾机理及其堆积范围分析

蓝再成, 胡卸文, 曹希超, 黄光林, 白金钊, 冯霄

蓝再成,胡卸文,曹希超,等. 汉源县工业园区硝厂沟泥石流成灾机理及其堆积范围分析[J]. 中国地质灾害与防治学报,2024,35(3): 61-69. DOI: 10.16031/j.cnki.issn.1003-8035.202303026
引用本文: 蓝再成,胡卸文,曹希超,等. 汉源县工业园区硝厂沟泥石流成灾机理及其堆积范围分析[J]. 中国地质灾害与防治学报,2024,35(3): 61-69. DOI: 10.16031/j.cnki.issn.1003-8035.202303026
LAN Zaicheng,HU Xiewen,CAO Xichao,et al. Disaster mechanism and its deposition area of the Xiaochang gully debris flow in Hanyuan County industrial park[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3): 61-69. DOI: 10.16031/j.cnki.issn.1003-8035.202303026
Citation: LAN Zaicheng,HU Xiewen,CAO Xichao,et al. Disaster mechanism and its deposition area of the Xiaochang gully debris flow in Hanyuan County industrial park[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3): 61-69. DOI: 10.16031/j.cnki.issn.1003-8035.202303026

汉源县工业园区硝厂沟泥石流成灾机理及其堆积范围分析

基金项目: 国家重点研发计划(2018YCF1505401);国家自然科学基金项目(41731285)
详细信息
    作者简介:

    蓝再成(1998—),男,辽宁朝阳人,硕士研究生,主要从事工程地质、地质灾害方面的研究。E-mail:lanzc@my.swjtu.edu.cn

    通讯作者:

    胡卸文(1963—),男,博士,教授,博士生导师,主要从事工程地质、环境地质方面的教学与研究工作。E-mail:huxiewen@163.com

  • 中图分类号: P642.23

Disaster mechanism and its deposition area of the Xiaochang gully debris flow in Hanyuan County industrial park

  • 摘要:

    受2013年“4•20”芦山地震影响,汉源县白岩河沿岸地质灾害频发。目前硝厂沟流域内存有大量松散物源,具备暴发较大规模泥石流风险,严重威胁沟口汉源工业园区厂矿企业,因此,查明其成灾机理及危害性对今后泥石流预测预警和防治工程设计具有重要意义。文章结合现场勘察、无人机航拍、遥感解译及RAMMS软件,分析了硝厂沟泥石流发育特征,模拟了泥石流运动堆积过程,并在此基础上揭示了其成灾机理。调查研究发现硝厂沟现阶段物源动储量达37×104 m3,其中游发育一段宽缓沟道(长900 m、平均宽度60 m),为天然停淤场,对于小规模泥石流具有拦截作用。数值模拟分析表明在降雨频率小于20年一遇时,泥石流冲出物主要在形成区中游宽缓沟道处停淤堆积,不会对沟口工业园区产生直接危害;在降雨频率达到50年一遇时,硝厂沟将暴发大规模泥石流并冲击淤埋沟口工业园区。

    Abstract:

    Influenced by the 2013“4•20” Lushan earthquake, geological disasters occurred frequently along the Baiyan River Basin in Hanyuan County. At present, there is a large amount of loose material sources in the Xiaochang gully, posing a significant risk of large-scale debris flows, which severely threaten the factories and mining enterprises in the Hanyuan Industrial Park plant. Therefore, understanding the mechanism of disaster occurrence and its hazard is of great significance for future debris flow prediction, early warning, and prevention engineering design. Combining field investigation, UAV aerial photography, remote sensing interpretation, and RAMMS, this study analyzes the development characteristics of debris flows in Xiaochang gully, simulates the process of debris flow movement and accumulation, and reveals the disaster mechanism of disaster occurrence. The results show that the current dynamic storage of the source in Xiaochang gully reaches 370,000 m3. A wide and gentle channel ( 900 m long, and average width of 60 m ) has naturally formed in the middle reaches of the basin, acting as a natural sedimentation pond, which intercepts small-scale debris flows. Numerical simulation results show that when the rainfall frequency is less than once every 20 years, the main deposition of debris flows occurs in the middle and upper reaches of the gully, and will not directly threaten the industrial park; when the rainfall frequency reaches once every 50 years, the outbreak of large-scale debris flow will impact the industrial park.

  • 图  1   硝厂沟流域示意图

    Figure  1.   Schematic diagram of the Xiaochang gully

    图  2   硝厂沟流域纵剖面图

    Figure  2.   Cross-sectional profile plan of the Xiaochang gully

    图  3   硝厂沟物源分布

    Figure  3.   Distribution of material sources of the Xiaochang gully

    图  4   汉源县2018年6月30日逐时降雨数据

    Figure  4.   Hourly rainfall data for Hanyuan County on June 30, 2018

    图  5   硝厂沟20年一遇泥石流泥深模拟结果

    Figure  5.   Simulation results of debris flow depth for 20-year debris flow in Xiaochang gully

    图  7   两次泥石流沿主沟方向的堆积深度和最大流速曲线

    Figure  7.   The accumulation depth and maximum velocity of the two debris flows along the main gully direction

    图  6   硝厂沟50年一遇泥石流泥深模拟结果

    Figure  6.   Simulation results of debris flow depth for 50-year debris flow in Xiaochang gully

    表  1   泥石流动力学特征参数

    Table  1   Dynamic characteristic parameters of debris flow

    特征参数 计算断面 设计频率P/%
    20 10 5 2 1
    流速
    /(m·s−1
    主支沟
    交汇处
    4.34 4.94 5.53 6.11 6.53
    主沟沟口 2.95 3.46 3.73 4.06 4.11
    流量
    /(m3·s−1
    主支沟
    交汇处
    50.83 70.92 91.17 118.25 138.98
    主沟沟口 108.05 158.96 210.87 280.87 334.77
    冲出总量
    (104 m3
    主支沟
    交汇处
    1.21 2.25 3.61 6.56 8.81
    主沟沟口 2.57 4.53 6.68 9.79 18.56
    下载: 导出CSV
  • [1] 刘传正,陈春利. 中国地质灾害成因分析[J]. 地质论评,2020,66(5):1334 − 1348. [LIU Chuanzheng,CHEN Chunli. Research on the origins of geological disasters in China[J]. Geological Review,2020,66(5):1334 − 1348. (in Chinese with English abstract)]

    LIU Chuanzheng, CHEN Chunli. Research on the origins of geological disasters in China[J]. Geological Review, 2020, 66(5): 1334 − 1348. (in Chinese with English abstract)

    [2] 刘鑫, 张文, 李根, 等. 高位远程崩滑碎屑流-泥石流灾害链的演变过程与影响范围预测——以“4•5” 四川洪雅县铁匠湾地质灾害链为例[J]. 吉林大学学报(地球科学版),2023,53(6):1799 − 1811. [LIU Xin, ZHANG Wen, LI Gen, et al. Research on evolution process and impact range prediction of high level remote collapse and landslide-debris flow disaster chain:Taking the “4•5” tiejiangwan geological disaster chain in Hongya County, Sichuan Province as an example[J]. Journal of Jilin University (Earth Science Edition),2023,53(6):1799 − 1811. (in Chinese with English abstract)]

    LIU Xin, ZHANG Wen, LI Gen, et al. Research on evolution process and impact range prediction of high level remote collapse and landslide-debris flow disaster chain: Taking the “4•5” tiejiangwan geological disaster chain in Hongya County, Sichuan Province as an example[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(6): 1799 − 1811. (in Chinese with English abstract)

    [3] 李宁,唐川,史青云,等. 九寨沟震区“6•21” 泥石流成因与致灾机制研究[J]. 工程地质学报,2022,30(3):740 − 750. [LI Ning,TANG Chuan,SHI Qingyun,et al. Investigation and analysis of “6•21” debris flow in Jiuzhaigou County,Sichuan Province[J]. Journal of Engineering Geology,2022,30(3):740 − 750. (in Chinese with English abstract)]

    LI Ning, TANG Chuan, SHI Qingyun, et al. Investigation and analysis of “6•21” debris flow in Jiuzhaigou County, Sichuan Province[J]. Journal of Engineering Geology, 2022, 30(3): 740 − 750. (in Chinese with English abstract)

    [4] 李宁,唐川,卜祥航,等. “5•12” 地震后汶川县泥石流特征与演化分析[J]. 工程地质学报,2020,28(6):1233 − 1245. [LI Ning,TANG Chuan,BU Xianghang,et al. Characteristics and evolution of debris flows in Wenchuan County after “5•12” earthquake[J]. Journal of Engineering Geology,2020,28(6):1233 − 1245. (in Chinese with English abstract)]

    LI Ning, TANG Chuan, BU Xianghang, et al. Characteristics and evolution of debris flows in Wenchuan County after “5•12” earthquake[J]. Journal of Engineering Geology, 2020, 28(6): 1233 − 1245. (in Chinese with English abstract)

    [5] 殷志强,赵无忌,褚宏亮,等. “4•20” 芦山地震诱发地质灾害基本特征及与“5•12” 汶川地震对比分析[J]. 地质学报,2014,88(6):1145 − 1156. [YIN Zhiqiang,ZHAO Wuji,CHU Hongliang,et al. Basic characteristics of geohazards induced by Lushan earthquake and compare to them of Wenchuan earthquake[J]. Acta Geologica Sinica,2014,88(6):1145 − 1156. (in Chinese with English abstract)]

    YIN Zhiqiang, ZHAO Wuji, CHU Hongliang, et al. Basic characteristics of geohazards induced by Lushan earthquake and compare to them of Wenchuan earthquake[J]. Acta Geologica Sinica, 2014, 88(6): 1145 − 1156. (in Chinese with English abstract)

    [6]

    MOSS R E S,LYMAN N. Incorporating shear stiffness into post-fire debris flow statistical triggering models[J]. Natural Hazards,2022,113(2):913 − 932. DOI: 10.1007/s11069-022-05330-x

    [7] 杨相斌,胡卸文,曹希超,等. 四川西昌电池厂沟火后泥石流成灾特征及防治措施分析[J]. 中国地质灾害与防治学报,2022,33(4):1 − 8. [YANG Xiangbin,HU Xiewen,CAO Xichao,et al. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully,Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):1 − 8. (in Chinese with English abstract)]

    YANG Xiangbin, HU Xiewen, CAO Xichao, et al. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully, Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 1 − 8. (in Chinese with English abstract)

    [8] 张宪政, 铁永波, 宁志杰, 等. 四川汶川县板子沟“6•26” 特大型泥石流成因特征与活动性研究[J]. 水文地质工程地质,2023,50(5):134 − 145. [ZHANG Xianzheng, TIE Yongbo, NING Zhijie, et al. Characteristics and activity analysis of the catastrophic “6•26” debris flow in the Banzi Catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology,2023,50(5):134 − 145. (in Chinese with English abstract)]

    ZHANG Xianzheng, TIE Yongbo, NING Zhijie, et al. Characteristics and activity analysis of the catastrophic “6•26” debris flow in the Banzi Catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 134 − 145. (in Chinese with English abstract)

    [9]

    CAO Chen,ZHANG Wen,CHEN Jianping,et al. Quantitative estimation of debris flow source materials by integrating multi-source data:A case study[J]. Engineering Geology,2021,291:106222. DOI: 10.1016/j.enggeo.2021.106222

    [10] 胡艳香,朱厚影,陈昊,等. 贺兰山苏峪口泥石流物源启动模型试验分析[J]. 中国地质灾害与防治学报,2022,33(6):44 − 52. [HU Yanxiang,ZHU Houying,CHEN Hao,et al. Model test of debris flow source initiation mechanism in Suyu valley of Helan Mountain[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):44 − 52. (in Chinese with English abstract)]

    HU Yanxiang, ZHU Houying, CHEN Hao, et al. Model test of debris flow source initiation mechanism in Suyu valley of Helan Mountain[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 44 − 52. (in Chinese with English abstract)

    [11] 刘波,胡卸文,何坤,等. 西藏洛隆县巴曲冰湖溃决型泥石流演进过程模拟研究[J]. 水文地质工程地质,2021,48(5):150 − 160. [LIU Bo,HU Xiewen,HE Kun,et al. Characteristics and evolution process simulation of the Baqu gully debris flow triggered by ice-lake outburst in Luolong County of Tibet,China[J]. Hydrogeology & Engineering Geology,2021,48(5):150 − 160. (in Chinese with English abstract)]

    LIU Bo, HU Xiewen, HE Kun, et al. Characteristics and evolution process simulation of the Baqu gully debris flow triggered by ice-lake outburst in Luolong County of Tibet, China[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 150 − 160. (in Chinese with English abstract)

    [12] 胡卸文,韩玫,梁敬轩,等. 汶川震区桃关沟2013-07-10泥石流成灾机理[J]. 西南交通大学学报,2015,50(2):286 − 293. [HU Xiewen,HAN Mei,LIANG Jingxuan,et al. Hazard mechanism analysis of Taoguan giant debris flow in Wenchuan earthquake area on July 10th,2013[J]. Journal of Southwest Jiaotong University,2015,50(2):286 − 293. (in Chinese with English abstract)]

    HU Xiewen, HAN Mei, LIANG Jingxuan, et al. Hazard mechanism analysis of Taoguan giant debris flow in Wenchuan earthquake area on July 10th, 2013[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 286 − 293. (in Chinese with English abstract)

    [13] 廖立业,曾庆利,袁广祥. 北京怀柔7•16暴雨泥石流发育特征与形成机理[J]. 工程地质学报,2021,29(3):807 − 816. [LIAO Liye,ZENG Qingli,YUAN Guangxiang. Characteristics and mechanism of the rainstorm-induced debris flow on July 16 in Huairou,Beijing[J]. Journal of Engineering Geology,2021,29(3):807 − 816. (in Chinese with English abstract)]

    LIAO Liye, ZENG Qingli, YUAN Guangxiang. Characteristics and mechanism of the rainstorm-induced debris flow on July 16 in Huairou, Beijing[J]. Journal of Engineering Geology, 2021, 29(3): 807 − 816. (in Chinese with English abstract)

    [14] 冯文凯,贾邦中,吴义鹰,等. 低山丘陵区典型滑坡-泥石流链生灾害特征与成灾机理[J]. 中国地质灾害与防治学报,2022,33(1):35 − 44. [FENG Wenkai,JIA Bangzhong,WU Yiying,et al. Characteristics and mechanism of landslide-debris flow chain disaster in low mountain and hilly terrain[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):35 − 44. (in Chinese with English abstract)]

    FENG Wenkai, JIA Bangzhong, WU Yiying, et al. Characteristics and mechanism of landslide-debris flow chain disaster in low mountain and hilly terrain[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 35 − 44. (in Chinese with English abstract)

    [15] 文强,胡卸文,刘波,等. 四川丹巴梅龙沟“6•17” 泥石流成灾机理分析[J]. 中国地质灾害与防治学报,2022,33(3):23 − 30. [WEN Qiang,HU Xiewen,LIU Bo,et al. Analysis on the mechanism of debris flow in Meilong valley in Danba County on June 17,2020[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):23 − 30. (in Chinese with English abstract)]

    WEN Qiang, HU Xiewen, LIU Bo, et al. Analysis on the mechanism of debris flow in Meilong valley in Danba County on June 17, 2020[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 23 − 30. (in Chinese with English abstract)

    [16] 翟兆斌,胡卸文,刘波,等. 汉源县范家沟泥石流拟设工程治理效果研究[J]. 四川水力发电,2022,41(5):117 − 122. [ZHAI Zhaobin,HU Xiewen,LIU Bo,et al. Study on effect of the planned engineering for debris flow control in Fanjia gully,Hanyuan[J]. Sichuan Water Power,2022,41(5):117 − 122. (in Chinese with English abstract)]

    ZHAI Zhaobin, HU Xiewen, LIU Bo, et al. Study on effect of the planned engineering for debris flow control in Fanjia gully, Hanyuan[J]. Sichuan Water Power, 2022, 41(5): 117 − 122. (in Chinese with English abstract)

    [17] 吴积善,田连权,康志成,等. 泥石流及其综合治理[M]. 北京:科学出版社,1993. [WU Jishan,TIAN Lianquan,KANG Zhicheng,et al. Debris flow and its comperhensive control[M]. Beijing:Science Press,1993. (in Chinese)]

    WU Jishan, TIAN Lianquan, KANG Zhicheng, et al. Debris flow and its comperhensive control[M]. Beijing: Science Press, 1993. (in Chinese)

    [18] 温丽旺. 云南省云龙县果郎沟泥石流危险性评价研究[D]. 成都:成都理工大学,2018. [WEN Liwang. Study on risk assessment of debris flow in Guolanggou,Yunlong County,Yunnan Province[D]. Chengdu:Chengdu University of Technology,2018. (in Chinese with English abstract)]

    WEN Liwang. Study on risk assessment of debris flow in Guolanggou, Yunlong County, Yunnan Province[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese with English abstract)

    [19] 宋兵,沈军辉,李金洋,等. RAMMS在泥石流运动模拟中的应用——以白沙沟泥石流为例[J]. 泥沙研究,2018,43(1):32 − 37. [SONG Bing,SHEN Junhui,LI Jinyang,et al. Application of RAMMS model on simulation of debris flow in the Basha Gully[J]. Journal of Sediment Research,2018,43(1):32 − 37. (in Chinese with English abstract)]

    SONG Bing, SHEN Junhui, LI Jinyang, et al. Application of RAMMS model on simulation of debris flow in the Basha Gully[J]. Journal of Sediment Research, 2018, 43(1): 32 − 37. (in Chinese with English abstract)

    [20]

    STOLZ A,HUGGEL C. Debris flows in the Swiss National Park:The influence of different flow models and varying DEM grid size on modeling results[J]. Landslides,2008,5(3):311 − 319. DOI: 10.1007/s10346-008-0125-4

    [21] 胡凯衡,葛永刚,崔鹏,等. 对甘肃舟曲特大泥石流灾害的初步认识[J]. 山地学报,2010,28(5):628 − 634. [HU Kaiheng,GE Yonggang,CUI Peng,et al. Preliminary analysis of extra-large-scale debris flow disaster in Zhouqu County of Gansu Province[J]. Journal of Mountain Science,2010,28(5):628 − 634. (in Chinese with English abstract)]

    HU Kaiheng, GE Yonggang, CUI Peng, et al. Preliminary analysis of extra-large-scale debris flow disaster in Zhouqu County of Gansu Province[J]. Journal of Mountain Science, 2010, 28(5): 628 − 634. (in Chinese with English abstract)

    [22] 余斌,杨永红,苏永超,等. 甘肃省舟曲8•7特大泥石流调查研究[J]. 工程地质学报,2010,18(4):437 − 444. [YU Bin,YANG Yonghong,SU Yongchao,et al. Research on the giant debris flow hazards in Zhouqu County,Gansu Province on August 7,2010[J]. Journal of Engineering Geology,2010,18(4):437 − 444. (in Chinese with English abstract)]

    YU Bin, YANG Yonghong, SU Yongchao, et al. Research on the giant debris flow hazards in Zhouqu County, Gansu Province on August 7, 2010[J]. Journal of Engineering Geology, 2010, 18(4): 437 − 444. (in Chinese with English abstract)

  • 期刊类型引用(6)

    1. 曾红晓,陶小郎. 盘州市鸡母滑坡发育特征及稳定性分析评价. 贵州科学. 2023(04): 81-86 . 百度学术
    2. 姚杰,李秀珍,徐瑞池. 降雨条件下拟建川藏铁路典型段潜在滑坡三维稳定性动态识别研究. 防灾减灾工程学报. 2021(03): 422-431 . 百度学术
    3. 周英博,陈航,周秋鹏,段志强,高晓晶. 输电杆塔极限荷载状态对滑坡稳定性的影响研究. 人民长江. 2021(12): 188-194 . 百度学术
    4. 麻玉山,董梦龙,陈松,丁阳波,俞正浩. 电塔塔基边坡受风荷载影响的稳定性研究. 河北工程大学学报(自然科学版). 2020(04): 63-70 . 百度学术
    5. 丁延平. 藏中联网工程塔基滑坡灾害特点分析. 科技创新导报. 2019(03): 49+51 . 百度学术
    6. 林文华,叶诚耿,王浩. 山区输电塔边坡成灾模式及塔基失效类型. 水利与建筑工程学报. 2019(06): 50-54 . 百度学术

    其他类型引用(0)

图(7)  /  表(1)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  15
  • PDF下载量:  77
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-03-12
  • 修回日期:  2023-06-02
  • 网络出版日期:  2024-05-06
  • 刊出日期:  2024-06-24

目录

    /

    返回文章
    返回