Deformation prediction of the Northern Mountain landslide in Lijie Town of Zhouqu, Gansu Province based on long-short term memory network
-
摘要: 立节镇北山滑坡长期处于蠕动变形状态,已多次发生滑坡、泥石流灾害。监测地表形变,以掌握灾害体地表形变规律,是实现地质灾害预警预报的可靠依据。文章引入一种机器学习模型——长短期记忆网络,通过立节北山监测点位移数据,运用该方法对立节北山滑坡变形进行预测,并且将预测结果与实际数据进行比对和分析。文章预测结果评价指标选用均方根误差、平均绝对误差、决定系数以及可解释方差,其中决定系数和可解释方差均达到0.99,预测值和真实值的拟合均方根误差和平均绝对误差也表现较低,说明长短期记忆网络在立节北山滑坡变形的预测中达到了良好的预测性能。Abstract: The North Mountain landslide in Lijie Town has been in a long-term creeping deformation state and has experienced multiple landslide and debris flow disasters. Monitoring the surface deformation of landslide to grasp the surface deformation pattern of disaster body is a reliable basis for realizing early warning prediction of geological disaster. In this paper, a machine learning model is introduced to predict the relevant data, and a long and short-term memory network is used to predict the landslide deformation by monitoring the displacement data of North Mountain in Lijie, and the prediction results are compared with the actual data and analyzed. In this paper, root mean square error , mean absolute error , coefficient of determination and explainable variance are used to evaluate the prediction results, among which the coefficient of determination and explainable variance reach 0.99. It shows that the long short-term memory network used in this paper achieves good prediction performance in the prediction of landslide deformation in the North Mountain of Lijie.
-
Keywords:
- landslide /
- LSTM neural network /
- predictive analysis /
- North Mountain of Lijie /
- machine learning
-
-
表 1 GNSS1垂直位移精度评价指标
Table 1 Evaluation metrics for vertical displacement precision of GNSS1
评价指标 RMSE/mm MAE/mm R2 Evar 数值 12.88 6.56 0.99 0.99 表 2 GNSS8垂直位移精度评价指标
Table 2 Evaluation metrics for vertical displacement precision of GNSS8
评价指标 RMSE/mm MAE/mm R2 Evar 数值 6.63 5.66 0.99 0.99 表 3 GNSS8水平位移精度评价指标
Table 3 Evaluation metrics for horizontal displacement precision of GNSS8
评价指标 RMSE/mm MAE/mm R2 Evar 数值 4.00 3.79 0.99 0.99 -
[1] 张勤,黄观文,杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报,2017,46(10):1300 − 1307. [ZHANG Qin,HUANG Guanwen,YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1300 − 1307.(in Chinese with English abstract) ZHANG Qin, HUANG Guanwen, YANG Chengsheng . Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica,2017 ,46 (10 ):1300 −1307 .(in Chinese with English abstract)[2] FROUDE M J,PETLEY D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences,2018,18(8):2161 − 2181. DOI: 10.5194/nhess-18-2161-2018
[3] 宋昭富, 张勇, 佘涛, 等. 基于易发性分区的区域滑坡降雨预警阈值确定—以云南龙陵县为例[J]. 中国地质灾害与防治学报,2023,34(4):22 − 29. [SONG Zhaofu, ZHANG Yong, SHE Tao, et al. Determination of regional landslide rainfall warning threshold based on susceptibility zoning: A case study in Longling County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):22 − 29. (in Chinese with English abstract) SONG Zhaofu, ZHANG Yong, SHE Tao, et al . Determination of regional landslide rainfall warning threshold based on susceptibility zoning: A case study in Longling County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023 ,34 (4 ):22 −29 . (in Chinese with English abstract)[4] 唐亚明,张茂省,薛强,等. 滑坡监测预警国内外研究现状及评述[J]. 地质论评,2012,58(3):533 − 541. [TANG Yaming,ZHANG Maosheng,XUE Qiang,et al. Landslide monitoring and early-warning:An overview[J]. Geological Review,2012,58(3):533 − 541. (in Chinese with English abstract) TANG Yaming, ZHANG Maosheng, XUE Qiang, et al . Landslide monitoring and early-warning: An overview[J]. Geological Review,2012 ,58 (3 ):533 −541 . (in Chinese with English abstract)[5] GLADE T,NADIM F. Early warning systems for natural hazards and risks[J]. Natural Hazards,2014,70(3):1669 − 1671. DOI: 10.1007/s11069-013-1000-8
[6] 余凯,贾磊,陈雨强,等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展,2013,50(9):1799 − 1804. [YU Kai,JIA Lei,CHEN Yuqiang,et al. Deep learning:Yesterday,today,and tomorrow[J]. Journal of Computer Research and Development,2013,50(9):1799 − 1804. (in Chinese with English abstract) YU Kai, JIA Lei, CHEN Yuqiang, et al . Deep learning: Yesterday, today, and tomorrow[J]. Journal of Computer Research and Development,2013 ,50 (9 ):1799 −1804 . (in Chinese with English abstract)[7] 杜续,冯景瑜,吕少卿,等. 基于随机森林回归分析的PM2.5浓度预测模型[J]. 电信科学,2017,33(7):66 − 75. [DU Xu,FENG Jingyu,LYU Shaoqing,et al. PM2.5 concentration prediction model based on random forest regression analysis[J]. Telecommunications Science,2017,33(7):66 − 75(in Chinese with English abstract) DU Xu, FENG Jingyu, LYU Shaoqing, et al . PM2.5 concentration prediction model based on random forest regression analysis[J]. Telecommunications Science,2017 ,33 (7 ):66 −75 (in Chinese with English abstract)[8] 张品一,薛京京. 多分形互联网金融市场的风险预警模型研究[J]. 数量经济技术经济研究,2022,39(8):162 − 180. [ZHANG Pinyi,XUE Jingjing. Research on risk early warning model of multi-fractal Internet financial market[J]. The Journal of Quantitative & Technical Economics,2022,39(8):162 − 180. (in Chinese with English abstract) ZHANG Pinyi, XUE Jingjing . Research on risk early warning model of multi-fractal Internet financial market[J]. The Journal of Quantitative & Technical Economics,2022 ,39 (8 ):162 −180 . (in Chinese with English abstract)[9] 程宇也. 基于人工神经网络的短期电力负荷预测研究[D]. 杭州:浙江大学, 2017. [CHENG Yuye. Research on short-term power load forecasting based on artificial neural network[D]. Hangzhou:Zhejiang University, 2017. (in Chinese with English abstract) CHENG Yuye. Research on short-term power load forecasting based on artificial neural network[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract)
[10] 李小妍. 基于图神经网络的交通流量预测[D]. 成都:电子科技大学, 2020. [LI Xiaoyan. Traffic flow forecast based on graph neural network[D]. Chengdu:University of Electronic Science and Technology of China, 2020. (in Chinese with English abstract) LI Xiaoyan. Traffic flow forecast based on graph neural network[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese with English abstract)
[11] 刘新,赵宁,郭金运,等. 基于LSTM神经网络的青藏高原月降水量预测[J]. 地球信息科学学报,2020,22(8):1617 − 1629. [LIU Xin,ZHAO Ning,GUO Jinyun,et al. Prediction of monthly precipitation over the Tibetan Plateau based on LSTM neural network[J]. Journal of Geo-Information Science,2020,22(8):1617 − 1629. (in Chinese with English abstract) LIU Xin, ZHAO Ning, GUO Jinyun, et al . Prediction of monthly precipitation over the Tibetan Plateau based on LSTM neural network[J]. Journal of Geo-Information Science,2020 ,22 (8 ):1617 −1629 . (in Chinese with English abstract)[12] 冯非凡,武雪玲,牛瑞卿,等. 一种V/S和LSTM结合的滑坡变形分析方法[J]. 武汉大学学报(信息科学版),2019,44(5):784 − 790. [FENG Feifan,WU Xueling,NIU Ruiqing,et al. A landslide deformation analysis method using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University,2019,44(5):784 − 790. (in Chinese with English abstract) FENG Feifan, WU Xueling, NIU Ruiqing, et al . A landslide deformation analysis method using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University,2019 ,44 (5 ):784 −790 . (in Chinese with English abstract)[13] 张宇,张鹏远,颜永红. 基于注意力LSTM和多任务学习的远场语音识别[J]. 清华大学学报(自然科学版),2018,58(3):249 − 253. [ZHANG Yu,ZHANG Pengyuan,YAN Yonghong. Long short-term memory with attention and multitask learning for distant speech recognition[J]. Journal of Tsinghua University (Science and Technology),2018,58(3):249 − 253. (in Chinese with English abstract) ZHANG Yu, ZHANG Pengyuan, YAN Yonghong . Long short-term memory with attention and multitask learning for distant speech recognition[J]. Journal of Tsinghua University (Science and Technology),2018 ,58 (3 ):249 −253 . (in Chinese with English abstract)[14] 刘宇. 深度学习在图像处理中的应用——基于深度学习的视频帧预测算法研究[D]. 成都:电子科技大学, 2020. [LIU Yu. Application of deep learning in image processing:Research on video frame prediction algorithm based on deep learning[D]. Chengdu:University of Electronic Science and Technology of China, 2020. (in Chinese with English abstract) LIU Yu. Application of deep learning in image processing: Research on video frame prediction algorithm based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese with English abstract)
[15] 彭燕,刘宇红,张荣芬. 基于LSTM的股票价格预测建模与分析[J]. 计算机工程与应用,2019,55(11):209 − 212. [PENG Yan,LIU Yuhong,ZHANG Rongfen. Modeling and analysis of stock price forecast based on LSTM[J]. Computer Engineering and Applications,2019,55(11):209 − 212. (in Chinese with English abstract) PENG Yan, LIU Yuhong, ZHANG Rongfen . Modeling and analysis of stock price forecast based on LSTM[J]. Computer Engineering and Applications,2019 ,55 (11 ):209 −212 . (in Chinese with English abstract)[16] 杨青,王晨蔚. 基于深度学习LSTM神经网络的全球股票指数预测研究[J]. 统计研究,2019,36(3):65 − 77. [YANG Qing,WANG Chenwei. A study on forecast of global stock indices based on deep LSTM neural network[J]. Statistical Research,2019,36(3):65 − 77. (in Chinese with English abstract) DOI: 10.19343/j.cnki.11-1302/c.2019.03.006 YANG Qing, WANG Chenwei . A study on forecast of global stock indices based on deep LSTM neural network[J]. Statistical Research,2019 ,36 (3 ):65 −77 . (in Chinese with English abstract) DOI: 10.19343/j.cnki.11-1302/c.2019.03.006 -
期刊类型引用(52)
1. 刘传正,米文忠,黄帅. 论灾害事故预防应对的调查评估问题. 灾害学. 2025(01): 1-7+85 . 百度学术
2. 曹禄来,瞿帅,万红军,余鹏琪,陈舒阳. 岗丘谷地弃土场倒葫芦形滑坡原因分析及处治措施. 路基工程. 2025(01): 213-218 . 百度学术
3. 张新,王建文,方舒,李敏. 基于随机场理论的多组分弃渣场可靠度研究. 山西建筑. 2025(07): 6-11 . 百度学术
4. 邓锡保,宋欣,马蕾梦醒,刘建友,张振波,陈亚东. 隧道弃渣场格宾生态挡墙碳排放分析及减碳技术. 铁道标准设计. 2024(06): 114-120 . 百度学术
5. 张清,何毅,陈学业,高秉海,张立峰,赵占骜,路建刚,张雅蕾. 基于多尺度卷积神经网络的深圳市滑坡易发性评价. 中国地质灾害与防治学报. 2024(04): 146-162 . 本站查看
6. 钟兴荣. 低势能滑坡束口聚能启程剧动机制研究——以深圳光明新区红坳建筑弃渣场滑坡为例. 岩石力学与工程学报. 2024(10): 2485-2496 . 百度学术
7. 李蔚霖. 贵州山区软基型弃渣场失稳机理探究. 交通科技. 2024(05): 62-65 . 百度学术
8. 刘传正,王建新. 崩塌滑坡泥石流灾害链分类研究. 工程地质学报. 2024(05): 1573-1596 . 百度学术
9. 聂峰,史超. 西南地区生产建设项目弃渣场水土保持现状. 长江技术经济. 2024(05): 31-37 . 百度学术
10. 夏清,窦志荣,尹小涛. 山区公路典型弃渣边坡灾变机制和综合安全控制技术. 施工技术(中英文). 2023(04): 29-33+38 . 百度学术
11. 王晓伟,朱兴旺,李卓. 矿山排土场边坡稳定性影响因素分析. 西部探矿工程. 2023(06): 11-14 . 百度学术
12. 许宁,陈铭,蔺威威,边涛,杜旭东,简东明. 泥岩地层盾构渣土免烧砖制备技术研究. 新型建筑材料. 2023(06): 80-82+94 . 百度学术
13. 沈剑羽,肖建庄,高琦,王浩通. 工程弃土复配及再生砖性能试验. 应用基础与工程科学学报. 2023(04): 990-1005 . 百度学术
14. 廖江林,黄家华. 压力注浆钢管桩在运营高速公路膨胀土路堤滑坡处治中的应用. 西部交通科技. 2022(10): 80-83 . 百度学术
15. 高琦,肖建庄,沈剑羽. 园林垃圾对工程弃土烧结砖性能的影响. 建筑材料学报. 2022(11): 1195-1202 . 百度学术
16. 李沁书,温家华,柴建峰,周喜军,闫宾,凌超. 抽水蓄能电站弃渣场勘察设计中若干问题的探讨. 水电与抽水蓄能. 2021(02): 90-94 . 百度学术
17. 王开科,闫浩静,赵国情,冯兴伟,张磊,何承浩. 极端暴雨工况下弃渣场稳定性分析. 中国水运(下半月). 2021(06): 153-155 . 百度学术
18. 洪振宇,何玉琼,李明,孙荣,朱莎莎. 降雨-地震耦合作用下某大型弃渣场稳定性分析. 矿业研究与开发. 2021(06): 43-47 . 百度学术
19. 王树英,占永杰,杨秀竹,付循伟,令凡琳. 淤泥质粉质黏土地层盾构渣土免烧空心砖固化机理与质量评价. 北京工业大学学报. 2021(07): 710-718 . 百度学术
20. 徐龙旺. 沿河膨胀填(弃)土滑坡群成因机制分析及处治研究. 西部交通科技. 2021(05): 24-27 . 百度学术
21. 刘志明. 弃渣场扩容条件下渣体边坡稳定性影响因素研究. 铁道建筑技术. 2021(08): 24-27+55 . 百度学术
22. 薛青松. 自密水泥土在基坑肥槽回填工程的现场试验研究. 江西建材. 2021(12): 28-30 . 百度学术
23. 王开科,闫浩静,赵国情,冯兴伟,张磊,何承浩. 极端暴雨工况下弃渣场稳定性分析. 中国水运(下半月). 2021(12): 153-155 . 百度学术
24. 肖建宇,谢忠勇,张著伦. 挡墙基底换填对弃土场边坡稳定性影响分析. 地质灾害与环境保护. 2020(01): 81-86 . 百度学术
25. 姚天雨,赵建平. 基于STAMP模型的深圳“12·20”滑坡事故致因分析. 系统科学学报. 2020(02): 73-78+89 . 百度学术
26. 郭小雨,陈枝东,裴立宅,李家茂,樊传刚. 改性矿渣水泥-渣土免烧砖的制备与性能表征. 新型建筑材料. 2020(05): 75-79 . 百度学术
27. 彭庆华,朱绍奇,张胜勇. 滑坡削坡卸载综合整治技术研究. 四川建筑. 2020(02): 118-119+122 . 百度学术
28. 邱海军,马舒悦,崔一飞,杨冬冬,裴艳茜,刘子敬. 重新认识滑坡作用. 西北大学学报(自然科学版). 2020(03): 377-385 . 百度学术
29. 林文华,叶诚耿,王浩. 考虑堆填界面软化及地下水位波动的大型弃渣场边坡稳定性分析. 铁道建筑. 2020(05): 84-88 . 百度学术
30. 王良民,郭向前,奚春华,李勇,程起敏. 实景三维地质灾害管理信息平台的设计与实现. 地理空间信息. 2020(08): 7-9+30+6 . 百度学术
31. 王盈,曾江波,姚文敏,李长冬. 基于可靠度理论的阻滑键加固渣土边坡多目标优化设计方法. 中国地质灾害与防治学报. 2020(05): 88-97 . 本站查看
32. 陈柯霖,卿伟宸,朱勇. 浅论环保新形势下艰险山区弃渣场系统设计. 高速铁路技术. 2020(05): 87-91 . 百度学术
33. 谢亦红,尹祖超,李亮,蔡鹏. 砂土静动力液化特性的数值模拟. 公路交通科技. 2020(12): 33-39 . 百度学术
34. 柴建峰,周喜军,江献玉,刘殿海,王震洲,凌超,闫宾,李沁书. 固体废弃物堆场深层缓倾角推移式破坏实例分析. 水电与抽水蓄能. 2020(06): 73-77+85 . 百度学术
35. 高杨,卫童瑶,李滨,贺凯,刘铮,王学良. 深圳“12.20”渣土场远程流化滑坡动力过程分析. 水文地质工程地质. 2019(01): 129-138+147 . 百度学术
36. 张睿骁,樊晓一,姜元俊. 滑坡碎屑流冲击拦挡结构的离散元模拟. 水文地质工程地质. 2019(01): 148-155 . 百度学术
37. 王韬,叶咸,吴晓南. 浅议西南山区高速公路弃渣场工程. 公路交通科技(应用技术版). 2019(01): 110-114 . 百度学术
38. 王昱,闫宾,曹畅,柴建峰. 弃渣体潜在失稳滑动面探讨. 水电与抽水蓄能. 2019(04): 106-112 . 百度学术
39. 沈明祥,罗红明,刘志鹏,穆日盛,彭坤杰. 贵州省六盘水至威宁高速公路弃土场稳定性评估. 中国岩溶. 2019(04): 559-564 . 百度学术
40. 曾江波,杨龙,姚文敏,肖林超,鲁健. 基于非线性规划的渣土边坡坡形优化. 中国地质灾害与防治学报. 2019(06): 105-112 . 本站查看
41. 余东亮,王庆,王爱玲,吴东容,吴森. 西南山区管道某典型滑坡变形演化研究. 油气田地面工程. 2019(12): 65-69 . 百度学术
42. 李明阳,柴建峰. 浅析弃渣体设计参数. 水电与抽水蓄能. 2018(03): 103-105 . 百度学术
43. 龚鹏,张洪岩. 深圳市地质灾害详细调查工作思路与建议. 中国矿业. 2018(09): 36-40 . 百度学术
44. 陈鹏飞,姜文杰,魏益平,陈阳. 水位变化与降雨耦合条件下四川某渣场边坡稳定性研究. 山西建筑. 2018(35): 73-75 . 百度学术
45. 刘传正. 论崩塌滑坡—碎屑流高速远程问题. 地质论评. 2017(06): 1563-1575 . 百度学术
46. 刘传正. 论地质灾害风险识别问题. 水文地质工程地质. 2017(04): 1-7 . 百度学术
47. 张一希,许强,彭大雷,赵宽耀,郭晨. 深圳“12·20”滑坡土体渗透性模拟试验研究. 水文地质工程地质. 2017(05): 131-136+149 . 百度学术
48. 赖国泉,任庆钊,张俊德. 甘肃兰州某黄土建筑高边坡失稳原因及补强治理方案. 中国地质灾害与防治学报. 2017(01): 36-42 . 本站查看
49. 胡建华,黄超然,习智琴,杨春. 基于系统思考的深圳“12·20”滑坡事故分析及应对措施. 灾害学. 2017(01): 142-148 . 百度学术
50. 彭璐. 花岗岩地区滑坡特征及防治对策——以湖南省平江县花岗岩滑坡为例. 国土资源导刊. 2016(04): 20-24 . 百度学术
51. 柴建峰,王珏. 抽蓄工程弃渣场稳定性计算现状及问题分析. 山西建筑. 2016(27): 46-47 . 百度学术
52. 刘传正. 论地质灾害防治文化培育问题. 中国地质灾害与防治学报. 2016(03): 1-6 . 本站查看
其他类型引用(25)