Characteristics of losses of geological disasters and major disaster types in Liangshan Prefecture, Sichuan Province
-
摘要:
凉山州受活动构造、地形地貌、河流切割等作用,是四川省地质灾害高风险地区。为系统查明凉山州地质灾害发育特征、灾情特征及主要致灾类型,采用资料收集、数理统计、现场调查等方法,统计分析地质灾害数据、灾情数据和重大突发地质灾害实例。结果表明:凉山州地质灾害以滑坡、泥石流为主,滑坡主要为中小规模土质滑坡,泥石流主要为中小规模沟道型泥石流;有记录以来共计发生24起死亡10人以上的地质灾害;2006—2020年,共发生46起地质灾害灾情,以泥石流为主。总结提炼了7种地质灾害主要致灾类型,红层滑坡是凉山州滑坡主要类型之一,遇水易软化解体,自稳能力差;复活型古滑坡,在凉山州多有分布,由于人类工程活动、河流冲刷等因素,古滑坡易变形和复活;库岸型滑坡,主要发育在木里县、布拖县、宁南县的水电站库区内,受库水位消落带影响斜坡塌岸隐患较多,坡体稳定性降低形成滑坡;含煤层型滑坡,主要发育在凉山州南部的煤系地层区域,斜坡前缘不合理开挖易诱发前缘滑塌并造成整体滑动;矿渣型泥石流是凉山州泥石流主要类型之一,矿渣、废石、尾砂等不合理堆放,为泥石流提供了丰富物源;凉山州常发生森林火灾,火烧迹地遭遇暴雨后易诱发火后泥石流;在构造活动强烈、山势陡峭的沟谷上游发生崩滑灾害后,易沿沟运动冲出,堵塞河道形成链式灾害。研究成果可为凉山州针对性开展防灾减灾工作提供数据支撑和科学参考。
Abstract:Due to active tectonics, topography, and river dynamics, Liangshan Prefecture is highly susceptible to geological disasters in Sichuan Province. In order to find out the developmental patterns, characteristics, and prevalent disaster modes of geological disasters in Liangshan Prefecture, this paper uses data collection, mathematical statistics, field investigation and other methods to conducted a comprehensive analysis of geological disaster data, disaster situations, and major sudden geological disaster cases in Liangshan Prefecture. The results show that the primary geological hazards in Liangshan Prefecture are landslides and mud-rock flows. The landslides are mainly medium and small scale soil landslides, and the mud-rock flows are mainly medium and small scale gully mudflows. Over the recorded period, Liangshan Prefecture experienced 23 geological disasters resulting in more than 10 fatalities. Between 2006 to 2020, 46 geological disasters occurred, mainly in the forms of debris flow. This paper identifies and refines seven typical geological disaster modes in Liangshan Prefecture. Notably, red bed landslides, prone to softening and disintegration in water with poor self-stability, constitute a significant landslide type. Reactivation of ancient landslides, widely distributed in the region, is triggered by human activities, river erosion, and other factors. Reservoir bank landslides are prevalent in the reservoir areas of Muli County, Butuo County, and Ningnan County, posing risks due to fluctuating reservoir water levels. There are many hidden dangers of bank collapse due to the influence of reservoir water level, and the slope Coal-bearing landslides are prominent in the southern coal measure stratum area, induced by unsustainable mining practices. Slag-type debris flow is one of the main types of debris flow in Liangshan Prefecture. The unreasonable stacking of slag, waste rock and tailings provides rich material sources for debris flow disasters. Liangshan Prefecture frequently experiences forest fires, and the burned land is easy to induce post-fire mud-rock flow after heavy rain. When the landslide disasters occurs in the upper reaches of gullies with strong tectonic activity and steep mountain potential, it is easy to rush out along the gully, blocking the river and forming a chain disaster. The research results can provide data support and scientific insights for disaster prevention and mitigation in Liangshan Prefecture.
-
0. 引言
银西高铁董志塬段沟谷深切、地形破碎、多呈“V”字型,在降雨作用下侵蚀作用强烈,线路周边调绘发现滑坡1500余处,溜坍体900余处。因此地表重力式不良地质灾害成为影响银西高铁线路走向的决定因素。分析黄土边坡侵蚀特性,研究其对黄土地区铁路工程的影响和破坏,对保障铁路工程建设安全,维护铁路运营安全有着举足轻重的作用。
溯源侵蚀[1-7]是黄土地区沟谷发育演化的主要形式。陈绍宇等[8-9]将沟头溯源侵蚀划分为水力冲刷型、裂缝诱发型、陷穴诱发型和人为诱发型等4种类型;史倩华等[10]采用模拟降雨和放水冲刷的方法,研究集水区不同坡度和不同流量对黄土地区沟头溯源侵蚀过程和孔隙水压力特征值的影响规律;张科利[11]通过黄土坡面径流冲刷试验对细沟水力学特性进行了研究;沙际德等[12]通过室内模拟试验等手段,从水力学及能耗等方面深入了解细沟的水力学特征;张光辉[13]通过变坡水槽实验探寻不同坡度条件下的薄层水流水动力学特性;覃超等[14]在三维倾斜测量的基础上,通过人工模拟不同流量和坡度径流冲刷,根据其不同条件下的产沙特征,得出溯源侵蚀下沟头变化与产沙规律。
现场试验对于深化黄土边坡侵蚀特性的认识具有重要意义,但以往研究多基于室内试验,模型及试验条件过于理想化,与实际情况相差较大。鉴于此,文章在前人研究的基础上,进行现场冲刷试验,旨在了解一定条件下的坡面冲刷情况,并对坡面流水动力学特性及产沙机理进行分析[15-17],从而对铁路路基和边坡的防护提供指导[18-19]。
1. 试验基本目的
董志塬地区发生溯源侵蚀[20]的沟头上方汇水面积巨大,由此产生了很大的径流量,给坡面及沟头造成很大的破坏。调查中汇水面积非常难测量,基于当地气候及降雨因素分析,利用体积法拟定坡面冲刷流量,通过若干扁平软管从坡顶对原状黄土坡面直接给水进行冲刷试验,研究董志塬地区土体在特定水动力条件下,坡面水动力参数与边坡地形地貌的关系、坡面侵蚀产沙机理,并确定侵蚀启动的水动力和斜坡结构条件。
现场试验选在董志塬庆阳市西峰区隧道口护坡上(图1)。该段表层黄土结构疏松,孔隙发育,均为自重湿陷性黄土场地,湿陷等级多为Ⅲ~Ⅳ级。勘探揭示,试验区表层为深厚第四系上、中更新统黄土覆盖,下伏新近系上新统泥岩,基底为白垩系砂岩夹泥岩,铁路工程设置主要位于黄土层中。银西高铁对董志塬段黄土进行了大量取样试验工作,试验组数6800组,统计表明[21]:上更新统黄土天然含水率在16.17%~19.32%,塑性指数在10.27~11.73,内摩擦角为21.26°~22.45°,黏聚力为28.33~30.04 kPa。
2. 现场试验设计
2.1 基本测试项目
试验现场基本测试项目:径冲刷流量、冲刷流速、泥沙冲刷量、冲沟几何形态等。
径冲刷流量通过在试验槽末端安置集流桶,用体积法测定。冲刷流速测定是在坡面槽的标记点处设置测流断面,采用高锰酸钾作为示踪剂,通过DIC摄影机连续拍照来近似计算坡面流速,重复测速3~5次,获取其平均值,得出断面间平均流速。泥沙冲刷量在坡底收集冲刷的泥沙,并记录水流量,两者相比即可得到单位流量水体的含泥沙率。另外,冲沟几何形态用卷尺测量。
2.2 试验设计
依据现场实际坡面及试验器材,绘制试验基本模型如图2所示,坡长2.5 m、宽12.5 m,图2中涉及到的器材主要有蓄水箱、水泵、消防水带、4寸软水管、可控流量阀门、压力表、20 cm宽的扁形状出水口、导流板(分割坡面为小的区域并用于径流模拟)、DIC摄影机。
依据董志塬地区自然斜坡坡度统计结果,取4个代表性坡面角度:30°、45°、60°、90°;同时,通过对原位试验场地汇水区面积的计算,以及庆阳市西峰区气象站点降雨数据的统计与分析,用体积法标定冲刷初始流量:1 L/min、2 L/min、4 L/min、6 L/min。
2.3 试验步骤
(1)构建蓄水池,铺设管路,先将蓄水池中的水用潜水泵引导至一定高度的蓄水箱中,并保持蓄水箱满水状态,蓄水箱下端连接4寸软水管并安装用来调节流量水阀和压力表,软水管末端连接扁平形状的出水口。
(2)沿坡向将坡面用导流板隔成9个20 cm宽的窄段坡面,以便于分别进行不同工况的试验。
(3)将9个窄段坡面修葺为4组不同坡度的窄段坡面,平整坡面,并对坡面进行灌溉给水使其完全饱和。
(4)在2.5 m长的窄段坡面侧壁上,每隔0.5 m标记刻度,以便于分别测量坡面不同位置处的流速。
(5)坡面上滴高锰酸钾染色剂,并用摄像机实时监控拍摄稳定后的坡面水流。
(6)每隔一段时间在坡面的标记处,收集搬运得到的泥沙,描述坡面冲刷形貌并测量坡面上冲沟的长宽深。
(7)烘干各个位置各个时间的泥沙得到产沙量,视频处理得到每个位置的水流流速。
(8)通过改变流量、坡体坡度,再重复(3)~(8)的步骤,进行新的一组试验。
(9)试验完毕整理数据,计算不同坡度、流速下的侵蚀率、含沙量、流速之间的关系,利用已有的侵蚀模型,如WEPP模型[22],构建与本地区相适应的侵蚀模型参数。
3. 坡面冲刷结果
3.1 不同时长下边坡冲刷情况
以冲刷流量4 L/min,坡度45°为例,记录不同时长下坡面冲刷情况见图3。
由图3可见,冲刷历时3 min坡面并未发生明显的下切侵蚀,坡面的主要侵蚀方式为层流侵蚀;6 min时坡面小部分黄土颗粒被水流冲走,坡面上形成许多小的跌坑;随着坡面冲刷历时的增加,小跌坑逐渐连在一起形成细沟,细沟出现后侵蚀明显加快。坡顶和坡底的侵蚀较为显著,坡面中部形成保水泥膜阻挡了水流的深入与冲刷。侵蚀加剧直至实验结束,冲刷实验结束时(24 min)侵蚀量最大。
3.2 不同流量条件下的边坡冲刷情况
以冲刷历时20 min,坡度60°为例,观察发现,随着流量的增大,冲沟最大沟深由10 cm增加到30 cm,冲沟逐渐加深,坡面的冲刷破坏越来越严重,不同流量下坡面冲刷情况见图4。
3.3 不同坡度下的边坡冲刷情况
以历时20 min,流量2 L/min为例,30°的坡面不易形成冲沟,坡面几乎没有侵蚀,坡面末端收集的水含沙很少;60°的坡面很快形成冲沟,冲沟迅速加深并很快就破坏;可见,坡度越大受到的冲刷越严重,不同坡度条件下坡面冲刷情况见图5。
4. 结果分析
4.1 坡面流水动力学特性分析
4.1.1 平均流速
图6反应了在不同坡度试验条件下平均流速与冲刷流量的关系,可见,平均流速与冲刷流量呈正相关,这与张科利[11]、张光辉[13]的实验结果一致。而相同径流条件下,地表坡度与平均流速关系不明显,这与NEARING等[3]、GOVERS[4]和沙际德等[12]研究结果相似。不少学者[3-4,11-12]在研究水动力学基本关系过程中,发现细沟水流平均流速与坡度和单宽流量之间存在如式(1)所示的幂函数关系。
(1) 式中:u——平均流速/(m·s−1);
Q——流量/(L·min−1);
J——水力坡度;
K——综合阻力系数;
α——流量项指数值;
β——水力坡度项指数值。
经过拟合,本试验中平均流速与单宽流量、水力坡度的关系可用式(2)表示。
(2) 可见,β值为0.041,表明坡度的变化对平均流速影响较小,该数值与张科利[11]试验结果(平均流速与水力速度呈幂函数变化趋势)有所不同,分析造成这种现象的原因是径流侵蚀过程中沟道床面形态和各水力因素之间相互影响、相互作用的结果。当流量不变,水力坡度不同时产生的细沟径流导致沟床形态变化而产生的糙率不同。当水力坡度增大的时候,水流均速随之增大,水流具有的能量增大,相应地水流对床面的冲刷更加剧烈,致使流道摆动,沟壁坍塌,水流含沙量增大,最终导致床面综合粗糙率增大,而糙率的增加则意味着径流所受阻力变大,径流克服阻力做功及能量耗散加大,从而平均流速的增加退居次要地位。总的来说,相比张科利[11]试验,本试验设计更接近实际情况。
4.1.2 雷诺数Re
各试验工况平均雷诺数见表1,由表可知,雷诺数变化范围为466~2012,水流主要处于过渡流区。在相同坡度条件下,雷诺数与冲刷流量呈正相关关系;在相同流量条件下,雷诺数与坡度变化并无明显关系。该结果表明细沟雷诺数Re的变化受冲刷流量的影响要比坡度大,其原因可能是水流下渗、坡面流冲刷等因素造成的。从能量转换的角度分析,水力坡度较大时,水流对细沟坡面冲刷作用较强,径流势能转化为动能的过程中,容易形成较多较深的跌坎,因而雷诺数与坡度关系相对变得复杂。
表 1 坡面冲沟水流雷诺数Table 1. Values of Re of gully flow on slope试验坡度/(°) 冲刷流量/(L·min−1) 1 2 4 6 90 466 687 1100 1891 60 556 794 1432 2012 45 613 855 865 1922 30 785 876 633 1444 4.1.3 达西阻力系数λ
图7所示为不同冲刷流量作用下,达西阻力系数与坡度的关系。可见,阻力系数随坡度的增大而减小,且减小趋势相对变缓;同时,阻力系数与冲刷流量呈反比关系。出现上述现象的原因是,流量较小时,坡面较为粗糙,地表径流紊动性较强,细小颗粒间的吸附摩擦力较强,相对的阻力系数值较大;伴随地表径流量的变大,增大了水流切应力值,致使颗粒间的吸附摩擦力减弱,削弱了地表径流紊动性,阻力值对应变小。
黄土坡面细小颗粒的摩擦与吸附直接影响了地表径流过程,现将达西阻力系数λ与雷诺数Re的关系示于图8,分析可见,阻力系数与雷诺数并无直接明显关系,其阻力系数主要与黄土坡面的颗粒含量和颗粒粒径大小有密切相关,说明冲刷阻力主要受床面跌坑与坡面结皮影响。由于试验是在大于30°坡面上进行的,水力梯度大,水流扰动性强,因此,坡面阻力系数既受坡面条件作用,同时也与坡面侵蚀三维形态变化有密切关系。当同等流量条件下,黄土的黏粒含量决定着阻力系数值,当黏粒含量越高,其颗粒黏聚力越大,越容易在黄土表层形成保护层即所谓的结皮,其水流流速越大,阻力系数越小;当黏粒含量越小,其颗粒黏聚力越小,在水流的冲刷作用下越容易形成跌坑,从而减小水流能量,增大其阻力系数,进一步加剧了跌坑发展,加大坡面产沙量,更易发生坡面及坑壁坍塌等现象。
4.2 坡面侵蚀产沙量
总体而言,坡面剥蚀产沙量是评判径流侵蚀机理的重要指数,对于研究董志塬地区黄土溯源侵蚀机理具有举足轻重的作用。
4.2.1 坡面侵蚀产沙量与冲刷流量、坡度的关系
根据水力冲刷历时30 min,测定冲蚀下来的泥沙量,绘制不同坡度下产沙率与冲刷流量之间的关系如图9所示。可知,平均含沙量随冲刷流量增大而增大,增大趋势趋缓;含沙量而随坡度的增大一直呈增加趋势。通过三维激光扫描及现场摄影技术可以看出,冲刷过程中由滴坑发展成为细沟及后续的阶梯状沟谷,且其位置随着冲刷历时的变化而变化;随着坡面冲刷及泥沙搬运、沉积反复交替作用,坡面侵蚀沟谷的变化亦反作用改变着水流流速与侵蚀产沙量。
4.2.2 坡面侵蚀产沙随冲刷历时的变化
不同时段细沟侵蚀剧烈程度量化表现为该时段区域范围内的产沙量多少。本次选取不同试验组次下的含沙量为研究对象,整理结果如图10所示。
可见,冲刷初始阶段,含沙量随历时近似线性增加,且坡度越大,增加速率越快。其中,在坡度较小情况下,含沙量变化更为稳定,可能原因是坡度越缓,坡面方向分力越小,流速越慢,冲刷能力越小。约20 min以后,含沙量基本稳定,呈微小波动,可能原因是随着冲刷历时增加,坡面逐渐出现不同跌坑,并持续发展,由于冲刷与淤积的反复作用,部分跌坑贯通连续形成细沟,因此从侵蚀产沙量的时间曲线上表现为细小波动的现象,此过程即为沟道发展阶段。
4.3 坡面冲刷侵蚀产沙机理分析
4.3.1 产泥沙率与坡面冲刷切应力关系
假定坡面流态为均匀流,利用FOSTER[2]提出的剪切力计算公式,可得各工况下的坡面冲刷剪切力见表2。可见,剪切应力与坡度及冲刷流量密切相关,其大小随冲刷流量及坡度的增大而增大,相较而言,坡度对其变化趋势的影响更为明显。
表 2 各工况下坡面冲刷剪切力Table 2. Slope scour shear forces under various conditions坡度/(°) 冲刷流量/(L·min-1) 1 2 4 6 30 0.348 0.424 0.536 0.613 45 0.812 1.201 1.45 1.561 60 1.345 1.880 2.485 2.554 90 1.651 2.001 3.031 3.974 由此可得不同工况下坡面冲刷产沙量和切应力的关系如图11所示。由图可知,坡面冲刷产沙量与侵蚀切应力二者关系较为密切,产沙量的多少随切应力的增加而增加,近似呈线性相关关系,经过拟合,含沙量与径流切应力的关系为如式(3)所示。
(3) 式中:G——含沙量/(g·L−1);
τ——径流切应力[2]/Pa。
黄土边坡径流强烈的主要判定标准为产沙量的多少,而产沙量与侵蚀切应力二者关系较为密切,其相关系数为0.875。
4.3.2 产泥沙率与有效水流功率关系
借鉴BAGNOLD[1]在渠道水力学方面给出的水流功率概念,则在不同工况下坡面侵蚀产沙量与有效水流功率的关系如图12所示。通过水流功率能更有效的表示冲刷过程中克服黄土表层阻力消耗的能量,通过多次试验,对比分析含沙量与有效水流功率,绘制相关关系图并进行拟合,可见两者呈幂函数关系,具体关系如下:
(4) 式中:G——含义同式(3);
P——有效水流功率[1]/(N·ms−1)。
其与有效水流功率相关系数大于与有效切应力,综合表明,有效水流功率能更有效的描述黄土坡面侵蚀产沙量,二者关系更为显著。
5. 结论
文中选取银西高铁董志塬段某路基护坡,通过原状黄土坡面冲刷试验,获得了不同冲刷历时、冲刷流量、坡度等条件下的坡面冲刷情况,进一步分析了坡面流水动力学特性、不同控制条件下的坡面产沙情况及产沙机理,主要得出以下结论:
(1)坡度越大受到的冲刷越严重;相比坡面中部,坡顶和坡底的侵蚀较为显著;冲刷流量越大,坡面冲刷破坏越严重;30°~60°斜坡在较小的冲刷强度(1~4 L/min)下也能产生较明显的侵蚀沟,斜坡角度大于45°后,侵蚀会剧烈发展,因而宜采取45°左右的多级矮陡坡来减弱侵蚀强度。
(2)坡面流水动力学特性分析表明:平均流速与冲刷流量、坡度的关系可用幂函数来描述,平均流速与冲刷流量呈正相关,与坡度的关系不太显著;分析雷诺数变化范围可得试验工况水流主要处于过渡流区,在相同坡度条件下,雷诺数与冲刷流量呈正相关关系;在相同流量条件下,雷诺数与坡度变化并无直接明显关系;达西阻力系数随坡度的增大而减小,且减小趋势相对变缓;同时,阻力系数与冲刷流量呈反比关系;阻力系数与雷诺数并无直接明显关系,其阻力系数主要与黄土坡面的颗粒含量和颗粒粒径大小有密切相关,说明冲刷阻力主要受床面跌坑与坡面结皮影响。
(3)平均含沙量与冲刷流量及坡度有密切相关性,其含量随冲刷流量增大而增大,增大趋势趋缓;含沙量而随坡度的增大呈一直增加趋势,其中,在坡度较小情况下,含沙量变化更为稳定;含沙量随历时近似线性增加,约20 min以后,含沙量基本稳定,仅呈微小波动,此过程为沟道发展阶段。
(4)剪切应力与坡度及冲刷流量密切相关,呈正相关关系,其大小随冲刷流量及坡度的增大而增大,相较而言,坡度对其变化趋势的影响更为明显。坡面侵蚀产沙量与侵蚀切应力相关性较大,两者近似呈线性增大关系;坡面侵蚀产沙量与有效水流功率呈显著正相关关系,且可近似用幂函数拟合。
-
表 1 凉山州地质灾害发育类型及数量
Table 1 Development types and quantities of geological hazards in Liangshan Prefecture
规模 崩塌 滑坡 泥石流 地面塌陷 合计 占比/% 特大型 2 3 4 0 9 0.22 大型 2 106 22 0 130 3.24 中型 76 830 258 0 1164 28.98 小型 169 1735 803 6 2713 67.55 合计 249 2674 1087 6 4016 100 占比/% 6.20 66.58 27.07 0.15 100 表 2 凉山州不同类型地质灾害发育特征统计
Table 2 Statistical analysis of development characteristics of different types of geological hazards in Liangshan Prefecture
灾害类型 发育特征 数量/处 占比/% 滑坡 土质 2950 98.40 岩质 48 1.60 崩塌 土质 13 4.09 岩质 305 95.91 泥石流 沟道型 1177 96.55 坡面型 42 3.45 表 3 凉山州历史重大地质灾害灾情简表(死亡10人以上)
Table 3 Summary of major historical significant geological disasters in Liangshan Prefecture (with 10 or more fatalities)
序号 位置 发生日期 灾害类型 规模
/104 m3受灾对象 受灾人口/人 死亡/人 直接经济
损失/万元具体成因 1 西昌城区及周边乡镇 1850-09-12 7.5级地震 不详 居民、房屋、道路等 2.79万户 约27 000 不详 7.5级地震 2 会东县小田坝村下坝老街 1881-02-06 滑坡 不详 人、畜和房屋 不详 约30 不详 不详 3 喜德县东河 1891-07-05 泥石流 不详 居民、房屋、道路等 不详 约1000 不详 暴雨 4 西昌市东河、西河 1942-06-16 山洪、泥石流 不详 居民、房屋、道路等 不详 约120 不详 暴雨 5 西昌沿安宁河19个乡 1951-08-24 山洪、泥石流 不详 居民、房屋、道路等 不详 15 不详 暴雨 6 西昌市东河 1955-07-14 山洪、泥石流 不详 居民、房屋、道路等 不详 68 不详 暴雨 7 喜德县中沟 1957-06-29 泥石流 不详 居民、房屋、道路等 不详 84 不详 暴雨 8 冕宁县泸沽镇洛瓦村4组 1970-05-26 泥石流 530 原铁道部第二工程处食堂、
仓库和工棚500 104 不详 矿山开采 9 喜德县红莫镇司金沟3社 1972-08-01 泥石流 不详 村落、房屋 不详 200 3000 暴雨 10 甘洛县乌史大桥乡利子依达沟 1981-07-09 泥石流 30万 成昆铁路利子依达大桥、
旅客列车不详 240 2000 余万暴雨 11 会东县溜姑乡三家村 1988-06-01 泥石流 不详 公路大桥桥墩、工棚 26 13 不详 暴雨及冰雹 12 冕宁县漫水湾镇二村沟1组 1989-09-04 泥石流 不详 居民点、农田 3000 51 不详 暴雨 13 冕宁县漫水湾镇胜利村 1989-09-04 泥石流 不详 居民点、农田 500 12 不详 暴雨 14 德昌县永郎镇蒲坝村 1995-07-11 泥石流 2.5 聚集区 63 10 800 暴雨 15 普格县五道箐镇采阿咀沟 2003-06-20 泥石流 70 公路、房屋、通信光缆 58 10 100 暴雨 16 盐源县平川镇骡马铺村2组 2006-07-14 泥石流 100 聚集区 168 16 500 暴雨 17 冕宁县彝海乡勒帕村 2011-06-16 泥石流 不详 聚集区 不详 17 不详 暴雨 18 宁南县白鹤滩镇和平村
1组矮子沟2012-06-27 泥石流 8 分散农户、白鹤滩水
电站施工区不详 38 530 暴雨 19 雷波县岩脚乡金沙村 2013-07-27 滑坡-涌浪 不详 金沙江航道船只、对岸码头 不详 约20 不详 暴雨 20 普格县荞窝镇耿底村
4、5组桐子林沟2017-08-08 泥石流 1.03 通村公路、房屋 577 26 16000 暴雨 21 冕宁县棉沙镇许家坪村
1、2组下草坪子滑坡2012-07-12 滑坡 不详 公路、房屋 95 13 400 持续降雨 22 德昌县茨达镇新华村 2004-08-23 滑坡、泥石流 不详 聚集区 4960 17 不详 暴雨 23 德昌县乐跃镇乐跃沟村 2004-09-24 泥石流 不详 聚集区 不详 11 不详 暴雨 24 盐源县洼里乡手爬村二组北沟段 2012-08-30 泥石流、滑坡 不详 聚集区 241 13 520 暴雨 表 4 凉山州各县市灾情统计表(2006—2020年)
Table 4 Statistical table of disaster situation for each county and city in Liangshan Prefecture (2006—2020)
县/市 灾情数量/起 死亡失踪/人 经济损失/万元 县/市 灾情数量/起 死亡失踪/人 经济损失/万元 德昌县 2 3 410 冕宁县 2 20 520 甘洛县 3 4 111 木里县 3 16 220 会东县 1 2 15 宁南县 8 52 6850 会理市 2 1 75 普格县 4 31 17470 金阳县 4 13 170 喜德县 1 6 100 雷波县 7 25 745 盐源县 3 30 1470 美姑县 2 8 546 越西县 2 1 118 昭觉县 2 10 380 合计 46 222 29200 表 5 凉山州红层红层滑坡统计
Table 5 Statistical analysis of red-bed landslide in Liangshan Prefecture
红层地层 面积/km2 数量/处 灾害密度
/(处·km−2)占比/% 侏罗系 5778 515 0.089 70.6 白垩系 3177 190 0.06 26.1 三叠系 837 24 0.029 3.3 -
[1] 刘希林,王全才,张丹,等. 四川凉山州普格县“6•20”泥石流灾害[J]. 灾害学,2003,18(4):46 − 50. [LIU Xilin,WANG Quancai,ZHANG Dan,et al. Debris flow disasters occurred on June 20,2003 in Puge County of Sichuan[J]. Journal of Catastrophology,2003,18(4):46 − 50. (in Chinese with English abstract)] LIU Xilin, WANG Quancai, ZHANG Dan, et al. Debris flow disasters occurred on June 20, 2003 in Puge County of Sichuan[J]. Journal of Catastrophology, 2003, 18(4): 46 − 50. (in Chinese with English abstract)
[2] 刘希林,李秀珍,苏鹏程. 四川德昌县凹米罗沟泥石流成灾过程与危险性评价[J]. 灾害学,2005,20(3):78 − 83. [LIU Xilin,LI Xiuzhen,SU Pengcheng. Debris flow process and hazard assessment in Aomiluo gully of Dechang County,Sichuan[J]. Journal of Catastrophology,2005,20(3):78 − 83. (in Chinese with English abstract)] LIU Xilin, LI Xiuzhen, SU Pengcheng. Debris flow process and hazard assessment in Aomiluo gully of Dechang County, Sichuan[J]. Journal of Catastrophology, 2005, 20(3): 78 − 83. (in Chinese with English abstract)
[3] 孙瑜,李宏俊,曹树波,等. 四川雷波碉楼沟泥石流特征及防治对策[J]. 地质灾害与环境保护,2017,28(1):1 − 6. [SUN Yu,LI Hongjun,CAO Shubo,et al. Features and preventive countermeasures of potential debris flow in Diaolou gully,Leibo County,Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation,2017,28(1):1 − 6. (in Chinese with English abstract)] SUN Yu, LI Hongjun, CAO Shubo, et al. Features and preventive countermeasures of potential debris flow in Diaolou gully, Leibo County, Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation, 2017, 28(1): 1 − 6. (in Chinese with English abstract)
[4] 陈宁生,黄娜. 普格县荞窝镇8•8泥石流灾害应急调查研究[J]. 山地学报,2018,36(3):482 − 487. [CHEN Ningsheng,HUANG Na. Emergency investigation on debris flow 8•8 disaster in Qiaowo Town,Puge County,Sichuan,China[J]. Mountain Research,2018,36(3):482 − 487. (in Chinese with English abstract)] CHEN Ningsheng, HUANG Na. Emergency investigation on debris flow 8•8 disaster in Qiaowo Town, Puge County, Sichuan, China[J]. Mountain Research, 2018, 36(3): 482 − 487. (in Chinese with English abstract)
[5] 李钰,甘滨蕊,王协康,等. 四川省甘洛县2019年群发性山洪泥石流灾害的形成机理[J]. 水土保持通报,2020,40(6):281 − 287. [LI Yu,GAN Binrui,WANG Xiekang,et al. Formation mechanism of group flash flood/debris flow disasters in Ganluo County,Sichuan Province in 2019[J]. Bulletin of Soil and Water Conservation,2020,40(6):281 − 287. (in Chinese with English abstract)] LI Yu, GAN Binrui, WANG Xiekang, et al. Formation mechanism of group flash flood/debris flow disasters in Ganluo County, Sichuan Province in 2019[J]. Bulletin of Soil and Water Conservation, 2020, 40(6): 281 − 287. (in Chinese with English abstract)
[6] 郑琅,张欣,王立娟. 四川省甘洛县山体滑坡应急调查与成因机制分析[J]. 人民长江,2022,53(8):117 − 122. [ZHENG Lang,ZHANG Xin,WANG Lijuan. Emergency investigation and formation mechanism of landslide in Ganluo County,Sichuan Province[J]. Yangtze River,2022,53(8):117 − 122. (in Chinese with English abstract)] ZHENG Lang, ZHANG Xin, WANG Lijuan. Emergency investigation and formation mechanism of landslide in Ganluo County, Sichuan Province[J]. Yangtze River, 2022, 53(8): 117 − 122. (in Chinese with English abstract)
[7] 廖安杰,岳世燕. 会理县老营盘村滑坡稳定性评价及数值分析[J]. 人民珠江,2018,39(9):56 − 58. [LIAO Anjie,YUE Shiyan. Stability evaluation and numerical analysis of Laoyingpan Village landslide in Huili Conunty[J]. Pearl River,2018,39(9):56 − 58. (in Chinese with English abstract)] LIAO Anjie, YUE Shiyan. Stability evaluation and numerical analysis of Laoyingpan Village landslide in Huili Conunty[J]. Pearl River, 2018, 39(9): 56 − 58. (in Chinese with English abstract)
[8] 刘凯,李渝生,易树健,等. 美姑河火洛村溃散型滑坡的成因动力学机理研究[J]. 科学技术与工程,2017,17(33):217 − 224. [LIU Kai,LI Yusheng,YI Shujian,et al. Study on kinetic characteristics of Huoluo landslide in Meigu River[J]. Science Technology and Engineering,2017,17(33):217 − 224. (in Chinese with English abstract)] LIU Kai, LI Yusheng, YI Shujian, et al. Study on kinetic characteristics of Huoluo landslide in Meigu River[J]. Science Technology and Engineering, 2017, 17(33): 217 − 224. (in Chinese with English abstract)
[9] 尹洪峰,冯志仁,薄景山. 美姑河洛渣滑坡稳定性分析[J]. 自然灾害学报,2007,16(6):70 − 73. [YIN Hongfeng,FENG Zhiren,BO Jingshan. Stability analysis of Luozha landslide by Meigu River[J]. Journal of Natural Disasters,2007,16(6):70 − 73. (in Chinese with English abstract)] YIN Hongfeng, FENG Zhiren, BO Jingshan. Stability analysis of Luozha landslide by Meigu River[J]. Journal of Natural Disasters, 2007, 16(6): 70 − 73. (in Chinese with English abstract)
[10] 郭宁. 普格县姚家山滑坡成因及稳定性分析[J]. 科学技术与工程,2014,14(11):114 − 118. [GUO Ning. Analysis of cause and stability on the Yaojiashan landslide in the Puge County[J]. Science Technology and Engineering,2014,14(11):114 − 118. (in Chinese with English abstract)] GUO Ning. Analysis of cause and stability on the Yaojiashan landslide in the Puge County[J]. Science Technology and Engineering, 2014, 14(11): 114 − 118. (in Chinese with English abstract)
[11] 高静贤,戴福初,朱雨轩,等. 四川宁南水塘村滑坡形成机理[J]. 中国地质灾害与防治学报,2019,30(6):1 − 9. [GAO Jingxian,DAI Fuchu,ZHU Yuxuan,et al. Failure mechanism of the Shuitang Village landslide in Ningnan County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):1 − 9. (in Chinese with English abstract)] GAO Jingxian, DAI Fuchu, ZHU Yuxuan, et al. Failure mechanism of the Shuitang Village landslide in Ningnan County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(6): 1 − 9. (in Chinese with English abstract)
[12] 朱涛,尹翔,王成汤,等. 西昌太和矿北采场滑坡变形演化规律及成因机制研究[J]. 岩土力学,2022,43(增刊2):392 − 400. [ZHU Tao,YIN Xiang,WANG Chengtang,et al. Study on deformation evolution law and genetic mechanism of landslide in the north stope of Taihe Mine in Xichang[J]. Rock and Soil Mechanics,2022,43(Sup 2):392 − 400. (in Chinese with English abstract)] ZHU Tao, YIN Xiang, WANG Chengtang, et al. Study on deformation evolution law and genetic mechanism of landslide in the north stope of Taihe Mine in Xichang[J]. Rock and Soil Mechanics, 2022, 43(Sup 2): 392 − 400. (in Chinese with English abstract)
[13] 陈敏,刘良春,叶胜华. 弯曲-拉裂型滑坡形成机制和稳定性分析——以木里河卡基娃滑坡为例[J]. 水文地质工程地质,2012,39(1):58 − 64. [CHEN Min,LIU Liangchun,YE Shenghua. The formation mechanism and stability analysis of bend-crack landslide:Taking the Kajiwa landslide of Muli River as an example[J]. Hydrogeology & Engineering Geology,2012,39(1):58 − 64. (in Chinese with English abstract)] CHEN Min, LIU Liangchun, YE Shenghua. The formation mechanism and stability analysis of bend-crack landslide: Taking the Kajiwa landslide of Muli River as an example[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 58 − 64. (in Chinese with English abstract)
[14] 崔玉龙,邓建辉,戴福初,等. 基于地貌与运动学特征的古滑坡群成因分析[J]. 四川大学学报(工程科学版),2015,47(1):68 − 75. [CUI Yulong,DENG Jianhui,DAI Fuchu,et al. Causes analysis of ancient landslides based on the landscape and kinematical characteristics[J]. Journal of Sichuan University (Engineering Science Edition),2015,47(1):68 − 75. (in Chinese with English abstract)] CUI Yulong, DENG Jianhui, DAI Fuchu, et al. Causes analysis of ancient landslides based on the landscape and kinematical characteristics[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(1): 68 − 75. (in Chinese with English abstract)
[15] 王伟,王卫,戴雄辉. 四川美姑拉马阿觉滑坡复活特征与影响因素分析[J]. 中国地质灾害与防治学报,2022,33(4):9 − 17. [WANG Wei,WANG Wei,DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):9 − 17. (in Chinese with English abstract)] WANG Wei, WANG Wei, DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 9 − 17. (in Chinese with English abstract)
[16] 邹永才. 四川省金阳县城区古滑坡的新认识[J]. 地质灾害与环境保护,2021,32(1):75 − 80. [ZOU Yongcai. New understanding of ancient landslides in Jinyang County,Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation,2021,32(1):75 − 80. (in Chinese with English abstract)] ZOU Yongcai. New understanding of ancient landslides in Jinyang County, Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation, 2021, 32(1): 75 − 80. (in Chinese with English abstract)
[17] 伍康林,陈宁生,胡桂胜,等. 四川省盐源县玻璃村“7•19”特大滑坡灾害应急科学调查[J]. 山地学报,2018,36(5):806 − 812. [WU Kanglin,CHEN Ningsheng,HU Guisheng,et al. Emergency investigation to 7•19 landslide disaster in Boli Village,Yanyuan County,Sichuan,China[J]. Mountain Research,2018,36(5):806 − 812. (in Chinese with English abstract)] WU Kanglin, CHEN Ningsheng, HU Guisheng, et al. Emergency investigation to 7•19 landslide disaster in Boli Village, Yanyuan County, Sichuan, China[J]. Mountain Research, 2018, 36(5): 806 − 812. (in Chinese with English abstract)
[18] 芦明,柳金峰,孙昊,等. 四川木里“7•5”黄泥巴沟泥石流灾害过程及防治措施建议[J]. 中国地质灾害与防治学报,2023,34(1):102 − 109. [LU Ming,LIU Jinfeng,SUN Hao,et al. Disaster process of “7•5” debris flow in Huangnibugou,Muli,Sichuan and suggestions on prevention and control measures[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):102 − 109. (in Chinese with English abstract)] LU Ming, LIU Jinfeng, SUN Hao, et al. Disaster process of “7•5” debris flow in Huangnibugou, Muli, Sichuan and suggestions on prevention and control measures[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 102 − 109. (in Chinese with English abstract)
[19] 殷万清,曹希超,胡卸文,等. 木里县项脚沟火后泥石流发育特征及应急处置对策[J]. 地质灾害与环境保护,2021,32(1):12 − 17. [YIN Wanqing,CAO Xicao,HU Xiewen,et al. Development characteristics of post-fire debris flow and emergency response measures in Xiangjiao township,Muli[J]. Journal of Geological Hazards and Environment Preservation,2021,32(1):12 − 17. (in Chinese with English abstract)] YIN Wanqing, CAO Xicao, HU Xiewen, et al. Development characteristics of post-fire debris flow and emergency response measures in Xiangjiao township, Muli[J]. Journal of Geological Hazards and Environment Preservation, 2021, 32(1): 12 − 17. (in Chinese with English abstract)
[20] 黄健,胡卸文,金涛,等. 四川西昌“3•30”火烧区响水沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报,2022,33(3):15 − 22. [HUANG Jian,HU Xiewen,JIN Tao,et al. Mechanism of the post-fire debris flow of the Xiangshui gully in “3•30” fire area of Xichang,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):15 − 22. (in Chinese with English abstract)] HUANG Jian, HU Xiewen, JIN Tao, et al. Mechanism of the post-fire debris flow of the Xiangshui gully in “3•30” fire area of Xichang, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 15 − 22. (in Chinese with English abstract)
[21] 杨相斌,胡卸文,曹希超,等. 四川西昌电池厂沟火后泥石流成灾特征及防治措施分析[J]. 中国地质灾害与防治学报,2022,33(4):1 − 8. [YANG Xiangbin,HU Xiewen,CAO Xichao,et al. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully,Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):1 − 8. (in Chinese with English abstract)] YANG Xiangbin, HU Xiewen, CAO Xichao, et al. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully, Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 1 − 8. (in Chinese with English abstract)
[22] 殷万清,金涛,胡卸文,等. 喜德县中坝村火后泥石流发育特征及预警避险[J]. 中国地质灾害与防治学报,2021,32(3):61 − 69. [YIN Wanqing,JIN Tao,HU Xiewen,et al. Development characteristics of debris flow after fire in Zhongba Village of Xide County and its early warning and avoidance[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):61 − 69. (in Chinese with English abstract)] YIN Wanqing, JIN Tao, HU Xiewen, et al. Development characteristics of debris flow after fire in Zhongba Village of Xide County and its early warning and avoidance[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 61 − 69. (in Chinese with English abstract)
[23] 苏鹏程,韦方强,顾林康,等. 四川省德昌县群发性泥石流的特征和成因[J]. 山地学报,2010,28(5):593 − 606. [SU Pengcheng,WEI Fangqiang,GU Linkang,et al. Characteristic and causes of group-occurring debris flow in Dechang County,Sichuan Province[J]. Journal of Mountain Science,2010,28(5):593 − 606. (in Chinese with English abstract)] SU Pengcheng, WEI Fangqiang, GU Linkang, et al. Characteristic and causes of group-occurring debris flow in Dechang County, Sichuan Province[J]. Journal of Mountain Science, 2010, 28(5): 593 − 606. (in Chinese with English abstract)
[24] 陈兴长,崔鹏,葛永刚,等. 四川省西溪河地洛水电工程区“7•31”泥石流灾害[J]. 山地学报,2010,28(1):116 − 122. [CHEN Xingzhang,CUI Peng,GE Yonggang,et al. “7•31” debris flow hazards occurred at Diluo water-power construction areas in Xixi River Basin,Sichuan Province[J]. Journal of Mountain Science,2010,28(1):116 − 122. (in Chinese with English abstract)] CHEN Xingzhang, CUI Peng, GE Yonggang, et al. “7•31” debris flow hazards occurred at Diluo water-power construction areas in Xixi River Basin, Sichuan Province[J]. Journal of Mountain Science, 2010, 28(1): 116 − 122. (in Chinese with English abstract)
[25] 曾琇舒. 雷波县白沙村滑坡—碎屑流发育特征及其成因机理研究[D]. 成都:成都理工大学,2019. [ZENG Xiushu. Study on the development characteristics and genetic mechanism of landslide-debris flow in Baisha Village,Leibo County[D]. Chengdu:Chengdu University of Technology,2019. (in Chinese with English abstract)] ZENG Xiushu. Study on the development characteristics and genetic mechanism of landslide-debris flow in Baisha Village, Leibo County[D]. Chengdu: Chengdu University of Technology, 2019. (in Chinese with English abstract)
[26] 王德伟,林启飞,倪化勇,等. 孙水河流域阿坡洛滑坡成灾机理分析[J]. 四川地质学报,2016,36(1):114 − 117. [WANG Dewei,LIN Qifei,NI Huayong,et al. Genetic mechanism of the apoluo landslide in the Sunshui River Basin[J]. Acta Geologica Sichuan,2016,36(1):114 − 117. (in Chinese with English abstract)] WANG Dewei, LIN Qifei, NI Huayong, et al. Genetic mechanism of the apoluo landslide in the Sunshui River Basin[J]. Acta Geologica Sichuan, 2016, 36(1): 114 − 117. (in Chinese with English abstract)
[27] 白永健,倪化勇,王运生,等. 喜德采书组“8•31”滑坡工程地质特征及运动过程[J]. 山地学报,2014,32(3):327 − 335. [BAI Yongjian,NI Huayong,WANG Yusheng,et al. Engineering geological characteristics and motor process of Caishu landslide in Xide of Sichuan,China[J]. Mountain Research,2014,32(3):327 − 335. (in Chinese with English abstract)] BAI Yongjian, NI Huayong, WANG Yusheng, et al. Engineering geological characteristics and motor process of Caishu landslide in Xide of Sichuan, China[J]. Mountain Research, 2014, 32(3): 327 − 335. (in Chinese with English abstract)
[28] 铁永波,葛华,高延超,等. 二十世纪以来西南地区地质灾害研究历程与展望[J]. 沉积与特提斯地质,2022,42(4):653 − 665. [TIE Yongbo,GE Hua,GAO Yanchao,et al. Research course and prospect of geological disasters in southwest China since the 20th Century[J]. Sedimentary Geology and Tethyan Geology,2022,42(4):653 − 665. (in Chinese with English abstract)] TIE Yongbo, GE Hua, GAO Yanchao, et al. Research course and prospect of geological disasters in southwest China since the 20th Century[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(4): 653 − 665. (in Chinese with English abstract)
[29] 白永健,铁永波,孟铭杰,等. 川西地区地质灾害发育特征与时空分布规律[J]. 沉积与特提斯地质,2022,42(4):666 − 674. [BAI Yongjian,TIE Yongbo,MENG Mingjie,et al. Development characteristics and temporal and spatial distribution law of geological disasters in western Sichuan[J]. Sedimentary Geology and Tethyan Geology,2022,42(4):666 − 674. (in Chinese with English abstract)] BAI Yongjian, TIE Yongbo, MENG Mingjie, et al. Development characteristics and temporal and spatial distribution law of geological disasters in western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(4): 666 − 674. (in Chinese with English abstract)
[30] 徐伟,冉涛,田凯. 西南红层地区地质灾害发育规律与成灾模式——以云南彝良县为例[J]. 中国地质灾害与防治学报,2021,32(6):127 − 133. [XU Wei,RAN Tao,TIAN Kai. Developing law and disaster modes of geohazards in red bed region of southwestern China:A case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):127 − 133. (in Chinese with English abstract)] XU Wei, RAN Tao, TIAN Kai. Developing law and disaster modes of geohazards in red bed region of southwestern China: A case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 127 − 133. (in Chinese with English abstract)
[31] 胡卸文,侯羿腾,王严,等. 火烧迹地土壤根系特征及其对抗剪强度的影响[J]. 水文地质工程地质,2019,46(5):106 − 112. [HU Xiewen,HOU Yiteng,WANG Yan,et al. Root characteristics and its influences on shear strength in burned areas[J]. Hydrogeology & Engineering Geology,2019,46(5):106 − 112. (in Chinese with English abstract)] HU Xiewen, HOU Yiteng, WANG Yan, et al. Root characteristics and its influences on shear strength in burned areas[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 106 − 112. (in Chinese with English abstract)
[32] 韩金良,吴树仁,汪华斌. 地质灾害链[J]. 地学前缘,2007,14(6):11 − 23. [HAN Jinliang,WU Shuren,WANG Huabin. Preliminary study on geological hazard chains[J]. Earth Science Frontiers,2007,14(6):11 − 23. (in Chinese with English abstract)] DOI: 10.1016/S1872-5791(08)60001-9 HAN Jinliang, WU Shuren, WANG Huabin. Preliminary study on geological hazard chains[J]. Earth Science Frontiers, 2007, 14(6): 11 − 23. (in Chinese with English abstract) DOI: 10.1016/S1872-5791(08)60001-9
[33] 徐文杰,陈祖煜,何秉顺,等. 肖家桥滑坡堵江机制及灾害链效应研究[J]. 岩石力学与工程学报,2010,29(5):933 − 942. [XU Wenjie,CHEN Zuyu,HE Bingshun,et al. Research on river-blocking mechanism of Xiaojiaqiao landslide and disasters of chain effects[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):933 − 942. (in Chinese with English abstract)] XU Wenjie, CHEN Zuyu, HE Bingshun, et al. Research on river-blocking mechanism of Xiaojiaqiao landslide and disasters of chain effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 933 − 942. (in Chinese with English abstract)