ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

四川凉山州地质灾害灾情特征与主要致灾类型

徐伟, 郑玄, 欧文, 铁永波, 付小麟, 宋钰朋, 殷万清

徐伟,郑玄,欧文,等. 四川凉山州地质灾害灾情特征与主要致灾类型[J]. 中国地质灾害与防治学报,2024,35(5): 78-89. DOI: 10.16031/j.cnki.issn.1003-8035.202305029
引用本文: 徐伟,郑玄,欧文,等. 四川凉山州地质灾害灾情特征与主要致灾类型[J]. 中国地质灾害与防治学报,2024,35(5): 78-89. DOI: 10.16031/j.cnki.issn.1003-8035.202305029
XU Wei,ZHENG Xuan,OU Wen,et al. Characteristics of losses of geological disasters and major disaster types in Liangshan Prefecture, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 78-89. DOI: 10.16031/j.cnki.issn.1003-8035.202305029
Citation: XU Wei,ZHENG Xuan,OU Wen,et al. Characteristics of losses of geological disasters and major disaster types in Liangshan Prefecture, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 78-89. DOI: 10.16031/j.cnki.issn.1003-8035.202305029

四川凉山州地质灾害灾情特征与主要致灾类型

基金项目: 中国地质调查局地质调查项目(DD20221746)
详细信息
    作者简介:

    徐 伟(1986—),男,山东淄博人,地质工程专业,博士研究生,高级工程师,主要从事地质灾害调查评价和岩体稳定性方向研究。E-mail:052054@163.com

    通讯作者:

    宋钰朋(1991—),男,四川成都人,地下水科学与工程专业,大学本科,工程师,主要从事地质灾害评价与防治工作。E-mail:490882449@qq.com

  • 中图分类号: P642

Characteristics of losses of geological disasters and major disaster types in Liangshan Prefecture, Sichuan Province

  • 摘要:

    凉山州受活动构造、地形地貌、河流切割等作用,是四川省地质灾害高风险地区。为系统查明凉山州地质灾害发育特征、灾情特征及主要致灾类型,采用资料收集、数理统计、现场调查等方法,统计分析地质灾害数据、灾情数据和重大突发地质灾害实例。结果表明:凉山州地质灾害以滑坡、泥石流为主,滑坡主要为中小规模土质滑坡,泥石流主要为中小规模沟道型泥石流;有记录以来共计发生24起死亡10人以上的地质灾害;2006—2020年,共发生46起地质灾害灾情,以泥石流为主。总结提炼了7种地质灾害主要致灾类型,红层滑坡是凉山州滑坡主要类型之一,遇水易软化解体,自稳能力差;复活型古滑坡,在凉山州多有分布,由于人类工程活动、河流冲刷等因素,古滑坡易变形和复活;库岸型滑坡,主要发育在木里县、布拖县、宁南县的水电站库区内,受库水位消落带影响斜坡塌岸隐患较多,坡体稳定性降低形成滑坡;含煤层型滑坡,主要发育在凉山州南部的煤系地层区域,斜坡前缘不合理开挖易诱发前缘滑塌并造成整体滑动;矿渣型泥石流是凉山州泥石流主要类型之一,矿渣、废石、尾砂等不合理堆放,为泥石流提供了丰富物源;凉山州常发生森林火灾,火烧迹地遭遇暴雨后易诱发火后泥石流;在构造活动强烈、山势陡峭的沟谷上游发生崩滑灾害后,易沿沟运动冲出,堵塞河道形成链式灾害。研究成果可为凉山州针对性开展防灾减灾工作提供数据支撑和科学参考。

    Abstract:

    Due to active tectonics, topography, and river dynamics, Liangshan Prefecture is highly susceptible to geological disasters in Sichuan Province. In order to find out the developmental patterns, characteristics, and prevalent disaster modes of geological disasters in Liangshan Prefecture, this paper uses data collection, mathematical statistics, field investigation and other methods to conducted a comprehensive analysis of geological disaster data, disaster situations, and major sudden geological disaster cases in Liangshan Prefecture. The results show that the primary geological hazards in Liangshan Prefecture are landslides and mud-rock flows. The landslides are mainly medium and small scale soil landslides, and the mud-rock flows are mainly medium and small scale gully mudflows. Over the recorded period, Liangshan Prefecture experienced 23 geological disasters resulting in more than 10 fatalities. Between 2006 to 2020, 46 geological disasters occurred, mainly in the forms of debris flow. This paper identifies and refines seven typical geological disaster modes in Liangshan Prefecture. Notably, red bed landslides, prone to softening and disintegration in water with poor self-stability, constitute a significant landslide type. Reactivation of ancient landslides, widely distributed in the region, is triggered by human activities, river erosion, and other factors. Reservoir bank landslides are prevalent in the reservoir areas of Muli County, Butuo County, and Ningnan County, posing risks due to fluctuating reservoir water levels. There are many hidden dangers of bank collapse due to the influence of reservoir water level, and the slope Coal-bearing landslides are prominent in the southern coal measure stratum area, induced by unsustainable mining practices. Slag-type debris flow is one of the main types of debris flow in Liangshan Prefecture. The unreasonable stacking of slag, waste rock and tailings provides rich material sources for debris flow disasters. Liangshan Prefecture frequently experiences forest fires, and the burned land is easy to induce post-fire mud-rock flow after heavy rain. When the landslide disasters occurs in the upper reaches of gullies with strong tectonic activity and steep mountain potential, it is easy to rush out along the gully, blocking the river and forming a chain disaster. The research results can provide data support and scientific insights for disaster prevention and mitigation in Liangshan Prefecture.

  • 秦巴山区地质环境复杂,地壳运动强烈,岩土体结构类型多样,具有自然灾害种类多、强度大和成灾重等特点[1],因此该地区已经成为我国地质灾害发生最频繁的地区之一。在秦巴山区发生的地质灾害以滑坡、泥石流和崩塌为主,其中滑坡占比相对较高,依据前人调查成果可知[24],该区境内变质岩残坡积土分布广泛,该类土体在开挖坡脚等人类工程活动影响下,极易诱发浅层堆积层滑坡,该类滑坡占秦巴山区灾害总数的90%以上[5],是该地区内发生频率最高的地质灾害,已经严重危及人民群众的生命和财产安全,制约了当地经济社会的发展,因此亟需开展堆积层滑坡机理的研究,为当地减灾防治工作提供理论依据。

    开挖坡脚会造成边坡的卸荷现象,严重影响边坡的稳定性[68]。学者们对边坡的开挖行为进行了大量研究,马春驰等[9]认为开挖导致边坡中的应力分布不平衡,土体中的软弱部位会产生屈服与变形现象。曹春山等[10]研究表明工程切坡开挖会恶化场地的地形地貌条件,改变了水文地质条件使得古土壤力学行为出现分化,导致了滑坡发生。陈涛等[11]认为开挖增大了坡体的临空面,坡体下部土体的抗滑作用减小,使土体产生卸荷效应。彭建兵等[12]通过研究人工开挖造成坡体应力卸荷来揭示滑坡应力场和位移场的改变与其变形破坏之间的关系。以上学者只是对开挖型滑坡的现象进行了分析,但在理论上的探讨还有所欠缺,因此对边坡开挖过程中的受力情况进行分析,总结其演化规律,并对开挖诱发型堆积层滑坡机理进行研究,对于此类滑坡的防治具有重要的意义[1316]

    由于秦巴山区堆积层滑坡物质组成以碎石土为主,应开展大型剪切试验,该试验可以较好地反映堆积层碎石土真实的抗剪强度规律[1719]。本研究选取柞水县小岭镇岭丰村三组矿洞滑坡碎石土进行了一系列大型直剪试验,研究了滑带土试样在不同法向应力、含水率和干密度下的剪切强度变化规律,在此基础上利用Midas GTS NX有限元软件对坡体开挖过程进行了模拟分析,通过室内试验与数值模拟相结合的方法,揭示了典型开挖诱发型堆积层滑坡的发生机理。

    岭丰村三组矿洞滑坡位于秦巴山区柞水县小岭镇岭丰村三组,由当地居民开挖坡脚修建道路诱发,是典型的开挖型堆积层滑坡。该坡体于2015年3月被开挖,并发生了小型溜滑;2020年9月由于持续强降雨导致滑坡范围进一步扩大,发生整体失稳,该滑坡发生后,明显可以看到堆积层与基岩面的滑带有较大面积的擦痕,滑带土体为堆积层碎石土,湿度大,滑体堆积于坡脚呈松散状。

    经野外调查,岭丰村三组矿洞滑坡平面形态呈圈椅状,滑动方向为130°(图1),平均坡度为37°。滑坡前缘高程1013 m,后缘高程为1050 m,相对高差为37 m。滑坡前部宽36 m,后部宽23 m,面积约1252 m2,滑坡体积为3644 m3。该滑坡后缘陡坎发育拉张裂隙,最大长度约21 m,最大宽度约0.5 m,可见剥、坠落迹象,滑体上树木歪斜、倾倒,部分路基被冲毁。

    图  1  岭丰村三组矿洞滑坡平面图
    Figure  1.  Plan view of the mine cave-in landslide at Lingfeng Village group 3

    试验样品取自滑坡堆积体内的碎石土(图2),根据室内试验得到的碎石土天然干密度(ρd)为1.4 g/cm3,天然含水率为10.6%,饱和含水率为19.4%,通过颗分试验所获取的试样颗粒级配累计曲线如图3所示。

    图  2  岭丰村三组矿洞滑坡(镜向:274°)
    Figure  2.  Mine cave-in landslide in Lingfeng Village group 3 (Lens direction: 274°)
    图  3  矿洞滑坡碎石土级配曲线
    Figure  3.  Grading curves of gravelly soils in mine cave landslides

    采用TT-ADS型全自动单联直剪仪进行滑带土的直剪试验,样品室内试验剪切盒由剪切上盒和剪切下盒组成,如图4所示,剪切上盒、下盒的尺寸均为150 mm×150 mm×100 mm(长×宽×高)。

    图  4  试验仪器及试验材料
    注:a为TT-ADS型全自动单联直剪仪;b为滑坡样品土;c为试验盒。
    Figure  4.  Test apparatus and materials

    干密度和含水率是影响碎石土剪切强度的主要因素,本文试验设计了一系列考虑不同干密度(1.3,1.4,1.5 g/cm3)和不同含水率下,5%、10.6%(天然)、15%、19.4%(饱和)的剪切试验,用以探索两种因素对碎石土剪切强度的影响规律,具体的试验方案见表1所示。制样过程中,根据剪切盒的尺寸以及干密度的大小,量取相应重量的碎石土,分3次装填压样以保障此干密度下样品的压实程度。

    表  1  本次试验方案
    Table  1.  Large-scale direct shear test program
    试样编号 含水率/% 干密度/(g·cm−3
    S01 5.0 1.5
    S02 10.6 1.5
    S03 15.0 1.5
    S04 19.4 1.5
    S05 5.0 1.4
    S06 10.6 1.4
    S07 15.0 1.4
    S08 19.4 1.4
    S09 5.0 1.4
    S10 10.6 1.3
    S11 15.0 1.3
    S12 19.4 1.3
    下载: 导出CSV 
    | 显示表格

    根据滑带深度、土的容重以及试验仪器的实际情况,设定试验法向压力(σ)分别为100,200,300 kPa,考虑不同含水率和不同干密度组合,共36组剪切试验。试验的剪切速率设置为0.8 mm/min,最大剪切位移设置为25 mm,剪力控制设定为恒速,试验数据时间存储间隔2 s。

    图5是相同干密度、不同含水率下碎石土剪切应力随剪切位移变化的关系曲线,可见随着剪切位移的增加剪切应力呈不断增大趋势,同时不同含水率下的剪切应力与剪切位移曲线基本上均呈现出应变硬化的特征。当剪切位移较小时,剪切应力与剪切位移呈线性增长的趋势,随着剪切位移的增加,曲线的增长速率变缓,但总体上仍呈现增大的趋势。参考规范[20],本文剪切强度试验结果取应变达到12%对应的剪切应力值。由于不同含水率(ω)下的直剪曲线变化规律一致,故本文选择ω=10.6%的情况进行分析,当法向应力从200 kPa增加到300 kPa时,剪切应力峰值(τMax)从136.8 kPa增加到197.9 kPa,增加了44.66%。这主要是由于在法向应力作用下土体被压实,土颗粒之间的接触密实、土颗粒之间的摩擦增大,从而导致剪切时阻力增大,故表现出剪切应力峰值随着法向应力的增加而增大。

    图  5  相同干密度(ρd=1.4 g/cm3)、不同含水率下剪切应力与剪切位移变化曲线
    Figure  5.  Variation curves of shear stress and shear displacement under the same dry density (ρd=1.4 g/cm3) and different moisture content

    相同干密度、不同含水率下的剪切应力峰值如图6所示,可以看出在相同法向应力下,不同含水率下的剪切应力峰值是随着含水率的增加而逐渐降低,而抗剪强度降低的幅度随着法向应力的增大而增大。当含水率为定值时,剪切应力的峰值随着法向应力的增大而增大。

    图  6  相同干密度(ρd=1.4 g/cm3)、不同含水率下剪切应力峰值变化规律
    Figure  6.  Variation of peak shear stress under the same dry density (ρd=1.4 g/cm3) and different moisture content

    根据库伦公式得到在相同干密度下各试样的黏聚力(c)和内摩擦角(φ)与含水率的关系如图7所示,随着试样含水率增大,黏聚力始终呈下降趋势,但下降幅度却有明显减小(含水率从5%增加至10.6%黏聚力下降了4 kPa,而含水率从15%增加至19.4%黏聚力只下降了1.4 kPa)。这是由于随着含水率的增加,试样中的碎石土中的粉质黏土土颗粒间胶结程度减小[21],导致试样的黏聚力下降。而在试样饱和或接近饱和状态时,土颗粒间胶结作用大幅度减小。同样,试样的φ也随着含水率的增加呈下降趋势,含水率越大,水分起到润滑作用,土颗粒间摩擦力减小,咬合作用减小。

    图  7  相同干密度下(ρd=1.4 g/cm3)抗剪强度指标与含水率关系曲线
    Figure  7.  Shear strength index versus moisture content at the same dry density (ρd=1.4 g/cm3)

    在探究干密度对碎石土剪切强度影响规律时,保持样品含水率不变,为10.6%(天然含水率),以排除含水率对试验结果的影响。图8是不同干密度下碎石土剪切应力随剪切位移变化的关系曲线,整体上剪切应力随着剪切位移的增加而不断增大,不同干密度下的剪切应力与剪切位移曲线可分为两个阶段,第一阶段为线性增长期,其剪切位移不超过1.5 mm,主要由于土体在最初阶段抵抗相对位移所产生。在此期间,剪切应力迅速增加,但持续时间较短;第二阶段为非线性增长阶段,该阶段的剪切应力随剪切位移增长的速率与第一阶段相比明显变缓,总体特征依旧是剪切应力随剪切位移的增加而增大,曲线表现出应变硬化的特征。

    图  8  相同含水率(ω=10.6%)、不同干密度下剪切应力与剪切位移的变化规律
    Figure  8.  Variation of shear stress and shear displacement under the same moisture content (ω=10.6%) and different dry densities

    将不同干密度下各法向应力的峰值强度绘制到图9中,可以得出碎石土的峰值强度随着试样干密度的提高呈现出小幅度增长,但总体来说影响不大。此外,当碎石土干密度不变时,其峰值剪应力随法向应力的增加而增大。分析其原因:随着法向应力增大,试验盒中试样的体积变小,试样被逐渐压密,土体压实度发生改变从而导致剪切应力峰值增大。

    图  9  相同含水率(ω=10.6%)、不同干密度下剪切应力峰值变化规律
    Figure  9.  Variation of peak shear stress under the same moisture content (ω=10.6%) and different dry densities

    根据库伦公式,可以得到各试样抗剪强度指标,并将黏聚力(c)和内摩擦角(φ)与含水率的关系绘制于图10,可知土体的黏聚力随干密度的增加而增加,其原因在于随着干密度的提高,土颗粒与砾石之间的咬合作用增强,而由此导致土颗粒与土颗粒、土颗粒与碎石之间错动困难,故在剪切过程中产生位移所需的阻力增大,因此表现出界面黏聚力随干密度的提高而增大的特征。

    图  10  相同含水率(ω=10.6%)下抗剪强度指标与干密度关系曲线
    Figure  10.  Shear strength index versus dry density at the same moisture content (ω=10.6%)

    根据图10可以看出,试样的内摩擦角随着干密度的增加呈上升的趋势,这是由于干密度提高导致试验盒中的粗颗粒增多,相对密实度增加,剪切面上的颗粒之间的接触变紧密,它们之间摩擦力随之变大,故内摩擦角与干密度之间表现出正相关关系。

    本文采用Midas GTS NX有限元数值软件根据实际地质剖面来模拟岭丰村三组矿洞滑坡从最初的坡体经人为开挖,再经历了暴雨等不同阶段中应力场、位移场和塑性区的发展趋势,然后通过强度折减法分别得出该坡体在不同阶段的稳定性系数,从而较真实地还原了该滑坡从初始阶段直至破坏的全过程,揭示了其在开挖坡脚和降雨作用下的变形与失稳机制。

    采用Midas GTS NT数值软件对开挖卸荷和强降雨作用下滑坡位移以及应变特征进行数值模拟分析,并以强度折减法[22]为理论依据,对不同工况下的滑坡变形模式进行分析。建立好的模型如图11所示,模型高56 m,长145 m,共2782个单元,将滑坡区地层从上到下概化为三种材料:①碎石土层;②强风化层;③基岩层。边界条件设置为:模型底部边界限制其XY方向位移,左侧边界限制其X方向的位移,右侧边界限制其X方向的位移。

    图  11  Midas GTS NT有限元模型
    Figure  11.  Midas GTS NT finite element model

    岭丰村三组矿洞滑坡主要运动模式为溜滑和局部变形,当滑坡的内动力条件发生改变后,该滑坡将进入滑动变形阶段,因此,本次研究主要分析以下2种工况:(1)根据现场实际开挖范围对模型进行开挖,未降雨。(2)对滑坡坡脚进行开挖,并以滑坡发生前的降雨量为依据,设定降雨强度为70 mm,降雨时长24 h。开挖工况下碎石土层的参数取样品天然含水率下的剪切强度试验成果(表2),开挖加降雨工况时,滑带碎石土取饱和工况下试验参数。

    表  2  数值模拟参数
    Table  2.  Numerical model parameters
    类型 重度
    /(kN·m−3
    泊松比 c/kPa φ/(°) E/MPa
    碎石土层 21.2 0.32 25.2 31.1 100
    滑带土(天然工况) 19.2 0.33 25.0 30.5 90
    滑带土(饱和工况) 19.7 0.40 20.9 19.6 70
    强风化层 23.3 0.30 50.0 35.0 200
    基岩层 24.5 0.28 428.0 38.0 1000
    下载: 导出CSV 
    | 显示表格

    经过计算和分析,从图12中可以看出,开挖后,变形主要发生在开挖位置的前缘,滑坡前缘沿着开挖形成的陡立面向下移动,最大变形量约为1.05 m。据对现场的调查和观察,开挖后的地形呈现出中心隆起的特征,同时开挖的边坡也出现了局部的小规模滑塌,与模拟结果相一致。坡体在经历过开挖之后,其稳定系数(FS)下降至1.043,表明坡体已经处于欠稳定状态。

    图  12  开挖后滑坡位移云图
    Figure  12.  Cloud map of landslide displacement after excavation

    图13为岭丰村三组矿洞滑坡开挖前后滑坡的最大剪应力云图。从数据分析结果可以明显看出,剪应力的数值为正值;并且随着滑坡体深度的增加,剪应力的数值也逐渐增大。在滑坡坡脚处,表现出较为明显的应力集中现象;而坡面处的开挖区域,则呈现出较为明显的应力变化。除了集中开挖区域之外,坡体其他部分的整体应力变化较为微小。这种情形与实际出现的滑坡破坏形式高度契合。

    图  13  开挖前后滑坡最大剪应力云图
    Figure  13.  Cloud map of maximum shear stress of landslide before and after excavation

    图14为小岭镇矿洞滑坡开挖过程中的塑性区变化云图。在滑坡的切坡过程中由于坡体前缘土体被移除,斜坡后部土体缺少支撑,塑性区域会逐渐扩大最终这种滑动趋势可能会导致牵引式滑坡,严重影响坡体的稳定性。但是,趋势的发展只能从侧面反映坡体的稳定状态,而塑性区域的产生或贯通并不意味着坡体一定会发生失稳。

    图  14  开挖前后塑性区分布图
    Figure  14.  Distribution of plastic zones before and after excavation

    开挖滑坡经降雨后的位移云图如图15所示,从该图中可以明显地发现,在降雨后开挖边坡上出现了一个呈圆弧状的变形集中带。相对于仅进行开挖时,滑体和滑带的剪切形变范围明显增大。滑带向下滑移的最大位移形变量集中在滑坡前缘区域。通过与开挖状态相比,降雨后滑体的变形范围和量值均有较大程度地增加,滑体运动表现出明显的牵引式特征。降雨后,滑坡的稳定性系数降至0.989,处于不稳定状态。

    图  15  开挖与降雨耦合作用后滑坡位移云图
    Figure  15.  Cloud map of landslide displacement after excavation and rainfall coupling action

    开挖与降雨耦合作用后滑坡塑性分区图如图16所示,从塑性区分布来看,开挖之后降雨的滑坡塑性破坏的面积,破坏程度都要比仅开挖的滑坡大,且塑性破坏最大的区域下移到了切坡层的坡脚处,由于滑体变形牵引以及滑带变形的影响,下覆地层(强风化层)也出现部分塑性区域。

    图  16  开挖与降雨耦合作用后滑坡塑性分区图
    Figure  16.  Plastic zoning of landslide after excavation and rainfall coupling

    将开挖与降雨耦合作用后数值模拟结果(图1516)与野外实际(图2)对比发现:数值模拟中滑坡的位置、滑体土的方量与实际滑坡较吻合,且由降雨后滑坡的位移云图可知,滑坡变形最大的部位位于开挖边坡坡面,这与野外实际所发现的滑坡前缘、滑面以及滑坡中后缘出现张拉裂缝位置等现象较吻合,可见本文数值模拟结果较为准确地模拟了开挖和降雨共同作用下堆积层滑坡发生的破坏情况。

    通过对岭丰村三组矿洞滑坡的实地调研、室内试验以及数值模拟分析可以得出,该滑坡属于典型的牵引式滑坡,不正确的人类工程活动即开挖坡脚和强降雨是导致滑坡的主要诱发因素。

    开挖坡脚后,斜坡前缘的有效抗滑力减少,这导致坡体的应力平衡状态发生改变[2325],进而使得坡体前缘产生应力集中并发生小规模失稳事件(图12)。此外,斜坡上覆地层为结构较松散、透水性好的碎石土层,在强降雨条件下土体逐渐浸润饱和,根据前面大型直剪试验结果可知(图7),土体的抗剪强度指标随含水率的增加逐渐降低,且坡体变形量也逐渐增大。随着降雨作用,斜坡堆积层中逐渐形成一个呈圆弧状的剪切应变集中带(图15),即潜在滑带。当斜坡的形变量持续增大并达到临界状态时,斜坡前缘整体失稳并沿着滑带发生大规模滑塌。综上,该类滑坡的失稳过程为:开挖坡脚-坡体应力平衡改变-前缘失稳-降雨入渗-碎石土强度下降-潜在滑面产生-发生大规模滑塌。

    (1)在相同法向应力的情况下,碎石土剪切应力峰值随含水率的增加而降低,随干密度的增加而增加;不同含水率下剪切应力与剪切位移曲线均呈现出应变硬化的特征;滑带土的黏聚力和内摩擦角随着含水率的增加而降低,随着干密度的增加而增大。

    (2)通过数值模拟计算发现:人类工程活动即开挖坡脚和该地区出现的强降雨是导致滑坡的主要诱发因素;秦巴山区典型开挖诱发型滑坡的变形模式可被归纳为:牵引-蠕滑式。

    (3)秦巴山区典型开挖诱发型堆积层滑坡的失稳机理可被归纳为:开挖坡脚-坡体应力平衡改变-前缘失稳-降雨入渗-碎石土强度下降-潜在滑面产生-发生大规模滑塌。

  • 图  1   金阳县新区建设开挖形成的陡坡

    Figure  1.   Steep slope formed by construction excavation of Jinyang New District

    图  2   切坡建房引发的滑坡

    Figure  2.   Landslide triggered by slope cutting for building construction

    图  3   雷波县某磷矿形成的矿渣堆

    Figure  3.   Phosphorite slag heap formed in a phosphate mine in Leibo County

    图  4   凉山州地质灾害分布图

    Figure  4.   Geological hazard distribution map of Liangshan Prefecture

    图  5   凉山州红层地层和红层滑坡分布图

    Figure  5.   Red-bed strata and red-bed landslide distribution map in Liangshan Prefecture

    图  6   会理市新发镇铜厂村1组老包滑坡示意图

    Figure  6.   Schematic diagram of Laobao landslide in Group 1, Tongchang Village, Xinfa Town, Huili City

    图  7   金阳县天地坝镇老营盘村城北滑坡

    注:a为滑坡全貌;b为滑坡后壁;c、d为复活体变形特征。

    Figure  7.   Landslide in the north of Laoyingpan Village, Tiandiba Town, Jinyang County

    图  8   白鹤滩电站边坡前缘塌岸

    Figure  8.   Bank Collapse at the toe of the slope near the Baihetan Hydropower Station

    图  9   木里县瓦厂镇纳子店村店扎组滑坡

    注:a为全貌;b为滑坡后部裂缝;c为滑坡后部垮塌猪圈。

    Figure  9.   Diancha Formation landslide in Nazidian Village, Wachang Town, Muli County

    图  10   布拖县勒吉村4组约坡吉乃滑坡示意图

    Figure  10.   Schematic diagram of Yuepo Jinai landslide in Group 4, Leji Village, Butuo County

    图  11   日格尔泥石流示意图

    Figure  11.   Schematic diagram of the Rigeer debris flow

    图  12   木里县项脚乡项脚沟泥石流示意图

    注:a为流域平面图;b为过火区坡面侵蚀物源;c为主沟淤积段。

    Figure  12.   Schematic diagram of debris flow in Xiangjiao Ditch, Xiangjiao Township, Muli County

    图  13   冕宁县照壁山滑坡-泥石流链式灾害示意图

    Figure  13.   Schematic diagram of Zhaobi Mountain landslide-debris flow chain disaster in Mianning County

    表  1   凉山州地质灾害发育类型及数量

    Table  1   Development types and quantities of geological hazards in Liangshan Prefecture

    规模 崩塌 滑坡 泥石流 地面塌陷 合计 占比/%
    特大型 2 3 4 0 9 0.22
    大型 2 106 22 0 130 3.24
    中型 76 830 258 0 1164 28.98
    小型 169 1735 803 6 2713 67.55
    合计 249 2674 1087 6 4016 100
    占比/% 6.20 66.58 27.07 0.15 100
    下载: 导出CSV

    表  2   凉山州不同类型地质灾害发育特征统计

    Table  2   Statistical analysis of development characteristics of different types of geological hazards in Liangshan Prefecture

    灾害类型 发育特征 数量/处 占比/%
    滑坡 土质 2950 98.40
    岩质 48 1.60
    崩塌 土质 13 4.09
    岩质 305 95.91
    泥石流 沟道型 1177 96.55
    坡面型 42 3.45
    下载: 导出CSV

    表  3   凉山州历史重大地质灾害灾情简表(死亡10人以上)

    Table  3   Summary of major historical significant geological disasters in Liangshan Prefecture (with 10 or more fatalities)

    序号 位置 发生日期 灾害类型 规模
    /104 m3
    受灾对象 受灾人口/人 死亡/人 直接经济
    损失/万元
    具体成因
    1 西昌城区及周边乡镇 1850-09-12 7.5级地震 不详 居民、房屋、道路等 2.79万户 约27 000 不详 7.5级地震
    2 会东县小田坝村下坝老街 1881-02-06 滑坡 不详 人、畜和房屋 不详 约30 不详 不详
    3 喜德县东河 1891-07-05 泥石流 不详 居民、房屋、道路等 不详 约1000 不详 暴雨
    4 西昌市东河、西河 1942-06-16 山洪、泥石流 不详 居民、房屋、道路等 不详 约120 不详 暴雨
    5 西昌沿安宁河19个乡 1951-08-24 山洪、泥石流 不详 居民、房屋、道路等 不详 15 不详 暴雨
    6 西昌市东河 1955-07-14 山洪、泥石流 不详 居民、房屋、道路等 不详 68 不详 暴雨
    7 喜德县中沟 1957-06-29 泥石流 不详 居民、房屋、道路等 不详 84 不详 暴雨
    8 冕宁县泸沽镇洛瓦村4组 1970-05-26 泥石流 530 原铁道部第二工程处食堂、
    仓库和工棚
    500 104 不详 矿山开采
    9 喜德县红莫镇司金沟3社 1972-08-01 泥石流 不详 村落、房屋 不详 200 3000 暴雨
    10 甘洛县乌史大桥乡利子依达沟 1981-07-09 泥石流 30万 成昆铁路利子依达大桥、
    旅客列车
    不详 240 2000余万 暴雨
    11 会东县溜姑乡三家村 1988-06-01 泥石流 不详 公路大桥桥墩、工棚 26 13 不详 暴雨及冰雹
    12 冕宁县漫水湾镇二村沟1组 1989-09-04 泥石流 不详 居民点、农田 3000 51 不详 暴雨
    13 冕宁县漫水湾镇胜利村 1989-09-04 泥石流 不详 居民点、农田 500 12 不详 暴雨
    14 德昌县永郎镇蒲坝村 1995-07-11 泥石流 2.5 聚集区 63 10 800 暴雨
    15 普格县五道箐镇采阿咀沟 2003-06-20 泥石流 70 公路、房屋、通信光缆 58 10 100 暴雨
    16 盐源县平川镇骡马铺村2组 2006-07-14 泥石流 100 聚集区 168 16 500 暴雨
    17 冕宁县彝海乡勒帕村 2011-06-16 泥石流 不详 聚集区 不详 17 不详 暴雨
    18 宁南县白鹤滩镇和平村
    1组矮子沟
    2012-06-27 泥石流 8 分散农户、白鹤滩水
    电站施工区
    不详 38 530 暴雨
    19 雷波县岩脚乡金沙村 2013-07-27 滑坡-涌浪 不详 金沙江航道船只、对岸码头 不详 约20 不详 暴雨
    20 普格县荞窝镇耿底村
    4、5组桐子林沟
    2017-08-08 泥石流 1.03 通村公路、房屋 577 26 16000 暴雨
    21 冕宁县棉沙镇许家坪村
    1、2组下草坪子滑坡
    2012-07-12 滑坡 不详 公路、房屋 95 13 400 持续降雨
    22 德昌县茨达镇新华村 2004-08-23 滑坡、泥石流 不详 聚集区 4960 17 不详 暴雨
    23 德昌县乐跃镇乐跃沟村 2004-09-24 泥石流 不详 聚集区 不详 11 不详 暴雨
    24 盐源县洼里乡手爬村二组北沟段 2012-08-30 泥石流、滑坡 不详 聚集区 241 13 520 暴雨
    下载: 导出CSV

    表  4   凉山州各县市灾情统计表(2006—2020年)

    Table  4   Statistical table of disaster situation for each county and city in Liangshan Prefecture (2006—2020)

    县/市 灾情数量/起 死亡失踪/人 经济损失/万元 县/市 灾情数量/起 死亡失踪/人 经济损失/万元
    德昌县 2 3 410 冕宁县 2 20 520
    甘洛县 3 4 111 木里县 3 16 220
    会东县 1 2 15 宁南县 8 52 6850
    会理市 2 1 75 普格县 4 31 17470
    金阳县 4 13 170 喜德县 1 6 100
    雷波县 7 25 745 盐源县 3 30 1470
    美姑县 2 8 546 越西县 2 1 118
    昭觉县 2 10 380 合计 46 222 29200
    下载: 导出CSV

    表  5   凉山州红层红层滑坡统计

    Table  5   Statistical analysis of red-bed landslide in Liangshan Prefecture

    红层地层 面积/km2 数量/处 灾害密度
    /(处·km−2
    占比/%
    侏罗系 5778 515 0.089 70.6
    白垩系 3177 190 0.06 26.1
    三叠系 837 24 0.029 3.3
    下载: 导出CSV
  • [1] 刘希林,王全才,张丹,等. 四川凉山州普格县“6•20”泥石流灾害[J]. 灾害学,2003,18(4):46 − 50. [LIU Xilin,WANG Quancai,ZHANG Dan,et al. Debris flow disasters occurred on June 20,2003 in Puge County of Sichuan[J]. Journal of Catastrophology,2003,18(4):46 − 50. (in Chinese with English abstract)]

    LIU Xilin, WANG Quancai, ZHANG Dan, et al. Debris flow disasters occurred on June 20, 2003 in Puge County of Sichuan[J]. Journal of Catastrophology, 2003, 18(4): 46 − 50. (in Chinese with English abstract)

    [2] 刘希林,李秀珍,苏鹏程. 四川德昌县凹米罗沟泥石流成灾过程与危险性评价[J]. 灾害学,2005,20(3):78 − 83. [LIU Xilin,LI Xiuzhen,SU Pengcheng. Debris flow process and hazard assessment in Aomiluo gully of Dechang County,Sichuan[J]. Journal of Catastrophology,2005,20(3):78 − 83. (in Chinese with English abstract)]

    LIU Xilin, LI Xiuzhen, SU Pengcheng. Debris flow process and hazard assessment in Aomiluo gully of Dechang County, Sichuan[J]. Journal of Catastrophology, 2005, 20(3): 78 − 83. (in Chinese with English abstract)

    [3] 孙瑜,李宏俊,曹树波,等. 四川雷波碉楼沟泥石流特征及防治对策[J]. 地质灾害与环境保护,2017,28(1):1 − 6. [SUN Yu,LI Hongjun,CAO Shubo,et al. Features and preventive countermeasures of potential debris flow in Diaolou gully,Leibo County,Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation,2017,28(1):1 − 6. (in Chinese with English abstract)]

    SUN Yu, LI Hongjun, CAO Shubo, et al. Features and preventive countermeasures of potential debris flow in Diaolou gully, Leibo County, Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation, 2017, 28(1): 1 − 6. (in Chinese with English abstract)

    [4] 陈宁生,黄娜. 普格县荞窝镇8•8泥石流灾害应急调查研究[J]. 山地学报,2018,36(3):482 − 487. [CHEN Ningsheng,HUANG Na. Emergency investigation on debris flow 8•8 disaster in Qiaowo Town,Puge County,Sichuan,China[J]. Mountain Research,2018,36(3):482 − 487. (in Chinese with English abstract)]

    CHEN Ningsheng, HUANG Na. Emergency investigation on debris flow 8•8 disaster in Qiaowo Town, Puge County, Sichuan, China[J]. Mountain Research, 2018, 36(3): 482 − 487. (in Chinese with English abstract)

    [5] 李钰,甘滨蕊,王协康,等. 四川省甘洛县2019年群发性山洪泥石流灾害的形成机理[J]. 水土保持通报,2020,40(6):281 − 287. [LI Yu,GAN Binrui,WANG Xiekang,et al. Formation mechanism of group flash flood/debris flow disasters in Ganluo County,Sichuan Province in 2019[J]. Bulletin of Soil and Water Conservation,2020,40(6):281 − 287. (in Chinese with English abstract)]

    LI Yu, GAN Binrui, WANG Xiekang, et al. Formation mechanism of group flash flood/debris flow disasters in Ganluo County, Sichuan Province in 2019[J]. Bulletin of Soil and Water Conservation, 2020, 40(6): 281 − 287. (in Chinese with English abstract)

    [6] 郑琅,张欣,王立娟. 四川省甘洛县山体滑坡应急调查与成因机制分析[J]. 人民长江,2022,53(8):117 − 122. [ZHENG Lang,ZHANG Xin,WANG Lijuan. Emergency investigation and formation mechanism of landslide in Ganluo County,Sichuan Province[J]. Yangtze River,2022,53(8):117 − 122. (in Chinese with English abstract)]

    ZHENG Lang, ZHANG Xin, WANG Lijuan. Emergency investigation and formation mechanism of landslide in Ganluo County, Sichuan Province[J]. Yangtze River, 2022, 53(8): 117 − 122. (in Chinese with English abstract)

    [7] 廖安杰,岳世燕. 会理县老营盘村滑坡稳定性评价及数值分析[J]. 人民珠江,2018,39(9):56 − 58. [LIAO Anjie,YUE Shiyan. Stability evaluation and numerical analysis of Laoyingpan Village landslide in Huili Conunty[J]. Pearl River,2018,39(9):56 − 58. (in Chinese with English abstract)]

    LIAO Anjie, YUE Shiyan. Stability evaluation and numerical analysis of Laoyingpan Village landslide in Huili Conunty[J]. Pearl River, 2018, 39(9): 56 − 58. (in Chinese with English abstract)

    [8] 刘凯,李渝生,易树健,等. 美姑河火洛村溃散型滑坡的成因动力学机理研究[J]. 科学技术与工程,2017,17(33):217 − 224. [LIU Kai,LI Yusheng,YI Shujian,et al. Study on kinetic characteristics of Huoluo landslide in Meigu River[J]. Science Technology and Engineering,2017,17(33):217 − 224. (in Chinese with English abstract)]

    LIU Kai, LI Yusheng, YI Shujian, et al. Study on kinetic characteristics of Huoluo landslide in Meigu River[J]. Science Technology and Engineering, 2017, 17(33): 217 − 224. (in Chinese with English abstract)

    [9] 尹洪峰,冯志仁,薄景山. 美姑河洛渣滑坡稳定性分析[J]. 自然灾害学报,2007,16(6):70 − 73. [YIN Hongfeng,FENG Zhiren,BO Jingshan. Stability analysis of Luozha landslide by Meigu River[J]. Journal of Natural Disasters,2007,16(6):70 − 73. (in Chinese with English abstract)]

    YIN Hongfeng, FENG Zhiren, BO Jingshan. Stability analysis of Luozha landslide by Meigu River[J]. Journal of Natural Disasters, 2007, 16(6): 70 − 73. (in Chinese with English abstract)

    [10] 郭宁. 普格县姚家山滑坡成因及稳定性分析[J]. 科学技术与工程,2014,14(11):114 − 118. [GUO Ning. Analysis of cause and stability on the Yaojiashan landslide in the Puge County[J]. Science Technology and Engineering,2014,14(11):114 − 118. (in Chinese with English abstract)]

    GUO Ning. Analysis of cause and stability on the Yaojiashan landslide in the Puge County[J]. Science Technology and Engineering, 2014, 14(11): 114 − 118. (in Chinese with English abstract)

    [11] 高静贤,戴福初,朱雨轩,等. 四川宁南水塘村滑坡形成机理[J]. 中国地质灾害与防治学报,2019,30(6):1 − 9. [GAO Jingxian,DAI Fuchu,ZHU Yuxuan,et al. Failure mechanism of the Shuitang Village landslide in Ningnan County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):1 − 9. (in Chinese with English abstract)]

    GAO Jingxian, DAI Fuchu, ZHU Yuxuan, et al. Failure mechanism of the Shuitang Village landslide in Ningnan County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(6): 1 − 9. (in Chinese with English abstract)

    [12] 朱涛,尹翔,王成汤,等. 西昌太和矿北采场滑坡变形演化规律及成因机制研究[J]. 岩土力学,2022,43(增刊2):392 − 400. [ZHU Tao,YIN Xiang,WANG Chengtang,et al. Study on deformation evolution law and genetic mechanism of landslide in the north stope of Taihe Mine in Xichang[J]. Rock and Soil Mechanics,2022,43(Sup 2):392 − 400. (in Chinese with English abstract)]

    ZHU Tao, YIN Xiang, WANG Chengtang, et al. Study on deformation evolution law and genetic mechanism of landslide in the north stope of Taihe Mine in Xichang[J]. Rock and Soil Mechanics, 2022, 43(Sup 2): 392 − 400. (in Chinese with English abstract)

    [13] 陈敏,刘良春,叶胜华. 弯曲-拉裂型滑坡形成机制和稳定性分析——以木里河卡基娃滑坡为例[J]. 水文地质工程地质,2012,39(1):58 − 64. [CHEN Min,LIU Liangchun,YE Shenghua. The formation mechanism and stability analysis of bend-crack landslide:Taking the Kajiwa landslide of Muli River as an example[J]. Hydrogeology & Engineering Geology,2012,39(1):58 − 64. (in Chinese with English abstract)]

    CHEN Min, LIU Liangchun, YE Shenghua. The formation mechanism and stability analysis of bend-crack landslide: Taking the Kajiwa landslide of Muli River as an example[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 58 − 64. (in Chinese with English abstract)

    [14] 崔玉龙,邓建辉,戴福初,等. 基于地貌与运动学特征的古滑坡群成因分析[J]. 四川大学学报(工程科学版),2015,47(1):68 − 75. [CUI Yulong,DENG Jianhui,DAI Fuchu,et al. Causes analysis of ancient landslides based on the landscape and kinematical characteristics[J]. Journal of Sichuan University (Engineering Science Edition),2015,47(1):68 − 75. (in Chinese with English abstract)]

    CUI Yulong, DENG Jianhui, DAI Fuchu, et al. Causes analysis of ancient landslides based on the landscape and kinematical characteristics[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(1): 68 − 75. (in Chinese with English abstract)

    [15] 王伟,王卫,戴雄辉. 四川美姑拉马阿觉滑坡复活特征与影响因素分析[J]. 中国地质灾害与防治学报,2022,33(4):9 − 17. [WANG Wei,WANG Wei,DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):9 − 17. (in Chinese with English abstract)]

    WANG Wei, WANG Wei, DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 9 − 17. (in Chinese with English abstract)

    [16] 邹永才. 四川省金阳县城区古滑坡的新认识[J]. 地质灾害与环境保护,2021,32(1):75 − 80. [ZOU Yongcai. New understanding of ancient landslides in Jinyang County,Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation,2021,32(1):75 − 80. (in Chinese with English abstract)]

    ZOU Yongcai. New understanding of ancient landslides in Jinyang County, Sichuan Province[J]. Journal of Geological Hazards and Environment Preservation, 2021, 32(1): 75 − 80. (in Chinese with English abstract)

    [17] 伍康林,陈宁生,胡桂胜,等. 四川省盐源县玻璃村“7•19”特大滑坡灾害应急科学调查[J]. 山地学报,2018,36(5):806 − 812. [WU Kanglin,CHEN Ningsheng,HU Guisheng,et al. Emergency investigation to 7•19 landslide disaster in Boli Village,Yanyuan County,Sichuan,China[J]. Mountain Research,2018,36(5):806 − 812. (in Chinese with English abstract)]

    WU Kanglin, CHEN Ningsheng, HU Guisheng, et al. Emergency investigation to 7•19 landslide disaster in Boli Village, Yanyuan County, Sichuan, China[J]. Mountain Research, 2018, 36(5): 806 − 812. (in Chinese with English abstract)

    [18] 芦明,柳金峰,孙昊,等. 四川木里“7•5”黄泥巴沟泥石流灾害过程及防治措施建议[J]. 中国地质灾害与防治学报,2023,34(1):102 − 109. [LU Ming,LIU Jinfeng,SUN Hao,et al. Disaster process of “7•5” debris flow in Huangnibugou,Muli,Sichuan and suggestions on prevention and control measures[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):102 − 109. (in Chinese with English abstract)]

    LU Ming, LIU Jinfeng, SUN Hao, et al. Disaster process of “7•5” debris flow in Huangnibugou, Muli, Sichuan and suggestions on prevention and control measures[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 102 − 109. (in Chinese with English abstract)

    [19] 殷万清,曹希超,胡卸文,等. 木里县项脚沟火后泥石流发育特征及应急处置对策[J]. 地质灾害与环境保护,2021,32(1):12 − 17. [YIN Wanqing,CAO Xicao,HU Xiewen,et al. Development characteristics of post-fire debris flow and emergency response measures in Xiangjiao township,Muli[J]. Journal of Geological Hazards and Environment Preservation,2021,32(1):12 − 17. (in Chinese with English abstract)]

    YIN Wanqing, CAO Xicao, HU Xiewen, et al. Development characteristics of post-fire debris flow and emergency response measures in Xiangjiao township, Muli[J]. Journal of Geological Hazards and Environment Preservation, 2021, 32(1): 12 − 17. (in Chinese with English abstract)

    [20] 黄健,胡卸文,金涛,等. 四川西昌“3•30”火烧区响水沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报,2022,33(3):15 − 22. [HUANG Jian,HU Xiewen,JIN Tao,et al. Mechanism of the post-fire debris flow of the Xiangshui gully in “3•30” fire area of Xichang,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):15 − 22. (in Chinese with English abstract)]

    HUANG Jian, HU Xiewen, JIN Tao, et al. Mechanism of the post-fire debris flow of the Xiangshui gully in “3•30” fire area of Xichang, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 15 − 22. (in Chinese with English abstract)

    [21] 杨相斌,胡卸文,曹希超,等. 四川西昌电池厂沟火后泥石流成灾特征及防治措施分析[J]. 中国地质灾害与防治学报,2022,33(4):1 − 8. [YANG Xiangbin,HU Xiewen,CAO Xichao,et al. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully,Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):1 − 8. (in Chinese with English abstract)]

    YANG Xiangbin, HU Xiewen, CAO Xichao, et al. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully, Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 1 − 8. (in Chinese with English abstract)

    [22] 殷万清,金涛,胡卸文,等. 喜德县中坝村火后泥石流发育特征及预警避险[J]. 中国地质灾害与防治学报,2021,32(3):61 − 69. [YIN Wanqing,JIN Tao,HU Xiewen,et al. Development characteristics of debris flow after fire in Zhongba Village of Xide County and its early warning and avoidance[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):61 − 69. (in Chinese with English abstract)]

    YIN Wanqing, JIN Tao, HU Xiewen, et al. Development characteristics of debris flow after fire in Zhongba Village of Xide County and its early warning and avoidance[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 61 − 69. (in Chinese with English abstract)

    [23] 苏鹏程,韦方强,顾林康,等. 四川省德昌县群发性泥石流的特征和成因[J]. 山地学报,2010,28(5):593 − 606. [SU Pengcheng,WEI Fangqiang,GU Linkang,et al. Characteristic and causes of group-occurring debris flow in Dechang County,Sichuan Province[J]. Journal of Mountain Science,2010,28(5):593 − 606. (in Chinese with English abstract)]

    SU Pengcheng, WEI Fangqiang, GU Linkang, et al. Characteristic and causes of group-occurring debris flow in Dechang County, Sichuan Province[J]. Journal of Mountain Science, 2010, 28(5): 593 − 606. (in Chinese with English abstract)

    [24] 陈兴长,崔鹏,葛永刚,等. 四川省西溪河地洛水电工程区“7•31”泥石流灾害[J]. 山地学报,2010,28(1):116 − 122. [CHEN Xingzhang,CUI Peng,GE Yonggang,et al. “7•31” debris flow hazards occurred at Diluo water-power construction areas in Xixi River Basin,Sichuan Province[J]. Journal of Mountain Science,2010,28(1):116 − 122. (in Chinese with English abstract)]

    CHEN Xingzhang, CUI Peng, GE Yonggang, et al. “7•31” debris flow hazards occurred at Diluo water-power construction areas in Xixi River Basin, Sichuan Province[J]. Journal of Mountain Science, 2010, 28(1): 116 − 122. (in Chinese with English abstract)

    [25] 曾琇舒. 雷波县白沙村滑坡—碎屑流发育特征及其成因机理研究[D]. 成都:成都理工大学,2019. [ZENG Xiushu. Study on the development characteristics and genetic mechanism of landslide-debris flow in Baisha Village,Leibo County[D]. Chengdu:Chengdu University of Technology,2019. (in Chinese with English abstract)]

    ZENG Xiushu. Study on the development characteristics and genetic mechanism of landslide-debris flow in Baisha Village, Leibo County[D]. Chengdu: Chengdu University of Technology, 2019. (in Chinese with English abstract)

    [26] 王德伟,林启飞,倪化勇,等. 孙水河流域阿坡洛滑坡成灾机理分析[J]. 四川地质学报,2016,36(1):114 − 117. [WANG Dewei,LIN Qifei,NI Huayong,et al. Genetic mechanism of the apoluo landslide in the Sunshui River Basin[J]. Acta Geologica Sichuan,2016,36(1):114 − 117. (in Chinese with English abstract)]

    WANG Dewei, LIN Qifei, NI Huayong, et al. Genetic mechanism of the apoluo landslide in the Sunshui River Basin[J]. Acta Geologica Sichuan, 2016, 36(1): 114 − 117. (in Chinese with English abstract)

    [27] 白永健,倪化勇,王运生,等. 喜德采书组“8•31”滑坡工程地质特征及运动过程[J]. 山地学报,2014,32(3):327 − 335. [BAI Yongjian,NI Huayong,WANG Yusheng,et al. Engineering geological characteristics and motor process of Caishu landslide in Xide of Sichuan,China[J]. Mountain Research,2014,32(3):327 − 335. (in Chinese with English abstract)]

    BAI Yongjian, NI Huayong, WANG Yusheng, et al. Engineering geological characteristics and motor process of Caishu landslide in Xide of Sichuan, China[J]. Mountain Research, 2014, 32(3): 327 − 335. (in Chinese with English abstract)

    [28] 铁永波,葛华,高延超,等. 二十世纪以来西南地区地质灾害研究历程与展望[J]. 沉积与特提斯地质,2022,42(4):653 − 665. [TIE Yongbo,GE Hua,GAO Yanchao,et al. Research course and prospect of geological disasters in southwest China since the 20th Century[J]. Sedimentary Geology and Tethyan Geology,2022,42(4):653 − 665. (in Chinese with English abstract)]

    TIE Yongbo, GE Hua, GAO Yanchao, et al. Research course and prospect of geological disasters in southwest China since the 20th Century[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(4): 653 − 665. (in Chinese with English abstract)

    [29] 白永健,铁永波,孟铭杰,等. 川西地区地质灾害发育特征与时空分布规律[J]. 沉积与特提斯地质,2022,42(4):666 − 674. [BAI Yongjian,TIE Yongbo,MENG Mingjie,et al. Development characteristics and temporal and spatial distribution law of geological disasters in western Sichuan[J]. Sedimentary Geology and Tethyan Geology,2022,42(4):666 − 674. (in Chinese with English abstract)]

    BAI Yongjian, TIE Yongbo, MENG Mingjie, et al. Development characteristics and temporal and spatial distribution law of geological disasters in western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(4): 666 − 674. (in Chinese with English abstract)

    [30] 徐伟,冉涛,田凯. 西南红层地区地质灾害发育规律与成灾模式——以云南彝良县为例[J]. 中国地质灾害与防治学报,2021,32(6):127 − 133. [XU Wei,RAN Tao,TIAN Kai. Developing law and disaster modes of geohazards in red bed region of southwestern China:A case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):127 − 133. (in Chinese with English abstract)]

    XU Wei, RAN Tao, TIAN Kai. Developing law and disaster modes of geohazards in red bed region of southwestern China: A case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 127 − 133. (in Chinese with English abstract)

    [31] 胡卸文,侯羿腾,王严,等. 火烧迹地土壤根系特征及其对抗剪强度的影响[J]. 水文地质工程地质,2019,46(5):106 − 112. [HU Xiewen,HOU Yiteng,WANG Yan,et al. Root characteristics and its influences on shear strength in burned areas[J]. Hydrogeology & Engineering Geology,2019,46(5):106 − 112. (in Chinese with English abstract)]

    HU Xiewen, HOU Yiteng, WANG Yan, et al. Root characteristics and its influences on shear strength in burned areas[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 106 − 112. (in Chinese with English abstract)

    [32] 韩金良,吴树仁,汪华斌. 地质灾害链[J]. 地学前缘,2007,14(6):11 − 23. [HAN Jinliang,WU Shuren,WANG Huabin. Preliminary study on geological hazard chains[J]. Earth Science Frontiers,2007,14(6):11 − 23. (in Chinese with English abstract)] DOI: 10.1016/S1872-5791(08)60001-9

    HAN Jinliang, WU Shuren, WANG Huabin. Preliminary study on geological hazard chains[J]. Earth Science Frontiers, 2007, 14(6): 11 − 23. (in Chinese with English abstract) DOI: 10.1016/S1872-5791(08)60001-9

    [33] 徐文杰,陈祖煜,何秉顺,等. 肖家桥滑坡堵江机制及灾害链效应研究[J]. 岩石力学与工程学报,2010,29(5):933 − 942. [XU Wenjie,CHEN Zuyu,HE Bingshun,et al. Research on river-blocking mechanism of Xiaojiaqiao landslide and disasters of chain effects[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):933 − 942. (in Chinese with English abstract)]

    XU Wenjie, CHEN Zuyu, HE Bingshun, et al. Research on river-blocking mechanism of Xiaojiaqiao landslide and disasters of chain effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 933 − 942. (in Chinese with English abstract)

图(13)  /  表(5)
计量
  • 文章访问数:  483
  • HTML全文浏览量:  63
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-23
  • 修回日期:  2023-10-11
  • 录用日期:  2023-10-16
  • 网络出版日期:  2023-12-04
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回