Basic characteristics and susceptibility evaluation of geological hazards in Shifang City, Sichuan Province
-
摘要:
大比例尺地质灾害精细化调查评价工作正逐渐开展,现有易发性评价成果与实际情况有出入,如何精准得到区域地质灾害易发性成果值得探究。文章以什邡市为例,基于斜坡单元逐坡开展现场调查工作并不断修正,依托调查成果进行主成分、相关性、多重共线性分析筛选出10个评价因子,通过信息量-逻辑回归模型对比分析栅格单元、斜坡单元易发性评价成果,最后以现场调查数据修编斜坡单元易发性评价结果。主要结论如下:(1)什邡市地质灾害整体规模较小,易发性整体上受曲率、植被覆盖率、道路影响最为明显;(2)栅格单元合理性及精度(AUC=0.876)均高于斜坡单元,但结果整体割裂琐碎难以运用,斜坡单元则存在高易发区较多及精度较差(AUC=0.825)的问题;(3)依托现场调查对斜坡单元易发性分区进行修编,得到高易发区面积占13.48%,中易发区面积占15.31%,低与非易发区面积占71.21%,降低了管控难度,精度与现场调查成果相吻合。研究成果及评价流程可指导当地风险管控工作,为同类型研究提供参考。
Abstract:The fine-scale investigation and evaluation of large-scale geological disasters are gradually being carried out. However, there are discrepancies between the existing susceptibility evaluation results and actual work. Exploring how to accurately obtain the susceptibility results of regional geological disasters is worth investigating. Taking Shifang City as an example, this study conducted field investigations based on slope units and continuously revised them. Based on the survey results, ten evaluation factors were selected through principal component analysis, correlation analysis and multicollinearity analysis. The information-logistic regression model is used to compare and analyze the susceptibility evaluation results of grid units and slope units. Finally, the susceptibility results of slope units were revised based on field survey data. The main conclusions are as follows: (1) The overall scale of geological disasters in Shifang City is relatively small, and susceptibility is mainly influenced by curvature, vegetation coverage, and roads. (2) The rationality and accuracy of grid units (AUC = 0.876 ) are higher than those of the slope unit. However, the results of grid units are fragmented and difficult to apply, while slope units have more high susceptibility areas and poor accuracy (AUC = 0.825). (3) Based on the field investigation, the susceptibility zoning of slope unit is revised. The proportions of high susceptibility, medium susceptibility, and low/non-susceptibility areas are 13.48%, 15.31%, and 71.21%, respectively, reducing the difficulty of control and matching the accuracy of field investigation results. The research results and evaluation process can guide local risk control work and provide references for similar studies.
-
0. 引言
四川省地质环境复杂,构造运动活跃[1 − 3],地震及极端降雨事件频发,使地质灾害风险区内仍赋存大量潜在地质灾害隐患,严重威胁山区人民生命财产安全及生态文明建设[4 − 6]。据自然资源部《全国地质灾害防治“十四五”规划》要求,将继续开展1∶5万地质灾害风险调查及1∶1万地质灾害调查,加强地质灾害成灾机理研究,掌握地灾隐患及潜在致灾体的结构特征等,为精准实施地质灾害风险管控和防治提供基础依据。什邡市暂未开展全市域的大比例尺精细化调查。现有的山区集镇等重点人口聚居区的地质灾害调查评价工作成果不能反映灾害的动态变化情况,急需加强地质灾害调(勘)查与风险管控。
目前国内针对地质灾害易发性评价工作取得了显著成果,可基于信息量[7 − 9]、层次分析[10 − 12]、逻辑回归[13 − 15]、频率比[15 − 16]等方法开展工作。同时火热的人工智能机器学习理论也广泛运用,包括人工神经网络[17 − 18]、支持向量机[19]、随机森林[20 − 21]等。此外多种方法耦合[22 − 24]分析亦在地质灾害防治工作中起到了重要作用。地质灾害易发性评价旨在建立地质灾害预测模型,并进行相应的空间预测[25 − 26],是开展地质灾害风险调查工作的重要基础。上述方法本质均是通过历史灾害数据构建数字矩阵,后基于数学分析进行易发性概率研究得到评价结果,但无论是哪种方法得到的区划分布均没有统一标准,结果多是连续的数值分布,只可适用于特定区域,同时对于现场的调查研究也较为缺乏,仅基于遥感解译等室内工作难以满足大比例尺地质灾害风险评价工作。
综上,本文以什邡市为例,开展地质灾害易发性评价:首先依据水文法[27],并结合灾害类型、斜坡结构等优化斜坡元;根据调查结果开展影响因素的主成分及相关性等分析工作;基于信息量-逻辑回归模型进行易发性评价,对比分析优化后的斜坡单元及栅格单元的评价精度,基于现场调查修编易发性评价成果,为什邡市地质灾害防治工作提供理论依据。
1. 数据来源与研究区地质环境概况
1.1 数据来源
本次研究运用数据有:(1)什邡市地质灾害点数据,主要来源于2021年“四川省什邡市地质灾害风险调查评价(1∶5万)项目”及现场调查与遥感解译;(2)1∶1万地形数据,来源于四川省测绘地理信息局;(3)行政区划及居民数据,来源于什邡市“三调”数据;(4)水系及地质数据(包括岩性、地质构造、降雨数据等),由什邡市自然资源与规划局提供。
1.2 研究区地质环境概况
什邡市位于四川盆地边缘及边缘山区,面积821.08 km2,地势北高南低,据《四川省斜坡地质灾害隐患风险详查(技术方法)》可知,山区属川西强烈隆起高山高原大区。
区内地质环境概述如下,地形地貌方面:全区以北川−茂市断裂为界,北部为高山深切割区,北川−茂市断裂以南至洛水−湔氐一带为侵蚀峰丛,属洼地峡谷低山区;洛水镇−湔氐镇到什邡最南边的马井镇−禾丰镇一带为平原丘陵地带;北部高山区及中、低山丘陵区内,已广泛推广退耕还林,植被发育,森林覆盖率高,地质灾害较为隐蔽。地层岩性方面:主要为须家河组(T3xj)砂岩、粉砂岩,莲花口组(J3l)砂岩、泥岩,遂宁组(J3sn)砂岩、粉砂岩,及第四系(Q)砂土、黏土、块碎石土等,是地质灾害发生的物质基础。气象水文方面:雨量充沛、水系发育,为地质灾害的发生提供了强大的水动力条件。其次地质构造与地震、采矿修路等人类工程活动等均对地质灾害有所影响。
综上,结合现场调查,考虑到什邡市发育的地质灾害基本发生在山地及中、深丘区,南部为平原地区,无斜坡地质灾害,北部国营林场为自然保护区无人类工程活动,故选取蓥华镇、洛水镇、湔氐镇作为研究区域(图1)。
2. 地质灾害调查
2.1 斜坡单元划分与特征分类
(1)斜坡单元划分
参照现有斜坡单元划分方法[27 − 28],以1∶
10000 精度地形线生成的底图为基础,采用水文法结合人工修正得到3130 个斜坡单元,同一斜坡单元修正原则如下:(1)地质环境及承灾模式具有一致性;(2)斜坡结构类型具有一致性;(3)斜坡单元划分一般以次级分水岭与沟谷为边界,考虑坡向等微地貌特征和单元间的衔接。修正后斜坡单元共3669 个,面积246 km2(图2)。(2)斜坡单元特征分类
据调查,斜坡结构上:以斜向坡为主,占总数的51.90%。其次为横向坡和逆向坡,数量分布较少,占比分别为23.05%、19.24%。近水平层状坡最少。坡向上:东向斜坡、南东向斜坡明显居多,主要受到南北向河流侵蚀影响,居住人口密集。其次南向斜坡和南西向、西向斜坡,北向和北东、北西向斜坡最少,总体而言规律性不明显。坡度上:斜坡平均坡度普遍在20°~30°,其次为31°~40°和11°~20°,0°~10°和>40°的斜坡最少。高差上:斜坡地形高差介于26~560 m。主要集中在100~300 m区间,占比67.23%。其次为51~100 m和301~400 m区间。0~50 m和>500 m区间斜坡最少,这是由于什邡山区构造侵蚀程度为中等。坡型上:以凹折型斜坡为主,占比73.75%;其次为复合型斜坡,占比12.02%;再次为凸型斜坡,占比9.82%;直线型斜坡和陡崖较少,占比分别为4.11%和0.30%。斜坡坡形以凹折型占绝对多数,单一的直线型、凸型、陡崖等均较少,主要原因什邡市地处盆山结合地带,地质构造作用强烈,侵蚀作用较为严重,在二者共同作用下,难以形成单一型的斜坡坡形。
2.2 地质灾害特征及分布发育规律
据四川省地质环境管理系统地质灾害基础数据库,全市共发育地质灾害点377处(表1),地质灾害分布密度为45.98处/100 km2。
表 1 什邡市地质灾害规模分布Table 1. Scale distribution of geological disasters in Shifang City/处 灾害类型 灾害规模 合计 大型 中型 小型 滑坡 0 16 213 229 崩塌 7 13 56 76 泥石流 0 16 56 72 (1)滑坡
滑坡是什邡市地质灾害中分布最为广泛的灾种,全市发育滑坡隐患点229处(图3—4)。滑坡多数为土质滑坡,多沿第四系松散堆积层内部差异界面或松散层与基岩接触面滑动。滑体物质多为斜坡体上的崩坡积、残坡积物多期次堆积形成的混杂堆积物,其结构松散,物质成分一般为块石土、碎石土、粉质粘土、黏土,在地形条件合适、降雨作用下易于产生开裂下滑。
(2)崩塌
全市发育崩塌隐患点76处,多沿道路分布,受道路开挖及矿山开采影响较为严重。多表现为局部的危岩单体发生崩落,崩落块体的方量相对较小,滚落距离较短,大多因坡体植被阻挡,或坡体上平缓地带的缓冲作用,停留在斜坡体上;但区内仍有部分崩塌位势较高,威胁较大(图4)。
(3)泥石流
什邡市植被覆盖良好,泥石流发育较少。据统计,全市有泥石流隐患点72处。其成灾模式为冲沟两侧斜坡上的土体失稳滑动,堵塞下方沟渠,进而发展形成泥石流;另一种成灾模式主要为短时集中降雨所激发,冲击侵蚀能力较强。此外还发育少量坡面泥石流,总体规模较小(图4)。
3. 地质灾害易发性评价
3.1 评价方法
(1)信息量模型
信息量模型基于野外调查,结合灾害空间分布计算各个评价因子对灾害发生的贡献度,以此预测评价区域地质灾害易发程度[7 − 9]。计算公式如下:
(1) 式中:
——研究区中地质单元总数; ——对应评价单元总数; ——评价因子 中含有灾害的单元数; ——研究区内包含评价因素 的单元数。由此得到某个因素
对地质灾害发生事件( )贡献的信息量, 为各因子对应信息量值。(2)Logistic逻辑回归计算权重
Logistic逻辑回归的运用前提是数据间共线性较低,需要进行相关性及多重共线性分析。是基于非线性多元统计方式的一种模型,通过建立因变量与自变量间多元回归分析,进而预测某一区域内某一事件发生概率[13 − 15],非常适合做地质灾害发生与否的二元回归分析。表达式如下:
(2) 式中:
——地质灾害发生概率; ~ ——逻辑回归系数; ~ ——自变量。3.2 评价因子选取及分析
(1)评价因子选取
结合现场调查,从内部因素考虑,什邡市发育地质灾害主要发生在山地及中、深丘区,可从坡度、坡高、坡型的角度进行研究。地层岩性是地质灾害活动形成的主体,岩性在空间上的各向异性显著影响着灾害特征,可从工程地质岩组角度进行分析。此外,地质构造控制了岩体的裂隙发育程度,良好的植被覆盖亦使得灾害更为隐蔽,以上因素均需考量。从外部因素考虑,什邡是汶川地震的重灾区之一,可选用地震动峰值加速度作为地震要素[29];降雨亦为什邡地质灾害的重要诱发因素,统计什邡市近10 a的降雨资料得平均最大24 h降雨量为207 mm,呈现出随着高程的增加逐渐增大的趋势,尤以蓥华镇西北部为甚;最后,人类工程活动扰动了斜坡稳定性,加大了地质灾害发生概率。
综上,初步选取高程、坡度、坡向、坡形、工程岩组、距断层距离、NDVI、地表粗糙度指数、地形湿度指数、地形起伏度、距河流距离、地震动峰值加速度、年均降雨量、道路距14个指标。
(2)主成分分析
主成分分析旨在通过降维方式方法从大量数据中筛选出影响度高的因素[30],首先对原始数据进行原始化处理,后计算出相关系数矩阵R及其特征值,最后计算综合得分系数。由表2可知,本次分析KMO为0.764,在0.7~1之间,适合做因子分析。
表 2 KMO和巴特利特检验Table 2. KMO and Bartlett testsKMO 取样适切性量数 0.764 巴特利特球形度检验 10195.041 10115.699 91 91 0 0 (3)相关性分析
相关性分析可在主成分分析的基础上,进一步分析选定影响因子间的相关密切程度,不考虑原始变量的随机分布程度,旨在检验影响因子之间的相互独立程度,本引文选取皮尔逊相关系数法[31]进行研究。由表3可以看出工程岩组与距断层距离、距河流距离、坡度及高程相关性系数超过了0.5,相关性较高。此外,地形起伏度与坡度、地表粗糙度等亦存在较高相关性。由于各个评价因子关系复杂,故还需通过多重共线性方法进一步分析。
表 3 评价因子相关性分析Table 3. Correlation analysis of evaluation factors指标 A B C D E F G H I J K L M N A 1 B −0.404 1 C 0.434 −0.151 1 D 0.796 −0.354 0.281 1 E 0.194 −0.137 0.0341 0.079 1 F 0.582 −0.276 0.838 0.374 0.407 1 G −0.401 0.318 −0.537 −0.273 −0.35 −0.566 1 H −0.625 0.724 −0.326 −0.406 −0.283 −0.482 0.396 1 I 0.709 −0.053 0.495 0.491 0.253 0.601 −0.361 −0.454 1 J 0.515 −0.276 0.952 0.334 0.436 0.871 −0.668 −0.445 0.517 1 K 0.261 −0.224 0.107 0.26 0.130 0.172 −0.281 −0.291 0.241 0.188 1 L −0.019 0.001 −0.033 −0.015 0.055 −0.019 −0.218 0.009 0.008 −0.024 0.063 1 M −0.513 0.925 −0.244 −0.400 −0.190 −0.384 0.378 0.807 −0.247 −0.37 −0.232 0.012 1 N 0.698 −0.29 0.391 0.700 0.160 0.424 −0.291 −0.528 0.696 0.377 0.291 −0.015 −0.353 1 注:A为工程岩组;B为距道路距离;C为地表粗糙度;D为地震动峰值加速度;E为NDVI;F为地形起伏度;G为地形湿度指数;H为距断层距离;I为高程;J为坡度;K为坡向;L-坡形;M-距河流距离;N-年均降雨量(下同)。 (3)多重共线性分析
在相关性分析基础上,进行多重共线性分析进一步查明相关性高的评价因子,运用VIF及TOL指标进行共线性诊断(表4)。
表 4 多重共线性诊断Table 4. Multicollinearity diagnosis序号 评价因子 VIF TOL 1 距道路距离 3.020 0.331 2 地表粗糙度 1.774 0.564 3 地震动峰值加速度 2.166 0.462 4 NDVI 1.234 0.810 5 地形湿度指数 1.813 0.551 6 距断层距离 3.536 0.283 7 高程 2.963 0.338 8 坡向 1.184 0.845 9 坡形 1.096 0.913 10 年均降雨量 3.132 0.319 剔除共线性程度较高的因子,即VIF指数均>2,该类指标具有一定重叠度。再次进行多重共线性分析得最终10个满足要求的评价因子(图5)。
3.3 易发性评价
(1)二级指标分级及信息量计算
针对连续型及离散型评价指标进行分级,统计各指标下地质灾害分布发育规律,基于GIS重分类工具进行分类处理,采用自然间断法进行分级,后基于式(1)得到各评价指标信息量(表5)。指标的分级需参照现场调查数据,细分各项指标,避免出现不合理情况。
表 5 评价因子信息量Table 5. Summary table of Evaluation factor information评价指标 二级分类 灾害点
个数/个灾害点
密度/(个·km−2)信息量 评价指标 二级分类 灾害点
个数/个灾害点
密度/(个·km−2)信息量 距道路距离/m 0~200 190 3.518 1.080 高程/m <700 7 0.0267 −2.414 200~400 71 1.577 0.278 700~900 124 0.7889 0.971 400~600 33 0.857 −0.332 900~ 1100 158 0.6503 0.778 600~800 37 1.154 −0.034 1100 ~1300 67 0.3590 0.184 800~ 1000 19 0.755 −0.458 1300 ~1500 17 0.1050 −1.045 > 1000 27 0.223 −1.677 > 1500 4 0.0159 −2.933 地震动峰值
加速度/g0.15 79 0.8093 −0.390 坡向 北 39 1.3838 0.147 0.2 298 1.3684 0.135 西北 31 1.3946 0.155 地表粗糙度 0~0.066 137 1.131 −0.054 东 67 1.4851 0.218 0.066~0.172 159 1.626 0.309 东北 58 1.6423 0.318 0.172~0.299 67 0.932 −0.248 平面 12 0.2457 −1.581 0.299~0.818 14 0.562 −0.754 南 58 1.3973 0.157 NDVI −0.528~0.416 14 0.594 −0.695 东南 66 1.3593 0.129 0.416~0.798 109 1.474 0.213 西南 25 0.9471 −0.232 0.798~0.923 254 1.160 −0.027 西 21 1.0790 −0.102 地形湿度指数 0~5 183 1.197 0.002 年均
降雨量/mm<600 13 1.111 0.025 5~10 148 1.631 0.312 600~800 224 1.182 −0.011 10~15 33 0.740 −0.478 800~ 1000 140 1.224 −0.072 >15 13 0.475 −0.922 1000 ~1200 1 0.0794 −2.711 距断层距离/m 0~ 1000 162 1.105 −0.078 1200 ~1400 109 1.1585 −0.031 1000 ~2000110 1.699 0.352 > 1400 183 1.4356 0.184 2000 ~3000 43 1.584 0.283 坡形 凸型坡 13 1.111 0.025 3000 ~4000 47 2.539 0.754 平面坡 224 1.182 −0.011 > 4000 15 0.256 −1.542 凹型坡 140 1.224 −0.072 (2)权重计算
随机生成200个非灾害点并选择200个灾害点,利用值提取至点工具赋予信息量值,通过Logistic逻辑回归分析得各评价指标对应权重(表5)。可以看出,显著性系数(sig)均小于0.5(表6),则本次评价样本显著有效,具有统计意义。将逻辑回归系数代入式(2)中,设逻辑回归表达式为
,则经过变化得地质灾害发生概率 的表达式表 6 评价因子逻辑回归分析Table 6. Logistic regression analysis of evaluation factors评价因子 β SE wald sig B 0.986 0.108 23.956 0.000 C 0.483 0.315 2.349 0.125 D 0.327 0.428 0.584 0.445 E 1.402 0.476 8.677 0.003 G −0.694 0.380 3.329 0.068 H 0.521 0.191 7.449 0.006 I 0.739 0.097 58.100 0.000 K 0.639 0.275 5.383 0.020 L 1.608 2.787 1.143 0.285 N −0.351 0.360 0.951 0.329 常量 0.021 0.132 1.346 0.317 (3) (4) (3)易发性评价结果
计算出修正后斜坡单元与栅格单元(像元尺寸10 m×10 m)地质灾害发生概率,利用自然间断法将结果区分为高、中、低与非易发四个区间(图6)。
斜坡单元:高、中易发区受人类活动影响较大,主要沿道路分布。此区间斜坡地质灾害特点是相对高差大且覆盖层厚,易在降雨及道路开挖等外部扰动下发生滑坡,同时覆盖层较薄出露砂岩粉砂岩等裂隙发育的岩质斜坡易在人类工程活动及降雨条件下产生崩塌。此外蓥华镇北部斜坡整体高差较为悬殊,坡面多覆盖第四系残坡积崩落块石,极端降雨及地震条件下则需防范泥石流的发生。低、非易发区位于植被茂密,受外部扰动少,整体稳定性较高的蓥华镇北部及中部无人山区,以及湔氐洛水镇部分区域与研究区南东侧第四系冲洪积平原。
栅格单元:栅格单元对空间进行了割裂,以相对独立的单元参与易发性评价,在地貌单元上的连续性较差,其跨越沟谷边界、不考虑地质要素的特征,需在实际运用中予以甄别。从结果可以看出高易发区仍主要沿着道路分布。除研究区北部外,中易发区主要分布在蓥华镇植被稀疏、地表粗糙度大的区域,其余指标亦符合客观认知。低、非易发区分布特征与斜坡单元几乎相同。
3.4 评价合理性与精度验证
(1)合理性验证
统计已发生灾害验证点落在不同评价单元中的个数及面积情况,用验证点在易发性分区个数占比(Gei)与各易发性分区面积占比(Sei)的比值(Rei)进行评判。Rei指数应随着易发性等级的升高而不断增大,且高、中易发区与低、非易发区的比值也愈大愈好。由图7可知,本次评价工作结果较为合理,各分区Rei指数区间差值大,符合要求,其中栅格单元表现更为优异,同时可以看出什邡市地质灾害整体易发程度相对较低。
(2)精度验证
为验证易发性评价预测趋势精度,运用ROC曲线对比分析修正后斜坡单元与栅格单元评价结果(图8),以AUC指标进行评判。结果显示栅格单元AUC指数为0.876,修正后斜坡单元AUC指数为0.825,均达到了精度要求且精度较高。从数值来看栅格单元精度更高,这是由于斜坡单元由数个栅格单元组成,面积远大于栅格,对灾害点附近的栅格易识别为非灾害点,同时分区统计时的类型选取也会影响评价精度。
从结果来看,两种评价单元相差不大,但栅格单元琐碎、独立的易发分区难以较好辅助实际工作。斜坡单元则存在由于包含较多栅格单元导致中高易发区较多且精度较差的问题。
4. 讨论
经上述工作,对什邡市地质灾害易发性评价得到了初步成果,其特点是高易发区过多,与现场调查存在一定出入。研究区北部山区高差大,地质灾害易发性理应较高,但该区域人类工程活动较少,且植被覆盖率高,故呈低易发。通溪河、中河一带人类工程活动较强,沿道路两侧坡体稳定性较差,部分灾害隐患被植被遮挡,威胁程度较高。小河流域一带属低山区,人员聚集,虽斜坡整体坡度较缓,但人类工程活动频繁,高易发区相对较多。湔氐、洛水镇属低山区,坡体岩性为砂岩、粉砂岩、泥岩等,易在水动力条件下发生滑坡崩塌灾害,地质灾害易发性受外部扰动影响较大。
为此结合现场调查结果对斜坡单元易发性成果进行修编,得到修编后研究区地质灾害易发性分区图(图9),其中高易发区面积占比13.48%,与现场调查结果较为吻合,精度较高。相较修正前斜坡单元(高易发区27.05%)与栅格单元(高易发区26.28%)评价成果更为精准,减少了防控难度,可有效指导当地地质灾害风险管控工作。
5. 结论
(1)什邡市共发育377处地质灾害,其中:滑坡299处,93%为小型,多为沿基覆界面滑动;崩塌76处,74%为小型,多发育在软硬互层坡体中;泥石流56处,78%为小型,均分布在蓥华镇。
(2)根据现场调查初步选取了14个影响因子,通过主成分、相关性、多重共线性分析最终筛选出10个评价指标,研究区地质灾害易发性整体上受坡形、植被覆盖率、道路影响最为明显。
(3)基于信息量-逻辑回归模型得到了斜坡单元及栅格单元易发性评价结果,通过Rei及AUC指标验证了评价成果,二者合理性及精度均达到了要求,其中栅格单元(高易发Rei=2.809,低易发Rei=0.069,AUC=0.876)效果更优。
(4)运用现场调查成果对斜坡单元易发性成果进行修编,其中高易发区面积占比13.48%,中易发区面积占比15.31%,低与非易发区面积占比71.21%,可有效指导当地地质灾害风险管控工作。
-
表 1 什邡市地质灾害规模分布
Table 1 Scale distribution of geological disasters in Shifang City
/处 灾害类型 灾害规模 合计 大型 中型 小型 滑坡 0 16 213 229 崩塌 7 13 56 76 泥石流 0 16 56 72 表 2 KMO和巴特利特检验
Table 2 KMO and Bartlett tests
KMO 取样适切性量数 0.764 巴特利特球形度检验 10195.041 10115.699 91 91 0 0 表 3 评价因子相关性分析
Table 3 Correlation analysis of evaluation factors
指标 A B C D E F G H I J K L M N A 1 B −0.404 1 C 0.434 −0.151 1 D 0.796 −0.354 0.281 1 E 0.194 −0.137 0.0341 0.079 1 F 0.582 −0.276 0.838 0.374 0.407 1 G −0.401 0.318 −0.537 −0.273 −0.35 −0.566 1 H −0.625 0.724 −0.326 −0.406 −0.283 −0.482 0.396 1 I 0.709 −0.053 0.495 0.491 0.253 0.601 −0.361 −0.454 1 J 0.515 −0.276 0.952 0.334 0.436 0.871 −0.668 −0.445 0.517 1 K 0.261 −0.224 0.107 0.26 0.130 0.172 −0.281 −0.291 0.241 0.188 1 L −0.019 0.001 −0.033 −0.015 0.055 −0.019 −0.218 0.009 0.008 −0.024 0.063 1 M −0.513 0.925 −0.244 −0.400 −0.190 −0.384 0.378 0.807 −0.247 −0.37 −0.232 0.012 1 N 0.698 −0.29 0.391 0.700 0.160 0.424 −0.291 −0.528 0.696 0.377 0.291 −0.015 −0.353 1 注:A为工程岩组;B为距道路距离;C为地表粗糙度;D为地震动峰值加速度;E为NDVI;F为地形起伏度;G为地形湿度指数;H为距断层距离;I为高程;J为坡度;K为坡向;L-坡形;M-距河流距离;N-年均降雨量(下同)。 表 4 多重共线性诊断
Table 4 Multicollinearity diagnosis
序号 评价因子 VIF TOL 1 距道路距离 3.020 0.331 2 地表粗糙度 1.774 0.564 3 地震动峰值加速度 2.166 0.462 4 NDVI 1.234 0.810 5 地形湿度指数 1.813 0.551 6 距断层距离 3.536 0.283 7 高程 2.963 0.338 8 坡向 1.184 0.845 9 坡形 1.096 0.913 10 年均降雨量 3.132 0.319 表 5 评价因子信息量
Table 5 Summary table of Evaluation factor information
评价指标 二级分类 灾害点
个数/个灾害点
密度/(个·km−2)信息量 评价指标 二级分类 灾害点
个数/个灾害点
密度/(个·km−2)信息量 距道路距离/m 0~200 190 3.518 1.080 高程/m <700 7 0.0267 −2.414 200~400 71 1.577 0.278 700~900 124 0.7889 0.971 400~600 33 0.857 −0.332 900~ 1100 158 0.6503 0.778 600~800 37 1.154 −0.034 1100 ~1300 67 0.3590 0.184 800~ 1000 19 0.755 −0.458 1300 ~1500 17 0.1050 −1.045 > 1000 27 0.223 −1.677 > 1500 4 0.0159 −2.933 地震动峰值
加速度/g0.15 79 0.8093 −0.390 坡向 北 39 1.3838 0.147 0.2 298 1.3684 0.135 西北 31 1.3946 0.155 地表粗糙度 0~0.066 137 1.131 −0.054 东 67 1.4851 0.218 0.066~0.172 159 1.626 0.309 东北 58 1.6423 0.318 0.172~0.299 67 0.932 −0.248 平面 12 0.2457 −1.581 0.299~0.818 14 0.562 −0.754 南 58 1.3973 0.157 NDVI −0.528~0.416 14 0.594 −0.695 东南 66 1.3593 0.129 0.416~0.798 109 1.474 0.213 西南 25 0.9471 −0.232 0.798~0.923 254 1.160 −0.027 西 21 1.0790 −0.102 地形湿度指数 0~5 183 1.197 0.002 年均
降雨量/mm<600 13 1.111 0.025 5~10 148 1.631 0.312 600~800 224 1.182 −0.011 10~15 33 0.740 −0.478 800~ 1000 140 1.224 −0.072 >15 13 0.475 −0.922 1000 ~1200 1 0.0794 −2.711 距断层距离/m 0~ 1000 162 1.105 −0.078 1200 ~1400 109 1.1585 −0.031 1000 ~2000110 1.699 0.352 > 1400 183 1.4356 0.184 2000 ~3000 43 1.584 0.283 坡形 凸型坡 13 1.111 0.025 3000 ~4000 47 2.539 0.754 平面坡 224 1.182 −0.011 > 4000 15 0.256 −1.542 凹型坡 140 1.224 −0.072 表 6 评价因子逻辑回归分析
Table 6 Logistic regression analysis of evaluation factors
评价因子 β SE wald sig B 0.986 0.108 23.956 0.000 C 0.483 0.315 2.349 0.125 D 0.327 0.428 0.584 0.445 E 1.402 0.476 8.677 0.003 G −0.694 0.380 3.329 0.068 H 0.521 0.191 7.449 0.006 I 0.739 0.097 58.100 0.000 K 0.639 0.275 5.383 0.020 L 1.608 2.787 1.143 0.285 N −0.351 0.360 0.951 0.329 常量 0.021 0.132 1.346 0.317 -
[1] 铁永波,张宪政,卢佳燕,等. 四川省泸定县Ms6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质,2022,49(6):1 − 12. [TIE Yongbo,ZHANG Xianzheng,LU Jiayan,et al. Characteristics of geological hazards and it’s mitigations of the Ms6.8 earthquake in Luding County,Sichuan Province[J]. Hydrogeology & Engineering Geology,2022,49(6):1 − 12. (in Chinese with English abstract)] TIE Yongbo, ZHANG Xianzheng, LU Jiayan, et al. Characteristics of geological hazards and it’s mitigations of the Ms6.8 earthquake in Luding County, Sichuan Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 1 − 12. (in Chinese with English abstract)
[2] 邓乃尔,徐浩,邓虎成,等. 断裂系统对现今地应力扰动特征研究——以四川盆地泸州北区深层页岩气为例[J/OL]. 中国地质, 2024 (2024-02-27 2024-09-06]. https://kns.cnki.net/kcms/detail/11.1167.p.20240226.1529.002.html. [DENG Naier,XU Hao,DENG Hucheng,et al. Characteristics of fracture system disturbance on presentday geostress:An example of deep shale gas in the North Luzhou district, Sichuan Basin[J/OL]. Geology in China, 2024 (2024-02-27) [2024-09-06]. https://kns.cnki.net/kcms/detail/11.1167.p.20240226.1529.002.html. (in Chinese with English abstract)]
[3] 范宣梅,王欣,戴岚欣,等. 2022年Ms6.8级泸定地震诱发地质灾害特征与空间分布规律研究[J]. 工程地质学报,2022,30(5):1504 − 1516. [FAN Xuanmei,WANG Xin,DAI Lanxin,et al. Characteristics and spatial distribution pattern of Ms6.8 Luding earthquake occurred on September 5,2022[J]. Journal of Engineering Geology,2022,30(5):1504 − 1516. (in Chinese with English abstract)] FAN Xuanmei, WANG Xin, DAI Lanxin, et al. Characteristics and spatial distribution pattern of Ms6.8 Luding earthquake occurred on September 5, 2022[J]. Journal of Engineering Geology, 2022, 30(5): 1504 − 1516. (in Chinese with English abstract)
[4] 张群,易靖松,张勇,等. 西南山区县域单元的地质灾害风险评价——以怒江流域泸水市为例[J]. 自然灾害学报,2022,31(5):212 − 221. [ZHANG Qun,YI Jingsong,ZHANG Yong,et al. Geohazard risk assessment about county units in southwest mountainous areas of China:Take Lushui County of Nujiang River Basin as an example[J]. Journal of Natural Disasters,2022,31(5):212 − 221. (in Chinese with English abstract)] ZHANG Qun, YI Jingsong, ZHANG Yong, et al. Geohazard risk assessment about county units in southwest mountainous areas of China: Take Lushui County of Nujiang River Basin as an example[J]. Journal of Natural Disasters, 2022, 31(5): 212 − 221. (in Chinese with English abstract)
[5] 刘佳,郭海燕,邓国卫,等. 川藏铁路四川段沿线诱发地质灾害降水阈值研究[J]. 灾害学,2022,37(1):83 − 91. [LIU Jia,GUO Haiyan,DENG Guowei,et al. Study on precipitation threshold of geological disasters along Sichuan section of Sichuan-Tibet railway[J]. Journal of Catastrophology,2022,37(1):83 − 91. (in Chinese with English abstract)] LIU Jia, GUO Haiyan, DENG Guowei, et al. Study on precipitation threshold of geological disasters along Sichuan section of Sichuan-Tibet railway[J]. Journal of Catastrophology, 2022, 37(1): 83 − 91. (in Chinese with English abstract)
[6] 蒋涛,崔圣华,许向宁,等. 基于遥感解译的典型强震区泥石流物源发育及演化——以四川都汶高速沿线为例[J]. 地质通报,2024,43(7):1243 − 1254. [JIANG Tao,CUI Shenghua,XU Xiangning,et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing: A case study of the Sichuan Duwen expressway[J]. Geological Bulletin of China,2024,43(7):1243 − 1254. (in Chinese with English abstract)] JIANG Tao, CUI Shenghua, XU Xiangning, et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing: A case study of the Sichuan Duwen expressway[J]. Geological Bulletin of China, 2024, 43(7): 1243 − 1254. (in Chinese with English abstract)
[7] 樊芷吟,苟晓峰,秦明月,等. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报,2018,26(2):340 − 347. [FAN Zhiyin,GOU Xiaofeng,QIN Mingyue,et al. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology,2018,26(2):340 − 347. (in Chinese with English abstract)] FAN Zhiyin, GOU Xiaofeng, QIN Mingyue, et al. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology, 2018, 26(2): 340 − 347. (in Chinese with English abstract)
[8] 张玘恺,凌斯祥,李晓宁,等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报,2020,39(8):1595 − 1610. [ZHANG Qikai,LING Sixiang,LI Xiaoning,et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County,Sichuan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1595 − 1610. (in Chinese with English abstract)] ZHANG Qikai, LING Sixiang, LI Xiaoning, et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County, Sichuan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1595 − 1610. (in Chinese with English abstract)
[9] 栗泽桐,王涛,周杨,等. 基于信息量、逻辑回归及其耦合模型的滑坡易发性评估研究:以青海沙塘川流域为例[J]. 现代地质,2019,33(1):235 − 245. [LI Zetong,WANG Tao,ZHOU Yang,et al. Landslide susceptibility assessment based on information value model,logistic regression model and their integrated model:A case in Shatang River Basin,Qinghai Province[J]. Geoscience,2019,33(1):235 − 245. (in Chinese with English abstract)] LI Zetong, WANG Tao, ZHOU Yang, et al. Landslide susceptibility assessment based on information value model, logistic regression model and their integrated model: A case in Shatang River Basin, Qinghai Province[J]. Geoscience, 2019, 33(1): 235 − 245. (in Chinese with English abstract)
[10] 许冲,戴福初,姚鑫,等. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报,2009,28(增刊2):3978 − 3985. [XU Chong,DAI Fuchu,YAO Xin,et al. Evaluation of landslide susceptibility in Wenchuan earthquake area based on analytic hierarchy process supported by GIS[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(Sup 2):3978 − 3985. (in Chinese with English abstract)] XU Chong, DAI Fuchu, YAO Xin, et al. Evaluation of landslide susceptibility in Wenchuan earthquake area based on analytic hierarchy process supported by GIS[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup 2): 3978 − 3985. (in Chinese with English abstract)
[11] 刘宇恒,邓辉,熊倩莹. 基于层次分析法的茂县斜坡地质灾害易发性评价[J]. 长江科学院院报,2017,34(5):31 − 35. [LIU Yuheng,DENG Hui,XIONG Qianying. AHP-based evaluation of slope geo-hazard susceptibility of Maoxian County,Sichuan,China[J]. Journal of Yangtze River Scientific Research Institute,2017,34(5):31 − 35. (in Chinese with English abstract)] LIU Yuheng, DENG Hui, XIONG Qianying. AHP-based evaluation of slope geo-hazard susceptibility of Maoxian County, Sichuan, China[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(5): 31 − 35. (in Chinese with English abstract)
[12] 李志国,徐涛,刘永杰,等. 露天矿边坡稳定性的层次分析-模糊综合评价耦合分析[J]. 中国地质灾害与防治学报,2024,35(1):116 − 123. [LI Zhiguo,XU Tao,LIU Yongjie,et al. Open-pit mine slopes stability analysis based on analytic hierarchy process-fuzzy comprehensive evaluation model[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):116 − 123. (in Chinese with English abstract)] LI Zhiguo, XU Tao, LIU Yongjie, et al. Open-pit mine slopes stability analysis based on analytic hierarchy process-fuzzy comprehensive evaluation model[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 116 − 123. (in Chinese with English abstract)
[13] DEMIR G,AYTEKIN M,AKGÜN A,et al. A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods[J]. Natural Hazards,2013,65(3):1481 − 1506.
[14] JIANG Weiguo,RAO Pingzeng,CAO Ran,et al. Comparative evaluation of geological disaster susceptibility using multi-regression methods and spatial accuracy validation[J]. Journal of Geographical Sciences,2017,27(4):439 − 462.
[15] ADITIAN A,KUBOTA T,SHINOHARA Y. Comparison of GIS-based landslide susceptibility models using frequency ratio,logistic regression,and artificial neural network in a tertiary[J]. Geomorphology,2018,318:101 − 111. DOI: 10.1016/j.geomorph.2018.06.006
[16] 郭子正,殷坤龙,黄发明,等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报,2019,38(2):287 − 300. [GUO Zizheng,YIN Kunlong,HUANG Faming,et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(2):287 − 300. (in Chinese with English abstract)] GUO Zizheng, YIN Kunlong, HUANG Faming, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 287 − 300. (in Chinese with English abstract)
[17] GORSEVSKI P V,BROWN M K,PANTER K,et al. Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach:A case study in the Cuyahoga Valley National Park,Ohio[J]. Landslides,2016,13(3):467 − 484.
[18] 田乃满,兰恒星,伍宇明,等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报,2020,22(12):2304 − 2316. [TIAN Naiman,LAN Hengxing,WU Yuming,et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science,2020,22(12):2304 − 2316. (in Chinese with English abstract)] TIAN Naiman, LAN Hengxing, WU Yuming, et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science, 2020, 22(12): 2304 − 2316. (in Chinese with English abstract)
[19] KAVZOGLU T,SAHIN E K,COLKESEN I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis,support vector machines,and logistic regression[J]. Landslides,2014,11(3):425 − 439.
[20] 吴润泽,胡旭东,梅红波,等. 基于随机森林的滑坡空间易发性评价——以三峡库区湖北段为例[J]. 地球科学,2021,46(1):321 − 330. [WU Runze,HU Xudong,MEI Hongbo,et al. Spatial susceptibility assessment of landslides based on random forest:A case study from Hubei section in the Three Gorges Reservoir Area[J]. Earth Science,2021,46(1):321 − 330. (in Chinese with English abstract)] WU Runze, HU Xudong, MEI Hongbo, et al. Spatial susceptibility assessment of landslides based on random forest: A case study from Hubei section in the Three Gorges Reservoir Area[J]. Earth Science, 2021, 46(1): 321 − 330. (in Chinese with English abstract)
[21] 刘帅,朱杰勇,杨得虎,等. 基于斜坡单元与随机森林模型的元阳县崩滑地质灾害易发性评价[J]. 中国地质灾害与防治学报,2023,34(4):144 − 150. [LIU Shuai,ZHU Jieyong,YANG Dehu,et al. Evaluation of geological hazard susceptibility of collapse and landslide in Yuanyang County using slope units and random forest modeling[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):144 − 150. (in Chinese with English abstract)] LIU Shuai, ZHU Jieyong, YANG Dehu, et al. Evaluation of geological hazard susceptibility of collapse and landslide in Yuanyang County using slope units and random forest modeling[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 144 − 150. (in Chinese with English abstract)
[22] 李文彬,范宣梅,黄发明,等. 不同环境因子联接和预测模型的滑坡易发性建模不确定性[J]. 地球科学,2021,46(10):3777 − 3795. [LI Wenbin,FAN Xuanmei,HUANG Faming,et al. Uncertainties of landslide susceptibility modeling under different environmental factor connections and prediction models[J]. Earth Science,2021,46(10):3777 − 3795. (in Chinese with English abstract)] LI Wenbin, FAN Xuanmei, HUANG Faming, et al. Uncertainties of landslide susceptibility modeling under different environmental factor connections and prediction models[J]. Earth Science, 2021, 46(10): 3777 − 3795. (in Chinese with English abstract)
[23] 王世宝,庄建琦,樊宏宇,等. 基于频率比与集成学习的滑坡易发性评价——以金沙江上游巴塘—德格河段为例[J]. 工程地质学报,2022,30(3):817 − 828. [WANG Shibao,ZHUANG Jianqi,FAN Hongyu,et al. Evaluation of landslide susceptibility based on frequency ratio and ensemble learning:Taking the Batang-Dege section in the upstream of Jinsha River as an example[J]. Journal of Engineering Geology,2022,30(3):817 − 828. (in Chinese with English abstract)] WANG Shibao, ZHUANG Jianqi, FAN Hongyu, et al. Evaluation of landslide susceptibility based on frequency ratio and ensemble learning: Taking the Batang-Dege section in the upstream of Jinsha River as an example[J]. Journal of Engineering Geology, 2022, 30(3): 817 − 828. (in Chinese with English abstract)
[24] 姜晓玲,李莹,肖诗荣. 基于I-ABC-LightGBM耦合模型的长阳县地质灾害易发性评价[J/OL]. 地质通报, 2024 (2024-09-14) [2024-10-29]. https://kns.cnki.net/kcms/detail/11.4648.P.20240914.1100.002.html. [JIANG Xiaoling, LI Ying, XIAO Shirong. Evaluation of Geological Hazard Susceptibility in Changyang County Based on I-ABC-LightGBM Coupled Model [J/OL]. Geological Bulletin of China, 2024 (2024-09-14) [2024-10-29]. https://kns.cnki.net/kcms/detail/11.4648.P.20240914.1100.002.html. (in Chinese with English abstract)] JIANG Xiaoling, LI Ying, XIAO Shirong. Evaluation of Geological Hazard Susceptibility in Changyang County Based on I-ABC-LightGBM Coupled Model [J/OL]. Geological Bulletin of China, 2024 (2024-09-14) [2024-10-29]. https://kns.cnki.net/kcms/detail/11.4648.P.20240914.1100.002.html. (in Chinese with English abstract)
[25] CARRARA A,CARDINALI M,DETTI R,et al. GIS techniques and statistical models in evaluating landslide hazard[J]. Earth Surface Processes and Landforms,1991,16(5):427 − 445.
[26] 宋德光,吴瑞安,马德芹,等. 四川泸定昔格达组滑坡灾害运动过程模拟分析[J]. 地质通报,2023,42(12):2185 − 2197. [SONG Deguang,WU Ruian,MA Deqin,et al. Simulation analysis of landslide disaster movement process in Xigeda Formation, Luding County, Sichuan Province[J]. Geological Bulletin of China,2023,42(12):2185 − 2197. (in Chinese with English abstract)] SONG Deguang, WU Ruian, MA Deqin, et al. Simulation analysis of landslide disaster movement process in Xigeda Formation, Luding County, Sichuan Province[J]. Geological Bulletin of China, 2023, 42(12): 2185 − 2197. (in Chinese with English abstract)
[27] 李星,杨赛,李远耀,等. 面向区域滑坡易发性精细化评价的改进斜坡单元法[J]. 地质科技通报,2023,42(3):81 − 92. [LI Xing,YANG Sai,LI Yuanyao,et al. Improved slope unit method for fine evaluation of regional landslide susceptibility[J]. Bulletin of Geological Science and Technology,2023,42(3):81 − 92. (in Chinese with English abstract)] LI Xing, YANG Sai, LI Yuanyao, et al. Improved slope unit method for fine evaluation of regional landslide susceptibility[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 81 − 92. (in Chinese with English abstract)
[28] 田述军,张珊珊,唐青松,等. 基于不同评价单元的滑坡易发性评价对比研究[J]. 自然灾害学报,2019,28(6):137 − 145. [TIAN Shujun,ZHANG Shanshan,TANG Qingsong,et al. Comparative study of landslide susceptibility assessment based on different evaluation units[J]. Journal of Natural Disasters,2019,28(6):137 − 145. (in Chinese with English abstract)] TIAN Shujun, ZHANG Shanshan, TANG Qingsong, et al. Comparative study of landslide susceptibility assessment based on different evaluation units[J]. Journal of Natural Disasters, 2019, 28(6): 137 − 145. (in Chinese with English abstract)
[29] 陈锡锐,刘虹强,杨剑红,等. 震裂滑移式崩塌运动特征分析:以张家沟2#崩塌为例[J]. 水利水电技术(中英文),2023,54(4):140 − 150. [CHEN Xirui,LIU Hongqiang,YANG Jianhong,et al. Analysis on the motion characteristics of seismic crack sliding collapse:Taking Zhangjiagou 2 collapse as an example[J]. Water Resources and Hydropower Engineering,2023,54(4):140 − 150. (in Chinese with English abstract)] CHEN Xirui, LIU Hongqiang, YANG Jianhong, et al. Analysis on the motion characteristics of seismic crack sliding collapse: Taking Zhangjiagou 2 collapse as an example[J]. Water Resources and Hydropower Engineering, 2023, 54(4): 140 − 150. (in Chinese with English abstract)
[30] 洪增林,李永红,张玲玉,等. 一种基于主成分分析法的区域性地质灾害危险性评估方法[J]. 灾害学,2020,35(1):118 − 124. [HONG Zenglin,LI Yonghong,ZHANG Lingyu,et al. A method of regional geological hazard assessment based on principle component analysis[J]. Journal of Catastrophology,2020,35(1):118 − 124. (in Chinese with English abstract)] HONG Zenglin, LI Yonghong, ZHANG Lingyu, et al. A method of regional geological hazard assessment based on principle component analysis[J]. Journal of Catastrophology, 2020, 35(1): 118 − 124. (in Chinese with English abstract)
[31] 尚敏,廖芬,马锐,等. 白家包滑坡变形与库水位、降雨相关性定量化分析研究[J]. 工程地质学报,2021,29(3):742 − 750. [SHANG Min,LIAO Fen,MA Rui,et al. Quantitative correlation analysis on deformation of Baijiabao landslide between rainfall and reservoir water level[J]. Journal of Engineering Geology,2021,29(3):742 − 750. (in Chinese with English abstract)] SHANG Min, LIAO Fen, MA Rui, et al. Quantitative correlation analysis on deformation of Baijiabao landslide between rainfall and reservoir water level[J]. Journal of Engineering Geology, 2021, 29(3): 742 − 750. (in Chinese with English abstract)