Changing law of shear strength of typical gravel soil in Qinba Mountain area and its application in the analysis of landslide mechanism in accumulation layers
-
摘要:
秦巴山区堆积层滑坡具有数量多、分布广、密度大和频次高的特点,常造成十分严重的灾害。文章以秦巴山区小岭镇岭丰村三组矿洞滑坡碎石土为研究对象,通过室内大型直剪试验对研究区碎石土进行了深入研究,探讨了不同含水率、不同干密度和不同法向应力下碎石土抗剪强度的变化规律,并基于室内试验成果采用Midas GTS NT有限元数值模拟软件对该滑坡发生前的边坡进行计算分析,模拟分析了该边坡在开挖后及开挖与降雨耦合两种工况下应力、位移和稳定性的变化情况,最后以此为依据总结了典型开挖诱发型堆积层滑坡的发生机理。通过数值模拟计算发现:人类工程活动即开挖坡脚和该地区出现的强降雨是导致滑坡的主要诱发因素;秦巴山区典型开挖诱发型滑坡的变形模式可被归纳为:牵引-蠕滑式。研究成果可为秦巴山区堆积层滑坡的防治提供一定参考。
Abstract:The mound landslides in the Qinba Mountain area are characterized by their large number, wide distribution, high density, and high frequency occurence, with excavation-induced landslides being particularly severe. This study focuses on the gravel soils from the mine hole landslide in the third group of Lingfeng Village, Xiaoling Town, Qinba Mountain area. Through large-scale direct shear tests conducted in the laboratory, an in-depth investigation of the gravelly soils in the study area was carried out. The variation rules of shear strength under different moisture contents, dry densities, and normal stresses were explored. Based on the results of these indoor tests, the Midas GTS NT finite element numerical simulation software was used to calculate and analyze the slope conditions before the occurrence of the landslide. Simulations were conducted to analyze the changes in stress, displacement, and stability of the slope after excavation and under two working conditions: post-excavation and post-excavation coupled with rainfall. Finally, the mechanism of typical excavation-induced landslides in stockpiles is summarized based on these findings. It was found by numerical simulation: human engineering activities, i.e., excavation of the toe of slopes and heavy rainfall occurring in the area, are the main triggering factors for landslides: the deformation pattern of typical excavation-induced landslides in the Qinba Mountains can be summarised as: traction-creep-slip type.The research results can provide valuable reference for the prevention and control of excavation-induced landslides in accumulation layers in the Qinba Mountain area.
-
Keywords:
- Qinba Mountain area /
- rubble soil /
- shear strength /
- landslide /
- occurrence mechanism
-
0. 引言
秦巴山区地质环境复杂,地壳运动强烈,岩土体结构类型多样,具有自然灾害种类多、强度大和成灾重等特点[1],因此该地区已经成为我国地质灾害发生最频繁的地区之一。在秦巴山区发生的地质灾害以滑坡、泥石流和崩塌为主,其中滑坡占比相对较高,依据前人调查成果可知[2 − 4],该区境内变质岩残坡积土分布广泛,该类土体在开挖坡脚等人类工程活动影响下,极易诱发浅层堆积层滑坡,该类滑坡占秦巴山区灾害总数的90%以上[5],是该地区内发生频率最高的地质灾害,已经严重危及人民群众的生命和财产安全,制约了当地经济社会的发展,因此亟需开展堆积层滑坡机理的研究,为当地减灾防治工作提供理论依据。
开挖坡脚会造成边坡的卸荷现象,严重影响边坡的稳定性[6 − 8]。学者们对边坡的开挖行为进行了大量研究,马春驰等[9]认为开挖导致边坡中的应力分布不平衡,土体中的软弱部位会产生屈服与变形现象。曹春山等[10]研究表明工程切坡开挖会恶化场地的地形地貌条件,改变了水文地质条件使得古土壤力学行为出现分化,导致了滑坡发生。陈涛等[11]认为开挖增大了坡体的临空面,坡体下部土体的抗滑作用减小,使土体产生卸荷效应。彭建兵等[12]通过研究人工开挖造成坡体应力卸荷来揭示滑坡应力场和位移场的改变与其变形破坏之间的关系。以上学者只是对开挖型滑坡的现象进行了分析,但在理论上的探讨还有所欠缺,因此对边坡开挖过程中的受力情况进行分析,总结其演化规律,并对开挖诱发型堆积层滑坡机理进行研究,对于此类滑坡的防治具有重要的意义[13 − 16]。
由于秦巴山区堆积层滑坡物质组成以碎石土为主,应开展大型剪切试验,该试验可以较好地反映堆积层碎石土真实的抗剪强度规律[17 − 19]。本研究选取柞水县小岭镇岭丰村三组矿洞滑坡碎石土进行了一系列大型直剪试验,研究了滑带土试样在不同法向应力、含水率和干密度下的剪切强度变化规律,在此基础上利用Midas GTS NX有限元软件对坡体开挖过程进行了模拟分析,通过室内试验与数值模拟相结合的方法,揭示了典型开挖诱发型堆积层滑坡的发生机理。
1. 滑坡概况
岭丰村三组矿洞滑坡位于秦巴山区柞水县小岭镇岭丰村三组,由当地居民开挖坡脚修建道路诱发,是典型的开挖型堆积层滑坡。该坡体于2015年3月被开挖,并发生了小型溜滑;2020年9月由于持续强降雨导致滑坡范围进一步扩大,发生整体失稳,该滑坡发生后,明显可以看到堆积层与基岩面的滑带有较大面积的擦痕,滑带土体为堆积层碎石土,湿度大,滑体堆积于坡脚呈松散状。
经野外调查,岭丰村三组矿洞滑坡平面形态呈圈椅状,滑动方向为130°(图1),平均坡度为37°。滑坡前缘高程
1013 m,后缘高程为1050 m,相对高差为37 m。滑坡前部宽36 m,后部宽23 m,面积约1252 m2,滑坡体积为3644 m3。该滑坡后缘陡坎发育拉张裂隙,最大长度约21 m,最大宽度约0.5 m,可见剥、坠落迹象,滑体上树木歪斜、倾倒,部分路基被冲毁。2. 室内直剪试验
2.1 试验样品
试验样品取自滑坡堆积体内的碎石土(图2),根据室内试验得到的碎石土天然干密度(ρd)为1.4 g/cm3,天然含水率为10.6%,饱和含水率为19.4%,通过颗分试验所获取的试样颗粒级配累计曲线如图3所示。
2.2 试验设备
采用TT-ADS型全自动单联直剪仪进行滑带土的直剪试验,样品室内试验剪切盒由剪切上盒和剪切下盒组成,如图4所示,剪切上盒、下盒的尺寸均为150 mm×150 mm×100 mm(长×宽×高)。
2.3 试验方案
干密度和含水率是影响碎石土剪切强度的主要因素,本文试验设计了一系列考虑不同干密度(1.3,1.4,1.5 g/cm3)和不同含水率下,5%、10.6%(天然)、15%、19.4%(饱和)的剪切试验,用以探索两种因素对碎石土剪切强度的影响规律,具体的试验方案见表1所示。制样过程中,根据剪切盒的尺寸以及干密度的大小,量取相应重量的碎石土,分3次装填压样以保障此干密度下样品的压实程度。
表 1 本次试验方案Table 1. Large-scale direct shear test program试样编号 含水率/% 干密度/(g·cm−3) S01 5.0 1.5 S02 10.6 1.5 S03 15.0 1.5 S04 19.4 1.5 S05 5.0 1.4 S06 10.6 1.4 S07 15.0 1.4 S08 19.4 1.4 S09 5.0 1.4 S10 10.6 1.3 S11 15.0 1.3 S12 19.4 1.3 根据滑带深度、土的容重以及试验仪器的实际情况,设定试验法向压力(σ)分别为100,200,300 kPa,考虑不同含水率和不同干密度组合,共36组剪切试验。试验的剪切速率设置为0.8 mm/min,最大剪切位移设置为25 mm,剪力控制设定为恒速,试验数据时间存储间隔2 s。
3. 试验结果分析
3.1 含水率对碎石土剪切强度影响规律
图5是相同干密度、不同含水率下碎石土剪切应力随剪切位移变化的关系曲线,可见随着剪切位移的增加剪切应力呈不断增大趋势,同时不同含水率下的剪切应力与剪切位移曲线基本上均呈现出应变硬化的特征。当剪切位移较小时,剪切应力与剪切位移呈线性增长的趋势,随着剪切位移的增加,曲线的增长速率变缓,但总体上仍呈现增大的趋势。参考规范[20],本文剪切强度试验结果取应变达到12%对应的剪切应力值。由于不同含水率(ω)下的直剪曲线变化规律一致,故本文选择ω=10.6%的情况进行分析,当法向应力从200 kPa增加到300 kPa时,剪切应力峰值(τMax)从136.8 kPa增加到197.9 kPa,增加了44.66%。这主要是由于在法向应力作用下土体被压实,土颗粒之间的接触密实、土颗粒之间的摩擦增大,从而导致剪切时阻力增大,故表现出剪切应力峰值随着法向应力的增加而增大。
相同干密度、不同含水率下的剪切应力峰值如图6所示,可以看出在相同法向应力下,不同含水率下的剪切应力峰值是随着含水率的增加而逐渐降低,而抗剪强度降低的幅度随着法向应力的增大而增大。当含水率为定值时,剪切应力的峰值随着法向应力的增大而增大。
根据库伦公式得到在相同干密度下各试样的黏聚力(c)和内摩擦角(φ)与含水率的关系如图7所示,随着试样含水率增大,黏聚力始终呈下降趋势,但下降幅度却有明显减小(含水率从5%增加至10.6%黏聚力下降了4 kPa,而含水率从15%增加至19.4%黏聚力只下降了1.4 kPa)。这是由于随着含水率的增加,试样中的碎石土中的粉质黏土土颗粒间胶结程度减小[21],导致试样的黏聚力下降。而在试样饱和或接近饱和状态时,土颗粒间胶结作用大幅度减小。同样,试样的φ也随着含水率的增加呈下降趋势,含水率越大,水分起到润滑作用,土颗粒间摩擦力减小,咬合作用减小。
3.2 干密度对碎石土剪切强度影响规律
在探究干密度对碎石土剪切强度影响规律时,保持样品含水率不变,为10.6%(天然含水率),以排除含水率对试验结果的影响。图8是不同干密度下碎石土剪切应力随剪切位移变化的关系曲线,整体上剪切应力随着剪切位移的增加而不断增大,不同干密度下的剪切应力与剪切位移曲线可分为两个阶段,第一阶段为线性增长期,其剪切位移不超过1.5 mm,主要由于土体在最初阶段抵抗相对位移所产生。在此期间,剪切应力迅速增加,但持续时间较短;第二阶段为非线性增长阶段,该阶段的剪切应力随剪切位移增长的速率与第一阶段相比明显变缓,总体特征依旧是剪切应力随剪切位移的增加而增大,曲线表现出应变硬化的特征。
将不同干密度下各法向应力的峰值强度绘制到图9中,可以得出碎石土的峰值强度随着试样干密度的提高呈现出小幅度增长,但总体来说影响不大。此外,当碎石土干密度不变时,其峰值剪应力随法向应力的增加而增大。分析其原因:随着法向应力增大,试验盒中试样的体积变小,试样被逐渐压密,土体压实度发生改变从而导致剪切应力峰值增大。
根据库伦公式,可以得到各试样抗剪强度指标,并将黏聚力(c)和内摩擦角(φ)与含水率的关系绘制于图10,可知土体的黏聚力随干密度的增加而增加,其原因在于随着干密度的提高,土颗粒与砾石之间的咬合作用增强,而由此导致土颗粒与土颗粒、土颗粒与碎石之间错动困难,故在剪切过程中产生位移所需的阻力增大,因此表现出界面黏聚力随干密度的提高而增大的特征。
根据图10可以看出,试样的内摩擦角随着干密度的增加呈上升的趋势,这是由于干密度提高导致试验盒中的粗颗粒增多,相对密实度增加,剪切面上的颗粒之间的接触变紧密,它们之间摩擦力随之变大,故内摩擦角与干密度之间表现出正相关关系。
4. 滑坡变形机制分析
本文采用Midas GTS NX有限元数值软件根据实际地质剖面来模拟岭丰村三组矿洞滑坡从最初的坡体经人为开挖,再经历了暴雨等不同阶段中应力场、位移场和塑性区的发展趋势,然后通过强度折减法分别得出该坡体在不同阶段的稳定性系数,从而较真实地还原了该滑坡从初始阶段直至破坏的全过程,揭示了其在开挖坡脚和降雨作用下的变形与失稳机制。
4.1 滑坡计算参数及模型
采用Midas GTS NT数值软件对开挖卸荷和强降雨作用下滑坡位移以及应变特征进行数值模拟分析,并以强度折减法[22]为理论依据,对不同工况下的滑坡变形模式进行分析。建立好的模型如图11所示,模型高56 m,长145 m,共
2782 个单元,将滑坡区地层从上到下概化为三种材料:①碎石土层;②强风化层;③基岩层。边界条件设置为:模型底部边界限制其XY方向位移,左侧边界限制其X方向的位移,右侧边界限制其X方向的位移。4.2 模拟工况及参数
岭丰村三组矿洞滑坡主要运动模式为溜滑和局部变形,当滑坡的内动力条件发生改变后,该滑坡将进入滑动变形阶段,因此,本次研究主要分析以下2种工况:(1)根据现场实际开挖范围对模型进行开挖,未降雨。(2)对滑坡坡脚进行开挖,并以滑坡发生前的降雨量为依据,设定降雨强度为70 mm,降雨时长24 h。开挖工况下碎石土层的参数取样品天然含水率下的剪切强度试验成果(表2),开挖加降雨工况时,滑带碎石土取饱和工况下试验参数。
表 2 数值模拟参数Table 2. Numerical model parameters类型 重度
/(kN·m−3)泊松比 c/kPa φ/(°) E/MPa 碎石土层 21.2 0.32 25.2 31.1 100 滑带土(天然工况) 19.2 0.33 25.0 30.5 90 滑带土(饱和工况) 19.7 0.40 20.9 19.6 70 强风化层 23.3 0.30 50.0 35.0 200 基岩层 24.5 0.28 428.0 38.0 1000 4.3 模拟结果分析
经过计算和分析,从图12中可以看出,开挖后,变形主要发生在开挖位置的前缘,滑坡前缘沿着开挖形成的陡立面向下移动,最大变形量约为1.05 m。据对现场的调查和观察,开挖后的地形呈现出中心隆起的特征,同时开挖的边坡也出现了局部的小规模滑塌,与模拟结果相一致。坡体在经历过开挖之后,其稳定系数(FS)下降至1.043,表明坡体已经处于欠稳定状态。
图13为岭丰村三组矿洞滑坡开挖前后滑坡的最大剪应力云图。从数据分析结果可以明显看出,剪应力的数值为正值;并且随着滑坡体深度的增加,剪应力的数值也逐渐增大。在滑坡坡脚处,表现出较为明显的应力集中现象;而坡面处的开挖区域,则呈现出较为明显的应力变化。除了集中开挖区域之外,坡体其他部分的整体应力变化较为微小。这种情形与实际出现的滑坡破坏形式高度契合。
图14为小岭镇矿洞滑坡开挖过程中的塑性区变化云图。在滑坡的切坡过程中由于坡体前缘土体被移除,斜坡后部土体缺少支撑,塑性区域会逐渐扩大最终这种滑动趋势可能会导致牵引式滑坡,严重影响坡体的稳定性。但是,趋势的发展只能从侧面反映坡体的稳定状态,而塑性区域的产生或贯通并不意味着坡体一定会发生失稳。
开挖滑坡经降雨后的位移云图如图15所示,从该图中可以明显地发现,在降雨后开挖边坡上出现了一个呈圆弧状的变形集中带。相对于仅进行开挖时,滑体和滑带的剪切形变范围明显增大。滑带向下滑移的最大位移形变量集中在滑坡前缘区域。通过与开挖状态相比,降雨后滑体的变形范围和量值均有较大程度地增加,滑体运动表现出明显的牵引式特征。降雨后,滑坡的稳定性系数降至0.989,处于不稳定状态。
开挖与降雨耦合作用后滑坡塑性分区图如图16所示,从塑性区分布来看,开挖之后降雨的滑坡塑性破坏的面积,破坏程度都要比仅开挖的滑坡大,且塑性破坏最大的区域下移到了切坡层的坡脚处,由于滑体变形牵引以及滑带变形的影响,下覆地层(强风化层)也出现部分塑性区域。
将开挖与降雨耦合作用后数值模拟结果(图15—16)与野外实际(图2)对比发现:数值模拟中滑坡的位置、滑体土的方量与实际滑坡较吻合,且由降雨后滑坡的位移云图可知,滑坡变形最大的部位位于开挖边坡坡面,这与野外实际所发现的滑坡前缘、滑面以及滑坡中后缘出现张拉裂缝位置等现象较吻合,可见本文数值模拟结果较为准确地模拟了开挖和降雨共同作用下堆积层滑坡发生的破坏情况。
4.4 滑坡变形机理分析
通过对岭丰村三组矿洞滑坡的实地调研、室内试验以及数值模拟分析可以得出,该滑坡属于典型的牵引式滑坡,不正确的人类工程活动即开挖坡脚和强降雨是导致滑坡的主要诱发因素。
开挖坡脚后,斜坡前缘的有效抗滑力减少,这导致坡体的应力平衡状态发生改变[23 − 25],进而使得坡体前缘产生应力集中并发生小规模失稳事件(图12)。此外,斜坡上覆地层为结构较松散、透水性好的碎石土层,在强降雨条件下土体逐渐浸润饱和,根据前面大型直剪试验结果可知(图7),土体的抗剪强度指标随含水率的增加逐渐降低,且坡体变形量也逐渐增大。随着降雨作用,斜坡堆积层中逐渐形成一个呈圆弧状的剪切应变集中带(图15),即潜在滑带。当斜坡的形变量持续增大并达到临界状态时,斜坡前缘整体失稳并沿着滑带发生大规模滑塌。综上,该类滑坡的失稳过程为:开挖坡脚-坡体应力平衡改变-前缘失稳-降雨入渗-碎石土强度下降-潜在滑面产生-发生大规模滑塌。
5. 结论
(1)在相同法向应力的情况下,碎石土剪切应力峰值随含水率的增加而降低,随干密度的增加而增加;不同含水率下剪切应力与剪切位移曲线均呈现出应变硬化的特征;滑带土的黏聚力和内摩擦角随着含水率的增加而降低,随着干密度的增加而增大。
(2)通过数值模拟计算发现:人类工程活动即开挖坡脚和该地区出现的强降雨是导致滑坡的主要诱发因素;秦巴山区典型开挖诱发型滑坡的变形模式可被归纳为:牵引-蠕滑式。
(3)秦巴山区典型开挖诱发型堆积层滑坡的失稳机理可被归纳为:开挖坡脚-坡体应力平衡改变-前缘失稳-降雨入渗-碎石土强度下降-潜在滑面产生-发生大规模滑塌。
-
表 1 本次试验方案
Table 1 Large-scale direct shear test program
试样编号 含水率/% 干密度/(g·cm−3) S01 5.0 1.5 S02 10.6 1.5 S03 15.0 1.5 S04 19.4 1.5 S05 5.0 1.4 S06 10.6 1.4 S07 15.0 1.4 S08 19.4 1.4 S09 5.0 1.4 S10 10.6 1.3 S11 15.0 1.3 S12 19.4 1.3 表 2 数值模拟参数
Table 2 Numerical model parameters
类型 重度
/(kN·m−3)泊松比 c/kPa φ/(°) E/MPa 碎石土层 21.2 0.32 25.2 31.1 100 滑带土(天然工况) 19.2 0.33 25.0 30.5 90 滑带土(饱和工况) 19.7 0.40 20.9 19.6 70 强风化层 23.3 0.30 50.0 35.0 200 基岩层 24.5 0.28 428.0 38.0 1000 -
[1] 赵力行,范文,柴小庆,等. 秦巴山区地质灾害发育规律研究——以镇巴县幅为例[J]. 地质与资源,2020,29(2):187 − 195. [ZHAO Lixing,FAN Wen,CHAI Xiaoqing,et al. Study on the development pattern of geological hazards in the Qinba Mountain area:Take Zhenba County magnitude as an example[J]. Geology and Resources,2020,29(2):187 − 195. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1947.2020.02.011 ZHAO Lixing, FAN Wen, CHAI Xiaoqing, et al. Study on the development pattern of geological hazards in the Qinba Mountain area: Take Zhenba County magnitude as an example[J]. Geology and Resources, 2020, 29(2): 187 − 195. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1947.2020.02.011
[2] 周静静,张晓敏,赵法锁,等. 陕南秦巴山区地质灾害危险性评价研究[J]. 地质力学学报,2019,25(4):544 − 553. [ZHOU Jingjing,ZHANG Xiaomin,ZHAO Fasuo,et al. Study on the evaluation of geological hazard risk in Qinba Mountain area in southern Shaanxi[J]. Journal of Geomechanics,2019,25(4):544 − 553. (in Chinese with English abstract)] ZHOU Jingjing, ZHANG Xiaomin, ZHAO Fasuo, et al. Study on the evaluation of geological hazard risk in Qinba Mountain area in southern Shaanxi[J]. Journal of Geomechanics, 2019, 25(4): 544 − 553. (in Chinese with English abstract)
[3] 强菲,赵法锁,段钊. 陕南秦巴山区地质灾害发育及空间分布规律[J]. 灾害学,2015,30(2):193 − 198. [QIANG Fei,ZHAO Fasuo,DUAN Zhao. Development and spatial distribution pattern of geological hazards in Qinba Mountain area,southern Shaanxi[J]. Disaster Science,2015,30(2):193 − 198. (in Chinese with English abstract)] QIANG Fei, ZHAO Fasuo, DUAN Zhao. Development and spatial distribution pattern of geological hazards in Qinba Mountain area, southern Shaanxi[J]. Disaster Science, 2015, 30(2): 193 − 198. (in Chinese with English abstract)
[4] 陶宜权,范文,曹琰波,等. 秦巴山区浅表层滑坡灾害监测预警平台设计与实现[J/OL]. 灾害学,(2023-03-23)[2023-06-29]. [TAO Yiquan,FAN Wen,CAO Yanbo,et al. Design and implementation of a monitoring and early warning platform for shallow surface landslide hazards in the Qinba Mountains[J/OL]. Disaster Science,(2023-03-23)[2023-06-29]. http://kns.cnki.net/kcms/detail/61.1097.P.20230222.1702.002.html. (in Chinese with English abstract)] TAO Yiquan, FAN Wen, CAO Yanbo, et al. Design and implementation of a monitoring and early warning platform for shallow surface landslide hazards in the Qinba Mountains[J/OL]. Disaster Science, (2023-03-23)[2023-06-29]. http://kns.cnki.net/kcms/detail/61.1097.P.20230222.1702.002.html. (in Chinese with English abstract)
[5] 周广鹏. 秦巴山区浅表层土石混合体入渗机理试验研究[D]. 长安大学,2019. [ZHOU Guangpeng. Experimental study on infiltration mechanism of shallow surface soil-rock mixture in Qinba Mountain area[D]. Chang’an University,2019. (in Chinese with English abstract)] ZHOU Guangpeng. Experimental study on infiltration mechanism of shallow surface soil-rock mixture in Qinba Mountain area[D]. Chang’an University, 2019. (in Chinese with English abstract)
[6] 韩朝君,李国营,吴玮江,等. 静宁县田堡调蓄水池滑坡成因及稳定性分析[J]. 中国地质灾害与防治学报,2023,34(6):13 − 19. [HAN Chaojun, LI Guoying,WU Weijiang,et al. Causes and stability analysis of the landslide at Tianbao Reservoir in Jingning County, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):13 − 19. (in Chinese with English abstract)] HAN Chaojun, LI Guoying, WU Weijiang, et al. Causes and stability analysis of the landslide at Tianbao Reservoir in Jingning County, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 13 − 19. (in Chinese with English abstract)
[7] 董林鹭,李鹏,李永红,等. 高应力地下厂房顶拱开挖过程围岩力学响应与稳定性分析[J]. 岩石力学与工程学报,2023,42(5):1096 − 1109. [DONG Linlu,LI Peng,LI Yonghong,et al. Mechanical response and stability analysis of surrounding rock during excavation of top arch of high stress underground plant[J]. Journal of Rock Mechanics and Engineering,2023,42(5):1096 − 1109. (in Chinese with English abstract)] DONG Linlu, LI Peng, LI Yonghong, et al. Mechanical response and stability analysis of surrounding rock during excavation of top arch of high stress underground plant[J]. Journal of Rock Mechanics and Engineering, 2023, 42(5): 1096 − 1109. (in Chinese with English abstract)
[8] 黄润秋,林峰,陈德基. 岩质高边坡卸荷带形成及其工程性状研究[J]. 工程地质学报,2001(3):227 − 232. [HUANG Runqiu,LIN Feng,CHEN Deji. Study on the formation of rocky high slope unloading zone and its engineering properties[J]. Journal of Engineering Geology,2001(3):227 − 232. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2001.03.001 HUANG Runqiu, LIN Feng, CHEN Deji. Study on the formation of rocky high slope unloading zone and its engineering properties[J]. Journal of Engineering Geology, 2001(3): 227 − 232. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2001.03.001
[9] 马春驰,李天斌,陈国庆,等. 地下水与开挖作用下堆积层滑坡体滑动机制分析[J]. 工程地质学报,2013,21(6):878 − 884. [MA Chunchi,LI Tianbin,CHEN Guoqing,et al. Analysis of sliding mechanism of landslide under groundwater and excavation[J]. Journal of Engineering Geology,2013,21(6):878 − 884. (in Chinese with English abstract)] MA Chunchi, LI Tianbin, CHEN Guoqing, et al. Analysis of sliding mechanism of landslide under groundwater and excavation[J]. Journal of Engineering Geology, 2013, 21(6): 878 − 884. (in Chinese with English abstract)
[10] 曹春山,吴树仁,潘懋,等. 工程切坡诱发黄土滑坡成因机制研究[J]. 岩土力学,2016,37(4):1049 − 1060. [CAO Chunshan,WU Shuren,PAN Mao,et al. Causative mechanism of loess landslides induced by engineering cut slopes[J]. Geotechnics,2016,37(4):1049 − 1060. (in Chinese with English abstract)] CAO Chunshan, WU Shuren, PAN Mao, et al. Causative mechanism of loess landslides induced by engineering cut slopes[J]. Geotechnics, 2016, 37(4): 1049 − 1060. (in Chinese with English abstract)
[11] 陈涛,吴凤娇,张顺斌,等. 相邻基坑浅开挖引发石峰滑坡大变形原因分析[J]. 地下空间与工程学报,2019,15(S2):1009 − 1015. [CHEN Tao,WU Fengjiao,ZHANG Shunbin,et al. Analysis of the causes of large deformation of Shifeng landslide triggered by shallow excavation of adjacent foundation pit[J]. Journal of Underground Space and Engineering,2019,15(S2):1009 − 1015. (in Chinese with English abstract)] CHEN Tao, WU Fengjiao, ZHANG Shunbin, et al. Analysis of the causes of large deformation of Shifeng landslide triggered by shallow excavation of adjacent foundation pit[J]. Journal of Underground Space and Engineering, 2019, 15(S2): 1009 − 1015. (in Chinese with English abstract)
[12] 彭建兵,吴迪,段钊等. 典型人类工程活动诱发黄土滑坡灾害特征与致灾机理[J]. 西南交通大学学报,2016,51(5):971 − 980. [PENG Jianbing,WU Di,DUAN Zhao,et al. Characteristics and disaster-causing mechanism of loess landslide disasters induced by typical human engineering activities[J]. Journal of Southwest Jiaotong University,2016,51(5):971 − 980. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0258-2724.2016.05.021 PENG Jianbing, WU Di, DUAN Zhao, et al. Characteristics and disaster-causing mechanism of loess landslide disasters induced by typical human engineering activities[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 971 − 980. (in Chinese with English abstract) DOI: 10.3969/j.issn.0258-2724.2016.05.021
[13] 蒋涛,崔圣华,冉耀. 开挖和降雨耦合诱发滑坡机理分析——以四川万源前进广场滑坡为例[J]. 中国地质灾害与防治学报,2023,34(3):20 − 30. [JIANG Tao,CUI Shenghua,RAN Yao. Mechanism anal-ysis of landslide induced by coupling of excavation and rainfall:A case study of the landslide at Qianjin Square,Wanyuan,Sichuan[J]. Chinese Journal of Geological Hazards and Control,2023,34(3):20 − 30. (in Chinese with English abstract)] JIANG Tao, CUI Shenghua, RAN Yao. Mechanism anal-ysis of landslide induced by coupling of excavation and rainfall: A case study of the landslide at Qianjin Square, Wanyuan, Sichuan[J]. Chinese Journal of Geological Hazards and Control, 2023, 34(3): 20 − 30. (in Chinese with English abstract)
[14] 卢永兴,肖建章,许冲,等. 蓄水与施工作用下滑坡变形机制与稳定性分析[J]. 工程地质学报,2014,22(3):386 − 395. [LU Yongxing,XIAO Jianzhang,XU Chong,et al. Analysis of landslide deformation mechanism and stability under the action o-f water storage and construction[J]. Journal of Engineering Geology,2014,22(3):386 − 395. (in Chinese with English abstract)] LU Yongxing, XIAO Jianzhang, XU Chong, et al. Analysis of landslide deformation mechanism and stability under the action o-f water storage and construction[J]. Journal of Engineering Geology, 2014, 22(3): 386 − 395. (in Chinese with English abstract)
[15] 周孝鑫,谭钦文,林志果,等. 京广铁路K1219路基土质边坡深层滑移失稳机制与整治对策[J]. 地质科技通报,2022,41(6):85 − 94. [ZHOU Xiaoxin,TAN Qinwen,LIN Zhiguo,et al. Mechanism of deep slide instability and remediation countermeasures for K1219 roadbed soil side slope of Jingguang Railway[J]. Geological Science and Technology Bulletin,2022,41(6):85 − 94. (in Chinese with English abstract)] ZHOU Xiaoxin, TAN Qinwen, LIN Zhiguo, et al. Mechanism of deep slide instability and remediation countermeasures for K1219 roadbed soil side slope of Jingguang Railway[J]. Geological Science and Technology Bulletin, 2022, 41(6): 85 − 94. (in Chinese with English abstract)
[16] 刘宝山,张春鹏,寇林林,等. 黑龙江多宝山铜矿区韧性剪切变形时代及其对铜矿化改造的约束[J]. 地质通报,2024,43(6):885 − 895. [LIU Baoshan,ZHANG Chunpeng,KOU Linlin,et al. The age of ductile shear deformation and its constraint on Cu mineralization transformation in Duobaoshan Cu deposit, Heilongjiang Province[J]. Geological Bulletin of China,2024,43(6):885 − 895. (in Chinese with English abstract)] LIU Baoshan, ZHANG Chunpeng, KOU Linlin, et al. The age of ductile shear deformation and its constraint on Cu mineralization transformation in Duobaoshan Cu deposit, Heilongjiang Province[J]. Geological Bulletin of China, 2024, 43(6): 885 − 895. (in Chinese with English abstract)
[17] 江强强,徐杨青,王浩. 不同含石量条件下土石混合体剪切变形特征的试验研究[J]. 工程地质学报,2020,28(5):951 − 958. [JIANG Qiangqiang,XU Yangqing,WANG Hao. Experimental study on the shear deformation characteristics of soil-stone mixtures under different stone content conditions[J]. Journal of Engineering Geology,2020,28(5):951 − 958. (in Chinese with English abstract)] JIANG Qiangqiang, XU Yangqing, WANG Hao. Experimental study on the shear deformation characteristics of soil-stone mixtures under different stone content conditions[J]. Journal of Engineering Geology, 2020, 28(5): 951 − 958. (in Chinese with English abstract)
[18] 杨继红,董金玉,黄志全,等. 不同含石量条件下堆积体抗剪强度特性的大型直剪试验研究[J]. 岩土工程学报,2016,38(S2):161 − 166. [YANG Jihong,DONG Jinyu,HUANG Zhiquan,et al. Large-scale direct shear test study on shear strength characteristics of mounded bodies under different rock content conditions[J]. Journal of Geotechnical Engineering,2016,38(S2):161 − 166. (in Chinese with English abstract)] YANG Jihong, DONG Jinyu, HUANG Zhiquan, et al. Large-scale direct shear test study on shear strength characteristics of mounded bodies under different rock content conditions[J]. Journal of Geotechnical Engineering, 2016, 38(S2): 161 − 166. (in Chinese with English abstract)
[19] 陈书平,田作基,徐世东,等. 两种结构类型的走滑相关剪断裂带[J]. 地质通报,2024,43(1):13 − 19. [CHEN Shuping, TIAN Zuoji,XU Shidong,et al. Two structural types of shear fracture belts related to wrenches[J]. Geological Bulletin of China,2024,43(1):13 − 19. (in Chinese with English abstract)] CHEN Shuping, TIAN Zuoji, XU Shidong, et al. Two structural types of shear fracture belts related to wrenches[J]. Geological Bulletin of China, 2024, 43(1): 13 − 19. (in Chinese with English abstract)
[20] 交通运输部公路科学研究院. 公路土工试验规程:JTG 3430—2020[S]. 北京:人民交通出版社,2020. [Institute of Highway Science,Ministry of Transportation and Communications. Test methods of soils for highway engineering:JTG 3430—2020[S]. Beijing:People’s Transportation Press,2020. (in Chinese)] Institute of Highway Science, Ministry of Transportation and Communications. Test methods of soils for highway engineering: JTG 3430—2020[S]. Beijing: People’s Transportation Press, 2020. (in Chinese)
[21] 王剑,应春业,胡新丽,等. 浸泡作用下碎石土剪切强度衰减规律及机理[J]. 地质科技通报,2022,41(6):294 − 300. [WANG Jian,YING Chunye,HU Xinli,et al. Laws and mechanisms of shear strength attenuation of gravel soil under immersion[J]. Geoscience and Technology Bulletin,2022,41(6):294 − 300. (in Chinese with English abstract)] WANG Jian, YING Chunye, HU Xinli, et al. Laws and mechanisms of shear strength attenuation of gravel soil under immersion[J]. Geoscience and Technology Bulletin, 2022, 41(6): 294 − 300. (in Chinese with English abstract)
[22] 李庶林,赵睿鸣,彭府华,等. 基于强度折减法的高陡边坡滑坡治理稳定性分析[J]. 建筑科学与工程学报,2020,37(1):120 − 126. [LI Shulin,ZHAO Ruiming,PENG Fuhua,et al. Stability analysis of landslide management on high and steep slopes based on strength discounting method[J]. Journal of Building Science and Engineering,2020,37(1):120 − 126. (in Chinese with English abstract)] LI Shulin, ZHAO Ruiming, PENG Fuhua, et al. Stability analysis of landslide management on high and steep slopes based on strength discounting method[J]. Journal of Building Science and Engineering, 2020, 37(1): 120 − 126. (in Chinese with English abstract)
[23] 涂国祥,黄润秋. 降雨对路堤斜坡稳定性影响的时间效应[J]. 岩土力学,2015,36(S1):523 − 530. [TU Guoxiang,HUANG Runqiu. Time effect of rainfall on embankment slope stability[J]. Geotechnics,2015,36(S1):523 − 530. (in Chinese with English abstract)] TU Guoxiang, HUANG Runqiu. Time effect of rainfall on embankment slope stability[J]. Geotechnics, 2015, 36(S1): 523 − 530. (in Chinese with English abstract)
[24] 冉涛,陈浩,王羽珂,等. 工程开挖活动诱发堆积层滑坡变形机理及加固效果分析[J]. 地质与勘探,2022,58(6):1236 − 1251. [RAN Tao,CHEN Hao,WANG Yuke,et al. Analysis of the deformation mechanism and reinforcement effect of mound landslides induced by engineering excavation activities[J]. Geology and Exploration,2022,58(6):1236 − 1251. (in Chinese with English abstract)] RAN Tao, CHEN Hao, WANG Yuke, et al. Analysis of the deformation mechanism and reinforcement effect of mound landslides induced by engineering excavation activities[J]. Geology and Exploration, 2022, 58(6): 1236 − 1251. (in Chinese with English abstract)
[25] 毛正君,张瑾鸽,仲佳鑫,等. 梯田型黄土滑坡隐患发育特征与成因分析——以宁夏南部黄土丘陵区为例[J]. 中国地质灾害与防治学报,2022,33(6):142 − 152. [MAO Zhengjun,ZHANG Jinge,ZHONG Jiaxin,et al. Characteristics and causes of terraced loess landslides in the loess hilly area of southern Ningxia[J]. The Chinese Journal of Geological Hazards and Control,2022,33(6):142 − 152. (in Chinese with English abstract)] MAO Zhengjun, ZHANG Jinge, ZHONG Jiaxin, et al. Characteristics and causes of terraced loess landslides in the loess hilly area of southern Ningxia[J]. The Chinese Journal of Geological Hazards and Control, 2022, 33(6): 142 − 152. (in Chinese with English abstract)