ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

陕西榆林毛乌素沙漠南缘风积沙的湿陷规律及其影响因素

张曦, 骆建文, 潘俊义, 刘斌, 杨楠

张曦,骆建文,潘俊义,等. 陕西榆林毛乌素沙漠南缘风积沙的湿陷规律及其影响因素[J]. 中国地质灾害与防治学报,2024,35(4): 75-84. DOI: 10.16031/j.cnki.issn.1003-8035.202307023
引用本文: 张曦,骆建文,潘俊义,等. 陕西榆林毛乌素沙漠南缘风积沙的湿陷规律及其影响因素[J]. 中国地质灾害与防治学报,2024,35(4): 75-84. DOI: 10.16031/j.cnki.issn.1003-8035.202307023
ZHANG Xi,LUO Jianwen,PAN Junyi,et al. Collapse characteristics and influencing factors of wind-blown sands in the southern margin of Mu Us Desert, Yulin, Shaanxi Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4): 75-84. DOI: 10.16031/j.cnki.issn.1003-8035.202307023
Citation: ZHANG Xi,LUO Jianwen,PAN Junyi,et al. Collapse characteristics and influencing factors of wind-blown sands in the southern margin of Mu Us Desert, Yulin, Shaanxi Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4): 75-84. DOI: 10.16031/j.cnki.issn.1003-8035.202307023

陕西榆林毛乌素沙漠南缘风积沙的湿陷规律及其影响因素

基金项目: 长庆工程设计有限公司资助项目(CEDC-2021-026)
详细信息
    作者简介:

    张 曦(1989—),男,陕西西安人,工程地质专业,硕士研究生,工程师,主要从事岩土工程勘察设计及相关科研工作。E-mail:148374641@qq.com

    通讯作者:

    杨 楠(1998—),女,内蒙古通辽人,地质资源与地质工程专业,博士研究生,主要从事土动力学与岩土地震工程相关科研工作。E-mail:2020126125@chd.edu.cn

  • 中图分类号: P642.26

Collapse characteristics and influencing factors of wind-blown sands in the southern margin of Mu Us Desert, Yulin, Shaanxi Province

  • 摘要:

    随着中国干旱、半干旱地区的开发与发展,湿陷性沙土对工程建设的危害日益显著。为探明沙土的湿陷规律及其影响因素,文章以毛乌素沙漠南缘风积沙土为研究对象,首先,通过控制单因素室内压缩试验,研究不同工况下风积沙的湿陷规律;其次,采用 PFC3D(三维颗粒流软件)对风积沙土室内压缩试验进行数值模拟,探究不同孔隙率、不同颗粒组成对沙土湿陷性的影响。研究结果表明:沙土湿陷系数随压力呈先升后降的变化趋势,压力为 150 kPa 时取得湿陷系数最大值;随着干密度或含水率的增大,沙土湿陷系数减小。相较于含水率,干密度对沙土湿陷性的影响更大;风积沙土的湿陷系数与孔隙率之间呈正相关关系,毛乌素沙漠南缘风积沙土的湿陷起始孔隙率为 0.425;当 0.075~0.25 mm、0.25~0.5 mm两粒组颗粒含量之比为 0.35∶0.65 时,沙土湿陷性最大。研究结果较全面地描述了沙土室内压缩试验从宏观到微观的全过程,从多尺度揭示了沙土湿陷性的湿陷规律及其影响因素,可为毛乌素沙漠地区工程建设提供参考,同时为沙土在颗粒流数值模拟方面的研究提供了一定的思路和依据。

    Abstract:

    With the development of arid and semi-arid regions in China, the hazards posed by collapsible sands to engineering construction have become increasingly significant. In order to investigate the collapsibility regularity and its influencing factors of sand soils, this paper focuses on the wind-blown sands at the southern edge of the Maowusu Desert. Initially, by controlling the single factor laboratory compression tests, the collapsibility regularity of wind-blown sand under different working conditions was investigated. Subsequently, using PFC3D (three-dimensional particle flow software) for numerical simulation of the laboratory compression tests on wind-blown sands, the paper explores the effects of different porosities and particle compositions on the collapsibility of sandy soils. The research results indicate that the collapsibility coefficient of sandy soils shows a trend of first increasing and then decreasing with pressure, reaching its maximum value at 150 kPa. With the increase in dry density or moisture content, the collapsibility coefficient of sand decreases. Compared to moisture content, dry density has a greater impact on the collapsibility of sandy soils. There is a positive correlation between the collapsibility coefficient of wind-blown sand and its porosity. The initial porosity of the collapsibility of the wind-blown sand on the southern edge of the Maowusu Desert is 0.425. When the ratio of particle content between 0.075~0.25 mm and 0.25~0.5 mm is 0.35∶0.65, the collapsibility of sandy soils is maximized. The research results comprehensively describe the entire process of laboratory compression tests on sand from macro to micro levels, revealing the collapsibility regularity and its influencing factors on wind-blown sand from multiple scales. This can provide a reference for engineering construction in the Maowusu Desert and provide certain ideas and basis for the research on particle flow numerical simulation of sand.

  • 三峡库区顺层岩质岸坡较常见,地质构造及河流下切等地质作用导致岸坡顺向临空,其成灾隐患大。常具有大体积、高势能、运动速度快、滑动距离远、破坏性强等特点。斜坡失稳受控于坡体结构与岩体力学特性,成因复杂多样,失稳模式或单一或复合。岸坡内往往发育有优势结构面,在地质构造、地下水、降雨、库水波动及人为工程活动等因素影响下,在层面和软弱夹层压缩、张裂和剪切作用下,结构面逐渐演化为岸坡失稳的滑动面,从变形到失稳表现出累进破坏的过程。

    1950年美国学者TERZAGHI K发表了一篇名为《滑坡机理》的文章,系统分析了岩质滑坡产生的原因、变形过程以及稳定性的评价方法。他指出层状岩体中网络组合关系复杂的结构面使岩体内部的连续性被极大破坏,使岩体的强度远小于完整岩块的强度。TERZAGHI K[1]认为层状斜坡破坏的主要原因是岩体内部结构面网络发生变形、错动,岩桥扩展贯通,切割分解了岩体的完整性,使岩体强度丧失,进而导致斜坡失稳破坏。孙广忠[2]在《岩体结构力学》中,将层状岩质斜坡的失稳模式总结为“弯折-倾倒”“弯曲-溃屈”“直立边坡弯折""溃屈”四种。陈沅江[3]在勘察科学技术杂志发表的“层状岩质边坡蠕变破坏及其影响因素分析”论文中,将层状岩质边坡的蠕变破坏模式分为水平层状边坡座落式剪切蠕变破坏、缓倾层状边坡顺层剪切蠕变破坏、陡倾层状边坡顺层逆向剪切蠕变倾倒破坏、反倾层状边坡逆向剪切蠕变倾倒破坏以及复杂层状结构边坡采动沉陷蠕滑组合失稳破坏五种类型。

    本次研究工作基于区内前期长江干流地质灾害调查[4-5]、巫峡剪刀峰顺向岸坡专项调(勘)查[6]、三峡库区巫峡高陡峡谷岸坡典型破坏机理[7-12]、三峡库区消落区岩体劣化[13-17]等相关地质及研究工作。对三峡库区巫山县巫峡剪刀峰顺向岸坡变形、破坏特征进行了总结,对岸坡破坏类型及岩体劣化和破坏类型进行了分析和研究。剪刀峰顺向岸坡成灾风险大,危害性大,通过本次对剪刀峰顺向岸坡变形破坏模式的分析及总结,对下步岸坡的风险评价、稳定性判断及后续防治工作提供了很好的支撑。

    剪刀峰顺向岸坡位于三峡库区重庆市巫山县长江干流巫峡左岸(图1),航道里程编号为K153+500~K155+600,上起神女峰景区出口下游侧,下至游孔明碑,涉及库岸总长2.1 km。岸坡整体地形陡峭,坡角45°~75°,局部可达82°~89°,为陡坡+陡崖地形;受神女峰背斜及神女溪—官渡口向斜影响,岸坡属陡倾顺层岩质岸坡;岸坡地层岩组主要由三叠系碳酸盐溶岩组成的坚硬岩组及岩溶角砾岩组成的较软岩组构成;岸坡主要致灾隐患为危岩、外倾临空结构面或软弱夹层控制的潜在不稳定斜坡(图2)。

    图  1  剪刀峰顺层岩质岸坡位置分布图
    Figure  1.  Scissor peak along the bank slope location distribution
    图  2  剪刀峰顺向岸坡全貌图
    Figure  2.  Scissor peak along the bank slope view

    岸坡上游至下游,全长2.1 km范围内,岸坡坡体结构变化大,岸坡变形破坏特征差异大,成因机制及破坏模差异大。根据岸坡地形地貌、地质构造、地层岩性及变形破坏特征等将剪刀峰2.1 km的顺向岸坡划分为6个大段,6个亚段。其岸坡分段示意图及各段岸坡地质特征详见表1图3

    表  1  岸坡分段及特征表
    Table  1.  Sectional characteristics of downstream bank slope
    分段航道里程编号长度/m主要分段
    依据
    主要地质特征
    第Ⅰ段155 km+500 m~
    155 km+600 m
    100地形地貌、地层岩性、坡体结构及破坏模式岸坡主要为大冶组4段及嘉陵江组一段中厚至厚层状灰岩,岸坡坡体相对较完整,破坏模式为表层岩体沿临空区域进行渐进式松脱-滑移破坏。
    第Ⅱ段Ⅱ-1段155 km+265 m~
    155 km+500 m
    235地层岩性、坡体结构及破坏模式岸坡主要为嘉陵江组一段中厚至厚层泥质灰岩,除消落带劣化严重外,其余坡体结构相对较完整,破坏模式为表层岩体沿临空区域崩塌-坠落。
    Ⅱ-2段155 km+086 m~
    155 km+265 m
    179地层岩性、坡体结构及破坏模式该区域为轿顶峰1号斜坡区域,临江侧岸坡含嘉陵江组二段的岩溶角砾岩,此外主要岩体为薄至中厚层泥质灰岩,岸坡表层岩体劣化严重,局部呈碎裂状。岸坡除岩临空区域崩塌坠落外,后期局部区域还可能受软弱夹层及岩体劣化影响,出现滑移-溃屈破坏。
    第Ⅲ段154 km+783 m~
    155 km+086 m
    303地形地貌、地层岩性、坡体结构及破坏模式该区域为轿顶峰2号斜坡区域,临江侧岸坡由嘉陵江组二段、三段地层组成,其中二段岩溶角砾岩呈连续分布,走向下游侧倾坡内。该段上游侧二段为薄至中厚层泥质灰岩及岩溶角砾岩,劣化较严重;下游为嘉陵江组薄至中厚层泥质灰岩及燧石灰岩,劣化相对上游较好。岸坡目前主要的变形破坏为临空区域以及浅表层的崩塌及滑移破坏后期局部区域还可能受软弱夹层及岩体劣化影响,出现滑移-溃屈破坏。
    第Ⅳ段154 km+527 m~
    154 km+783 m
    256地形地貌、地层岩性、坡体结构及破坏模式临江面岸坡主要为嘉陵江组三段中厚至厚层燧石灰岩及泥质灰岩,后侧为嘉陵江组二段薄至中厚层泥质灰岩及岩溶角砾岩,但二段角砾岩发育在冲沟内侧至坡顶区域,对坡体整体稳定性影响小,岸坡主要的变形破坏为消落带区域的劣化以及上部局部区域的崩塌坠落。
    第Ⅴ段Ⅴ-1段154 km+185 m~
    154 km+527 m
    342地形地貌、坡体结构及破坏模式岸坡主要地层为嘉陵江组三段薄-中厚层泥质灰岩夹中厚层白云质灰岩,岸坡倾角变陡,主要发育的两组构造裂隙呈“X”型节理,岩体较破碎~较完整,前期差异劣化-崩塌形成了较多浅表层的凹岩腔。该区域岸坡主要变形为构造节理的切割及差异劣化后导致的浅表层崩塌。
    Ⅴ-2段153 km+885 m~
    154 km+185 m
    300地层岩性、坡体结构及破坏模式临江面岸坡主要为嘉陵江组三段中厚层灰岩,局部夹中厚层白云质灰岩,岸坡倾角变陡,主要发育的两组构造裂隙呈“X”型节理,岩体相对较完整。该区域岸坡主要变形为构造节理的切割及差异劣化后导致的浅表层崩塌,下游侧边界受地形及构造切割影响易形成危岩发生滑移破坏。
    第Ⅵ段Ⅵ-1段153 km+629 m~
    153 km+885 m
    256地形地貌、地层岩性、坡体结构及破坏模式该段岸坡岩体主要为嘉陵江组三段中厚至厚层的灰岩夹中厚层状白云质灰岩,岩层层厚较厚,整体完整性较高,临江面岩体易发生卸荷,主要破坏模式为岩体卸荷、构造切割、差异劣化等导致岸坡浅表层局部发生崩塌坠落。
    Ⅵ-2段153 km+500 m~
    153 km+629 m
    129地层岩性、坡体结构及破坏模式该段岸坡岩体主要为嘉陵江组三段厚层的灰岩,岩层层厚较厚,质地硬,整体完整性较高,临江面岩体卸荷程度高。该区段岩体近直立,局部呈反倾状,其可能出现倾倒式-溃屈破坏。
    下载: 导出CSV 
    | 显示表格
    图  3  剪刀峰岸坡分段示意图
    Figure  3.  Scissor peak slope section schematic diagram

    (1)坡体构造切割及卸荷

    剪刀峰顺向岸坡位于神女峰背斜南翼近核部区域,纵张裂隙较发育,岩体结构疏松,构造卸荷作用强烈。岸坡受前期地质作用形成了多级陡坎及陡崖,受地貌特征影响,岸坡岩体局部顺向临空,该区域岸坡地质构造及卸荷作用尤为强烈。岸坡在近NNE、NNW两组构造裂隙切割下(图4),岸坡表层岩体完整性较差。岸坡临空区构造裂隙与层面切割组合,在地质构造与岩体卸荷耦合作用下,临空陡崖面形成多处薄板状或不规则状危岩体。临空区岸坡岩体沿岩层层面的卸荷-松弛(图5),层面抗剪强度逐步衰减,在构造切割、岩体卸荷等地质耦合作用下,临空区岩体呈渐进式破坏。

    图  4  岸坡构造节理特征图
    Figure  4.  Bank slope structural joint feature map
    图  5  岸坡坡体卸荷地质雷达解译图
    Figure  5.  GPR interpretation map of bank slope unloading

    (2)局部压裂、滑移

    岸坡陡崖或其余临空面在长期高应力作用下,在构造、卸荷等地质耦合作用下,在崖底或临空区底部局部可见岩体呈薄壳或薄板状鼓胀、压裂,用地质锤锤击易出现开裂掉块(图6)。其中第一段岸坡三级陡崖崖脚泥质灰岩地层中可见,其发育深度约0.6 m;岸坡上游陡崖面中段,在大冶组三段泥质灰岩中也发现鼓胀、压裂迹象,岩体呈碎裂状。此外,岸坡局部滑移后擦痕明显,其中第Ⅰ段岸坡陡崖可见早期滑痕,方向约180°,与斜坡坡向呈小角度相交。第Ⅱ段岸坡发育有嘉陵江组二段岩溶角砾岩夹层,其质地相对较软,且夹层控制的区域在水下局部临空,该区域后期可能沿软弱面出现滑移-溃曲破坏(图7)。

    图  6  岸坡局部鼓胀、压裂及岸坡早期滑痕
    Figure  6.  Local bulging, fracturing and early slippage of bank slope
    图  7  软弱夹层区岸坡地质剖面图
    Figure  7.  Geological profile of bank slope in weak interlayer area

    (3)地表溶蚀

    剪刀峰顺向岸坡属碳酸盐溶岩区域,地表岩溶发育较明显,其中在陡崖区域以大型的溶蚀裂缝为主,其发育程度较高,如神女峰陡崖及岸坡上游侧断面区域可见发育明显的溶蚀裂缝,沿竖向最大切割深度约226 m,局部区域因溶蚀崩塌形成岩腔(图8)。岸坡其余区段地表溶蚀以小型溶蚀裂缝、溶洞及溶蚀孔洞为主。溶蚀裂缝多沿构造及卸荷裂缝发育,其中与构造作用耦合发育的构造溶蚀裂缝有6处,裂面因溶蚀作用呈不规则状,钙化严重。溶洞集中发育在第Ⅰ段岸坡陡崖区域,其中最大溶洞洞口宽2.1 m,高2.5 m,洞内最大高度约10 m,最大宽度约3.7 m,可见深度约6.5 m。岸坡溶蚀孔洞在岸坡坡表大范围可见,其孔洞直径约0.5~3 cm,发育深度较浅,约0.5~4 cm。

    图  8  第一段岸坡上游断面溶蚀裂缝发育特征图
    Figure  8.  Dissolution fracture development characteristic map of upstream section of the first section of bank slope

    (4)消落区岩体劣化

    岸坡145 ~175 m区域受库水位涨落影响,岩体不断干湿循环,劣化严重,其主要表现形式如下:1)受两组构造裂隙的切割,岩体多被切割成不规则板状或块状,裂隙发育间距0.5~3.2 m,张开度0.1~7 cm,延伸长度约2.0~26.5 m,局部碎块石充填。2)岸坡临空岩体在裂隙切割下,随着岩体强度不断衰减,出现从下至上的小范围、小规模的滑移、坠落。3)消落带岸坡表层破碎岩体受库水冲剥蚀严重,库水的流通和涨落将破碎岩体逐步搬运,导致新临空面形成及裂隙面的进一步扩张。4)劣化带局部区域岩溶较发育,主要为小规模溶蚀孔洞及溶蚀裂隙,其溶蚀及切割影响岸坡的整体性。5)岸坡岩体劣化差异,局部拉裂、扭转破坏(图9)。

    图  9  岸坡消落区岩体劣化特征图
    Figure  9.  Rock mass deterioration characteristic map of bank slope fluctuation zone

    (1)第Ⅰ段斜坡

    该段岸坡浅表层顺向临空,主要发生滑移式失稳模式(图10),岸坡在顺向层面及节理裂隙的共同作用下,将岩体切割成规模较小的块状或板状,在自重应力及外营力下,岩体沿裂隙面及层面卸荷、应力松弛,切割裂隙一旦贯通,破坏块体便与母岩脱离,块体沿层面向下滑动失稳。该段岸坡临空段厚度相对较薄,受裂隙切割后可能发生顺层块体的滑移,但破坏模式为在地质构造、卸荷及溶蚀等作用下,岸坡发生渐进式、逐层松脱-滑移破坏(图11),引用《三峡库区高陡岸坡成灾机理研究》(黄波林、刘广宁、王世昌等)文献插图)[8]

    图  10  第Ⅰ段斜坡结构特征
    Figure  10.  Structural characteristics of slope in the Ⅰ section
    图  11  松脱式滑移破坏模式
    Figure  11.  Release slip failure mode

    (2)第Ⅱ段斜坡

    该段岸坡受水下地形影响,岸坡临江面大范围临空;同时,岸坡发育了相对软弱夹层岩溶角砾岩,该层在江底水下也是临空。因此,岸坡除受地质构造及微地貌等影响下的局部滑移-崩塌以外,岸坡临空区在沿软弱夹层及临空面长期卸荷、应力释放、岩体强度不断衰变。

    (3)第Ⅲ−第Ⅴ段斜坡

    该段斜坡岩层产状变较大,其破坏成灾模式随产状的变化而发生了变化。上游段(Ⅲ段、Ⅳ段斜坡)岩层倾角及地形坡角略缓,一般岩层倾角42°~57°,局部小面积的临空,易顺层发生滑移,斜坡底部受到江水冲刷,淘蚀,斜坡坡以垂直河道方向的临空面向下游不断发生“渐进式松脱”破坏失稳(图12)。下游(Ⅵ段斜坡)随着岩层产状倾角的进一步扩大,破坏类型由顺层滑移型变成顺层剥落型。且岩体被“X”节理和层面裂隙切割成菱行结构体,在脱离母体后向长江方向和两侧冲沟崩落。

    图  12  第Ⅱ段—Ⅴ段斜坡结构特征
    Figure  12.  Structural characteristics of the Ⅱ—Ⅴ section slope

    (4)第Ⅵ段斜坡

    该段斜坡岩层陡立甚至局部出现反倾,失稳模式转变为溃屈-倾倒型(图13图14)。当岩层倾角大于75°时,坚硬的嘉陵江组三段灰岩构成板裂结构岩体,并形成向外张开的竖直板梁式的危岩体,由于受剖面“X”型及斜交层面倾向坡内的结构面切割的影响,直立板梁的完整性受到破坏,在重力及板梁之间充填碎石土的楔劈作用下,在消落带岩体不断劣化的耦合作用下,岸坡破裂的直立板梁易发生破坏。

    图  13  第Ⅵ段斜坡结构特征
    Figure  13.  Structural features of the Ⅵ section slope
    图  14  第Ⅵ段斜坡下游坡体结构特征
    Figure  14.  Structural characteristics of downstream slope

    (1)岸坡整体劣化规律

    根据对岸坡的调查及分析,剪刀峰顺向岸坡在内外地质作用下,其岩体的劣化主要变现为岸坡岩体的完整性变差及岩体的强度衰减两个方面。岩体的完整性变化主要是受地质构造、地表溶蚀、坡体卸荷作用及其因子的耦合;岩体强度的衰减主要是在岩体完整性变差的同时,岩体及其结构面的强度变差。岸坡岩体的完整性及强度衰减变化呈逐层、逐级劣化。

    岸坡岩体劣化深度主要受地层岩性、坡体结构、库水位等因素控制。岸坡在坚硬岩组区劣化程度比软弱夹层区劣化程度低;岸坡完整性好、临空厚度较薄的区域其劣化深度相对较浅;岸坡库水位以上区域较消落带区域岩体更完整,劣化深度更浅。根据调勘查数据综合分析,岸坡消落带区域劣化深度主要在20 m范围内,其中10 m范围内为强劣化区;消落带以上区域劣化厚度主要受岩体临空厚度、构造切割及坡体卸荷等控制。

    (2)岸坡消落带劣化特征

    岸坡劣化最集中、最严重的区域为145~175 m库水位变动区域,其岸坡的劣化特征主要为以下几个方面:1)表层岩体在构造切割及库水影响下,岩体较破碎,局部呈碎裂状、散体堆积在坡表。在库水位涨落及冲剥蚀作用下,岩体逐步解体,坡表松散堆积岩体被逐步携带,形成新的劣化面。2)岩体差异劣化,在消落带及附近主要形成10处大小不等的拓空区,拓空区导致局部岩体临空,为其周边岩体破坏提供了空间条件。3)岸坡在构造裂隙切割及差异劣化形成下,局部重心发生偏移,出现侧向拉裂、扭转。4)受地质构造影响,岸坡消落带区域发育了3处构造破碎带,破碎带上岩体相对较破碎,局部层面扭转,切割坡体。5)岸坡沿构造裂隙溶蚀,切割坡体,整个岸坡共发育了大小不等的6处构造溶蚀裂隙,影响岸坡岩体的整体性。

    (1)沿层面渐进式松脱滑移

    神女峰至剪刀峰顺向岸坡段,岸坡坡度较陡,在NNE、NNW两组构造裂隙切割下岸坡浅表层岩体被切割解体;同时,受地形条件影响,岸坡在水下或水上陡坎或陡崖顺向临空,临空区域岩体长期沿构造裂隙及临空面卸荷,岩体强度不断劣化,将在临空区域出现逐层、逐级的松脱滑移破坏(图15)。

    图  15  岸坡松脱-滑移典型破坏区
    Figure  15.  Typical failure zone of bank slope loosening and slip

    消落带区域,岸坡还受库水位变动影响,岩体不断干湿循环,强度逐层折减;同时,库水的冲刷导致层面间和裂隙间的充填物流失,裂缝逐步扩展,层面抗剪强度由表及里逐层衰减,最终局部区域岩体在自重作用下,沿层面发生松脱式滑移(图16)。该类岩体劣化导致岸坡失稳为渐进式、小规模的变形破坏,其破坏导致岸坡上游段多级陡坎及陡崖的地貌特征。

    图  16  顺层松脱式-滑移破坏机理图
    Figure  16.  Failure mechanism diagram of bedding release - slip

    (2)沿软弱夹层溃屈滑移

    受嘉陵江组二段岩溶角砾岩及岸坡地形的影响,第二段岸坡下游侧(轿顶峰1号斜坡)软弱夹层区在水下外倾临空,该段岸坡的破坏主要受软弱层控制。同时,结合岸坡岩体劣化特征,岸坡库水位变动区岩体劣化程度要大于其余区域,在长期的干湿循环、岩体强度劣化的情况下,该段岸坡可能出现中后部沿软弱夹层,前部沿水下临空面滑移或消落带强度薄弱区域溃屈滑移(图17)。该类型的破坏体积较大,破坏后果及影响较大。

    图  17  沿软弱夹层滑移溃屈破坏机理图
    Figure  17.  Failure mechanism diagram of slip and collapse along weak interlayer

    (3)沿“X型”节理滑移

    神女峰至剪刀峰、孔明碑一带,顺向岩层倾角逐渐加大,坡体发育陡倾乃至陡立结构同倾坡,岸坡稳定性状况和失稳模式逐渐发生显著的变化并形成各自独特的地貌特征(图18)。

    图  18  剪刀峰—孔明碑一带工程地质剖面图
    Figure  18.  An engineering geological section in the area of Kong ming, scissor peak

    孔明碑一带位于神女溪—官渡口向斜北翼近核部,由三叠系嘉陵江组三段灰岩够成顺向结构同倾坡。坡面“X”型节理发育,坡表岩体多被切割成菱形结构体,岩体呈“X”型节理破坏。破坏方式为沿层面向下剥落至长江或沿节理面向两侧滑移、崩塌入两侧冲沟,对过往船只构成威胁。这类失稳模式形成的典型地貌为三角面和Ⅴ型沟(图19)。第Ⅴ段岸坡(剪刀峰危岩带)即是这一变形失稳类型的典型代表。

    图  19  剪刀峰一带崩塌失稳模式及形成的三角面和V形沟
    Figure  19.  Collapse mode and V-shaped gully in the vicinity of scissor peak

    消落带区域岸坡岩体X形节理数量和规模较蓄水前均有较大幅度的增长,同时基于测窗内的裂隙对比,可以显见裂隙的发育呈增长增多态势。库岸岩体质量较好,本体强度和变形参数均较高,引起库岸失稳关键因素为贯通性结构面的发育情况。位于水位变动带内的岩体X裂隙发育速度远远领先于其它位置,由裂隙切割的菱形岩体将从水位变动带开始逐渐松脱解体,最终自下而上形成凹腔,上部岩体在失去支撑情况下发生局部乃至整体失稳。该类破坏实质上是岸坡坡体逐层节理、劣化引发的变形失稳。岸坡目前临江面主要呈浅表层的节理及劣化,体积较小,危害性较小;冲沟侧潜在失稳体积较大,但其主要朝冲沟内破坏,其岩体劣化及破坏的体积较大,但危害性仍较小。

    (4)沿层面倾倒溃屈

    下游第Ⅵ段(孔明碑一带)由三叠系嘉陵江组三段(T1j3)中薄层含燧石结核灰岩、白云质灰岩构成。受神女溪-官渡口向斜影响,该区域岩层呈陡倾乃至局部倒转,岸坡结构由上游剪刀峰段的“X”型节理转变为以竖向节理为主的板裂状岩体结构;破坏模式由“X型节理滑移破坏”向“陡立倾倒失稳模式”转变(图20)。同时,岸坡临江面岩体不断卸荷,后缘裂缝扩张,加之在水位变动条件下,临水面的板状岩体裂隙发育数目和发育速度远领先于其它部位,水位变动带应变集中,随着岩体强度不断劣化,岩体下部出现低强度、薄弱带使上部岩体的重心发生偏移,上部直立板梁易发育溃屈—倾倒失稳。该类破坏实质上是岸坡坡体逐级及逐层卸荷、劣化引发的变形失稳,岸坡溃屈倾倒破坏易引发涌浪,对长江航道及过往船只危害性较大。

    图  20  孔明碑一带顺向岸坡结构及沿层面倾倒溃层失稳模式
    Figure  20.  Structure and failure mode of consequent bank slope along Kong ming monument

    (1)剪刀峰顺向岸坡位于重庆市三峡库区长江干流巫山县巫峡左岸,航道里程编号为K153+500~K155+600,上起神女峰景区出口下游侧,下至游孔明碑,涉及库岸总长2.1 km。岸坡整体地形陡峭,坡角45°~75°,局部可达82°~89°,为陡倾顺层岩质岸坡,岸坡地质环境条件复杂。

    (2)剪刀峰岸坡受神女峰背斜及神女溪—官渡口向斜影响,呈顺向岸坡结构,岸坡在水下及水上陡崖或陡坎区域局部临空,岸坡岩体结构主要为薄至中厚层泥质灰岩、灰岩,局部夹岩溶角砾岩及白云质灰岩等,属碳酸盐溶岩岸坡。岸坡目前的变形主要为坡体构造切割及卸荷、局部压裂、滑移、地表溶蚀、消落带劣化几个方面。

    (3)岸坡消落带区域劣化深度在20 m范围内,其中10 m范围内为强劣化区;岸坡沿坡面竖向主要受临空区域的厚度及构造切割、坡体卸荷的控制,岸坡受库水位影响的消落带区域劣化程度远大于库水位以上的岸坡区域。岸坡岩体劣化后导致的坡体破坏主要分为沿层面渐进式松脱滑移、沿软弱夹层溃屈滑移、沿“X型”节理滑移、沿层面倾倒溃屈破坏四种破坏类型。

  • 图  1   试验土样粒径级配曲线

    Figure  1.   Distribution curve of particle sizes

    图  2   pδs曲线

    Figure  2.   pδs curves

    图  3   pδs曲线

    Figure  3.   pδs curves

    图  4   三维线性接触模型物理元件图

    Figure  4.   Physical model diagram of the three-dimensional linear contact model

    图  5   室内压缩试验计算模型三视图

    Figure  5.   Three views of the calculation model for laboratory compression test

    图  6   试样加荷示意图

    Figure  6.   Schematic diagram of specimen loading

    图  7   湿陷系数随摩擦系数的变化曲线

    Figure  7.   Curve of collapse factor with variation of friction coefficient

    图  8   湿陷系数随接触刚度的变化曲线

    Figure  8.   Curve of collapse factor with variation of contact stiffness

    图  9   室内试验、数值模拟pδs曲线对比

    Figure  9.   Comparison of laboratory test and numerical simulation pδs curves

    图  10   孔隙率随压力的变化曲线

    Figure  10.   Curve of porosity variation with pressure

    图  11   湿陷系数随孔隙率的变化曲线

    Figure  11.   Curve of collapse factor variation with porosity

    图  12   不同颗粒组成情况下湿陷系数变化曲线

    Figure  12.   Curves of collapse coefficient variation under different particle compositions

    表  1   场地基本物理特性指标

    Table  1   Basic physical charecteristics of the site

    参数 密度/(g·m−3 含水率/% 干密度/(g·m−3 比重 孔隙比 饱和密度/(g·m−3 饱和度 最小干密度/(g·m−3 最大干密度/(g·m−3
    数值 1.587 4.5 1.519 2.616 0.722 1.938 16.3 1.38 1.77
    下载: 导出CSV

    表  2   室内压缩试验结果

    Table  2   Laboratory compression test results

    试样
    编号
    干密度
    /(g·cm−3
    含水率/% 粒径区间/mm 湿陷系数 湿陷等级
    1 1.40 3 0.075~0.250 0.02650 轻微湿陷
    2 1.45 3 0.075~0.250 0.02225 轻微湿陷
    3 1.50 3 0.075~0.250 0.01625 轻微湿陷
    4 1.55 3 0.075~0.250 0.00100 无湿陷
    5 1.40 6 0.075~0.250 0.02550 轻微湿陷
    6 1.45 6 0.075~0.250 0.02200 轻微湿陷
    7 1.50 6 0.075~0.250 0.01725 轻微湿陷
    8 1.55 6 0.075~0.250 0.00050 无湿陷
    9 1.40 9 0.075~0.250 0.02450 轻微湿陷
    10 1.45 9 0.075~0.250 0.02050 轻微湿陷
    11 1.50 9 0.075~0.250 0.01850 轻微湿陷
    12 1.55 9 0.075~0.250 0.00050 无湿陷
    下载: 导出CSV

    表  3   数值模拟结果

    Table  3   Numerical simulation results

    试样编号 颗粒比重 干密度/(g·cm−3 含水率/% 湿陷系数 模拟湿陷系数 孔隙率 粒径区间/mm 法向接触刚度 切向接触刚度 摩擦系数
    1 2.65 1.40 3 0.02650 0.02700 0.465 0.075~0.250 1.109×107 1.109×107 0.350
    2 2.65 1.45 3 0.02225 0.02243 0.446 0.075~0.250 1.284×107 1.284×107 0.370
    3 2.65 1.50 3 0.01625 0.01633 0.427 0.075~0.250 1.473×107 1.473×107 0.360
    4 2.65 1.55 3 0.00100 0.00110 0.407 0.075~0.250 1.590×107 1.590×107 0.350
    5 2.65 1.40 6 0.02550 0.02580 0.465 0.075~0.250 1.109×107 1.109×107 0.270
    6 2.65 1.45 6 0.02200 0.02230 0.446 0.075~0.250 1.284×107 1.284×107 0.270
    7 2.65 1.50 6 0.01725 0.01733 0.427 0.075~0.250 1.473×107 1.473×107 0.273
    8 2.65 1.55 6 0.00050 0.00070 0.407 0.075~0.250 1.590×107 1.590×107 0.271
    9 2.65 1.40 9 0.02450 0.02500 0.465 0.075~0.250 1.109×107 1.109×107 0.232
    10 2.65 1.45 9 0.02050 0.02020 0.446 0.075~0.250 1.284×107 1.284×107 0.230
    11 2.65 1.50 9 0.01850 0.01820 0.427 0.075~0.250 1.473×107 1.473×107 0.230
    12 2.65 1.55 9 0.00050 0.00030 0.407 0.075~0.250 1.590×107 1.590×107 0.231
    下载: 导出CSV
  • [1] 范文,魏亚妮,于渤,等. 黄土湿陷微观机理研究现状及发展趋势[J]. 水文地质工程地质,2022,49(5):144 − 156. [FAN Wen,WEI Yani,YU Bo,et al. Research progress and prospect of loess collapsible mechanism in micro-level[J]. Hydrogeology & Engineering Geology,2022,49(5):144 − 156. (in Chinese with English abstract)]

    FAN Wen, WEI Yani, YU Bo, et al. Research progress and prospect of loess collapsible mechanism in micro-level[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 144 − 156. (in Chinese with English abstract)

    [2] 侯彦凯. 戈壁地区粗粒土地基湿陷特性研究[J]. 铁道工程学报,2016,33(6):31 − 34. [HOU Yankai. Research on the collapse characteristics of coarse grained soil in Gobi region[J]. Journal of Railway Engineering Society,2016,33(6):31 − 34. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-2106.2016.06.007

    HOU Yankai. Research on the collapse characteristics of coarse grained soil in Gobi region[J]. Journal of Railway Engineering Society, 2016, 33(6): 31 − 34. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-2106.2016.06.007

    [3] 苏建德. 沙漠区沙土类土湿陷性研究[J]. 岩土工程界,2001(8):27 − 29. [SU Jiande. Study on collapsibility of sandy soil in desert area[J]. Geological Exploration for Non-ferrous Metals,2001(8):27 − 29. (in Chinese)]

    SU Jiande. Study on collapsibility of sandy soil in desert area[J]. Geological Exploration for Non-ferrous Metals, 2001(8): 27 − 29. (in Chinese)

    [4] 曾正中,张明泉,梁宗仁,等. 腾格里沙漠南缘风积砂土地基的工程地质特性[J]. 西北水电,2001(3):18 − 20. [ZENG Zhengzhong,ZHANG Mingquan,LIANG Zongren,et al. Engineering geological features of eolian deposit sandy soil ground at southern edge of the Tenggeli Desert[J]. Northwest Water Power,2001(3):18 − 20. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-2610.2001.03.006

    ZENG Zhengzhong, ZHANG Mingquan, LIANG Zongren, et al. Engineering geological features of eolian deposit sandy soil ground at southern edge of the Tenggeli Desert[J]. Northwest Water Power, 2001(3): 18 − 20. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-2610.2001.03.006

    [5] 曾正中,张明泉,黄明源. 腾格里沙漠南缘风积砂土湿陷性研究[J]. 甘肃科学学报,2000,12(2):63 − 68. [ZENG Zhengzhong,ZHANG Mingquan,HUANG Mingyuan. A study on the collapsibility of the eolian sand on the south edge of the tenggeli desert[J]. Journal of Gansu Sciences,2000,12(2):63 − 68. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-0366.2000.02.014

    ZENG Zhengzhong, ZHANG Mingquan, HUANG Mingyuan. A study on the collapsibility of the eolian sand on the south edge of the tenggeli desert[J]. Journal of Gansu Sciences, 2000, 12(2): 63 − 68. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-0366.2000.02.014

    [6] 武立波,胡冰涛,尹志远,等. 宁东粉细砂的物理力学特性分析[J]. 工程建设与设计,2012(9):129 − 131. [WU Libo,HU Bingtao,YIN Zhiyuan,et al. Analysis of physico-mechanical characteristics of fine sand in ningdong rigion[J]. Construction & Design for Project,2012(9):129 − 131. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1007-9467.2012.09.034

    WU Libo, HU Bingtao, YIN Zhiyuan, et al. Analysis of physico-mechanical characteristics of fine sand in ningdong rigion[J]. Construction & Design for Project, 2012(9): 129 − 131. (in Chinese with English abstract) DOI: 10.3969/j.issn.1007-9467.2012.09.034

    [7] 胡玮,李云川,史成江. 中卫地区粉砂土湿陷特性及影响因素探讨[J]. 宁夏工程技术,2017,16(2):178 − 182. [HU Wei,LI Yunchuan,SHI Chengjiang. Analysis of the collapsibility characteristics and its affecting factors of silt sand in Zhongwei Districts[J]. Ningxia Engineering Technology,2017,16(2):178 − 182. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-7244.2017.02.018

    HU Wei, LI Yunchuan, SHI Chengjiang. Analysis of the collapsibility characteristics and its affecting factors of silt sand in Zhongwei Districts[J]. Ningxia Engineering Technology, 2017, 16(2): 178 − 182. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-7244.2017.02.018

    [8] 杨瑞雪,崔自治,郄玥颖,等. 细粒含量对银川细砂压缩及压缩水敏性的影响[J]. 广西大学学报(自然科学版),2018,43(3):1143 − 1148. [YANG Ruixue,CUI Zizhi,QIE Yueying,et al. Effects of fine grain content on compression and water sensitivity of Yinchuan fine sand[J]. Journal of Guangxi University (Natural Science Edition),2018,43(3):1143 − 1148. (in Chinese with English abstract)]

    YANG Ruixue, CUI Zizhi, QIE Yueying, et al. Effects of fine grain content on compression and water sensitivity of Yinchuan fine sand[J]. Journal of Guangxi University (Natural Science Edition), 2018, 43(3): 1143 − 1148. (in Chinese with English abstract)

    [9] 刘峰,李超. 某沙漠明渠基础变形分析及处理对策[J]. 中国水运(下半月),2021,21(7):99 − 100. [LIU Feng,LI Chao. Deformation analysis and treatment countermeasures of a desert open channel foundation[J]. China Water Transport,2021,21(7):99 − 100. (in Chinese)]

    LIU Feng, LI Chao. Deformation analysis and treatment countermeasures of a desert open channel foundation[J]. China Water Transport, 2021, 21(7): 99 − 100. (in Chinese)

    [10] 韩永强,石宇涵. 粉细砂湿陷性研究[J]. 四川建材,2015,41(6):24 − 26. [HAN Yongqiang,SHI Yuhan. Study on collapsibility of silty fine sand[J]. Sichuan Building Materials,2015,41(6):24 − 26. (in Chinese)] DOI: 10.3969/j.issn.1672-4011.2015.06.013

    HAN Yongqiang, SHI Yuhan. Study on collapsibility of silty fine sand[J]. Sichuan Building Materials, 2015, 41(6): 24 − 26. (in Chinese) DOI: 10.3969/j.issn.1672-4011.2015.06.013

    [11] 刘争宏,廖燕宏,张玉守. 罗安达砂物理力学性质初探[J]. 岩土力学,2010,31(增刊1):121 − 126. [LIU Zhenghong,LIAO Yanhong,ZHANG Yushou. Preliminary study of physico-mechanical properties of Luanda sand [J]. Rock and Soil Mechanics,2010,31(Sup 1):121 − 126. (in Chinese with English abstract)]

    LIU Zhenghong, LIAO Yanhong, ZHANG Yushou. Preliminary study of physico-mechanical properties of Luanda sand [J]. Rock and Soil Mechanics, 2010, 31(Sup 1): 121 − 126. (in Chinese with English abstract)

    [12] 彭友君,岳栋,彭博,等. 安哥拉格埃路砂地层的承载力研究[J]. 岩土力学,2014,35(增刊2):332 − 337. [PENG Youjun,YUE Dong,PENG Bo,et al. Research on bearing capacity of Angola Quelo sand strata [J]. Rock and Soil Mechanics,2014,35(Sup 2):332 − 337. (in Chinese with English abstract)]

    PENG Youjun, YUE Dong, PENG Bo, et al. Research on bearing capacity of Angola Quelo sand strata [J]. Rock and Soil Mechanics, 2014, 35(Sup 2): 332 − 337. (in Chinese with English abstract)

    [13] 唐国艺,唐立军,刘智,等. 安哥拉罗安达湿陷性砂的载荷试验研究[J]. 水文地质工程地质,2018,45(5):108 − 113. [TANG Guoyi,TANG Lijun,LIU Zhi,et al. Research on collapsible sand under plate load test in Luanda,Angola[J]. Hydrogeology & Engineering Geology,2018,45(5):108 − 113. (in Chinese with English abstract)]

    TANG Guoyi, TANG Lijun, LIU Zhi, et al. Research on collapsible sand under plate load test in Luanda, Angola[J]. Hydrogeology & Engineering Geology, 2018, 45(5): 108 − 113. (in Chinese with English abstract)

    [14] 孙宏伟,董勤,石峰. 南部非洲红砂地基工程特性初探[J]. 建筑结构,2015,45(18):105 − 107. [SUN Hongwei,DONG Qin,SHI Feng. Preliminary discussion on geotechnical characteristics of red sand in southern Africa[J]. Building Structure,2015,45(18):105 − 107. (in Chinese with English abstract)]

    SUN Hongwei, DONG Qin, SHI Feng. Preliminary discussion on geotechnical characteristics of red sand in southern Africa[J]. Building Structure, 2015, 45(18): 105 − 107. (in Chinese with English abstract)

    [15] 张富华. 安哥拉罗安达地区湿陷性砂土地基基础设计[J]. 建筑结构,2016,46(增刊1):821 − 823. [ZHANG Fuhua. Foundation design of collapsible sand ground in Luanda' Angola [J]. Building Structure,2016,46(Sup 1):821 − 823. (in Chinese with English abstract)]

    ZHANG Fuhua. Foundation design of collapsible sand ground in Luanda' Angola [J]. Building Structure, 2016, 46(Sup 1): 821 − 823. (in Chinese with English abstract)

    [16] 刘彬,张庚成,李荣先. 尼日尔风积砂土湿陷性试验研究与评价[J]. 中国海洋大学学报(自然科学版),2016,46(7):99 − 104. [LIU Bin,ZHANG Gengcheng,LI Rongxian. Experimental study and evaluation on collapsibility of wind-blown sand in Niger[J]. Periodical of Ocean University of China,2016,46(7):99 − 104. (in Chinese with English abstract)]

    LIU Bin, ZHANG Gengcheng, LI Rongxian. Experimental study and evaluation on collapsibility of wind-blown sand in Niger[J]. Periodical of Ocean University of China, 2016, 46(7): 99 − 104. (in Chinese with English abstract)

    [17] 姚晨辉,夏玉云,吴学林,等. 巴基斯坦塔尔沙漠风积砂土湿陷性特征[J]. 长江科学院院报,2021,38(5):131 − 136. [YAO Chenhui,XIA Yuyun,WU Xuelin,et al. Collapsibility characteristics of wind-blown sand in thar desert,Pakistan[J]. Journal of Yangtze River Scientific Research Institute,2021,38(5):131 − 136. (in Chinese with English abstract)] DOI: 10.11988/ckyyb.20200202

    YAO Chenhui, XIA Yuyun, WU Xuelin, et al. Collapsibility characteristics of wind-blown sand in thar desert, Pakistan[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 131 − 136. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20200202

    [18] 柳旻,姚晨辉,张国敬,等. 强夯法处理湿陷性风积砂土地基评价[J]. 水利与建筑工程学报,2020,18(3):31 − 35. [LIU Min,YAO Chenhui,ZHANG Guojing,et al. Evaluation of collapsible wind-blown sand subgrade treated by dynamic compaction[J]. Journal of Water Resources and Architectural Engineering,2020,18(3):31 − 35. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-1144.2020.03.006

    LIU Min, YAO Chenhui, ZHANG Guojing, et al. Evaluation of collapsible wind-blown sand subgrade treated by dynamic compaction[J]. Journal of Water Resources and Architectural Engineering, 2020, 18(3): 31 − 35. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-1144.2020.03.006

    [19] 朱凤基,南静静,魏颖琪,等. 黄土湿陷系数影响因素的相关性分析[J]. 中国地质灾害与防治学报,2019,30(2):128 − 133. [ZHU Fengji,NAN Jingjing,WEI Yingqi,et al. Mathematical statistical analysis on factors affecting collapsible coefficient of loess[J]. The Chinese Journal of Geological Hazard and Control,2019,30(2):128 − 133. (in Chinese with English abstract)]

    ZHU Fengji, NAN Jingjing, WEI Yingqi, et al. Mathematical statistical analysis on factors affecting collapsible coefficient of loess[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(2): 128 − 133. (in Chinese with English abstract)

    [20] 周健,池永. 砂土力学性质的细观模拟[J]. 岩土力学,2003,24(6):901 − 906. [ZHOU Jian,CHI Yong. Mesomechanical simulation of sand mechanical properties[J]. Rock and Soil Mechanics,2003,24(6):901 − 906. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2003.06.006

    ZHOU Jian, CHI Yong. Mesomechanical simulation of sand mechanical properties[J]. Rock and Soil Mechanics, 2003, 24(6): 901 − 906. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2003.06.006

    [21]

    ZHAO Xueliang,EVANS T M. Numerical analysis of critical state behaviors of granular soils under different loading conditions[J]. Granular Matter,2011,13(6):751 − 764. DOI: 10.1007/s10035-011-0284-1

    [22]

    ROBERTSON D,BOLTON M D. DEM simulations of crushable grains and soils[J]. In:4th International Conference on Micromechanics of Granular Media Powders and Grains,2001-5-21 to 2001-5-25,Sendai,Japan:623 − 626.

    [23] 罗勇,龚晓南,连峰. 三维离散颗粒单元模拟无黏性土的工程力学性质[J]. 岩土工程学报,2008,30(2):292 − 297. [LUO Yong,GONG Xiaonan,LIAN Feng. Simulation of mechanical behaviors of granular materials by three-dimensional discrete element method based on particle flow code[J]. Chinese Journal of Geotechnical Engineering,2008,30(2):292 − 297. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-4548.2008.02.024

    LUO Yong, GONG Xiaonan, LIAN Feng. Simulation of mechanical behaviors of granular materials by three-dimensional discrete element method based on particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 292 − 297. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2008.02.024

    [24] 吴越. 砂土力学特性及临界破坏三维离散元数值模拟[D]. 杭州:浙江大学,2015. [WU Yue. Three dimensional discrete element simulations of mechanical behavior and critical state failure of granular media[D]. Hangzhou:Zhejiang University,2015. (in Chinese with English abstract)]

    WU Yue. Three dimensional discrete element simulations of mechanical behavior and critical state failure of granular media[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract)

    [25]

    THORNTON C,ANTONY S J. Quasi-static shear deformation of a soft particle system[J]. Powder Technology,2000,109(1/2/3):179 − 191.

    [26] 曾远. 土体破坏细观机理及颗粒流数值模拟[D]. 上海:同济大学,2006. [ZENG Yuan. Microscopic mechanics of soil failure and PFC numerical simulation[D]. Shanghai:Tongji University,2006. (in Chinese with English abstract)]

    ZENG Yuan. Microscopic mechanics of soil failure and PFC numerical simulation[D]. Shanghai: Tongji University, 2006. (in Chinese with English abstract)

    [27] 中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method:GB/T 50123—2019[S]. Beijing:China Planning Press,2019. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [28] 中华人民共和国建设部. 湿陷性黄土地区建筑规范:GB 50025—2004[S]. 北京:中国建筑工业出版社,2004. [Ministry of Construction of the People’s Republic of China. Code for building construction in collapsible loess regions:GB 50025—2004[S]. Beijing:China Architecture & Building Press,2004. (in Chinese)]

    Ministry of Construction of the People’s Republic of China. Code for building construction in collapsible loess regions: GB 50025—2004[S]. Beijing: China Architecture & Building Press, 2004. (in Chinese)

    [29] 韩振华,张路青,周剑,等. 黏土矿物颗粒特征对含水合物的沉积物力学特性影响研究[J]. 工程地质学报,2021,29(6):1733 − 1743. [HAN Zhenhua,ZHANG Luqing,ZHOU Jian,et al. Effect of clay mineral grain characteristics on mechanical behaviours of hydrate-bearing sediments[J]. Journal of Engineering Geology,2021,29(6):1733 − 1743. (in Chinese with English abstract)]

    HAN Zhenhua, ZHANG Luqing, ZHOU Jian, et al. Effect of clay mineral grain characteristics on mechanical behaviours of hydrate-bearing sediments[J]. Journal of Engineering Geology, 2021, 29(6): 1733 − 1743. (in Chinese with English abstract)

    [30] 蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报,2019,41(2):195 − 254. [JIANG Mingjing. New paradigm for modern soil mechanics:Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering,2019,41(2):195 − 254. (in Chinese with English abstract)] DOI: 10.11779/CJGE201902001

    JIANG Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195 − 254. (in Chinese with English abstract) DOI: 10.11779/CJGE201902001

    [31]

    ITASCA CONSULTING GROUP,INC. The manuals of particle flow code in 3-dimension. Version 3.1. Minneapolis,2004.

    [32] 王杰,庄建琦,孔嘉旭,等. 基于DEM模拟的破碎对黄土滑坡动力学特征影响研究[J]. 工程地质学报,2023,31(2):502 − 513. [WANG Jie,ZHUANG Jianqi,KONG Jiaxu,et al. Influence of fragmentation on dynamic characteristics of loess landslide based on DEM simulation[J]. Journal of Engineering Geology,2023,31(2):502 − 513. (in Chinese with English abstract)]

    WANG Jie, ZHUANG Jianqi, KONG Jiaxu, et al. Influence of fragmentation on dynamic characteristics of loess landslide based on DEM simulation[J]. Journal of Engineering Geology, 2023, 31(2): 502 − 513. (in Chinese with English abstract)

    [33] 刘宁,刘杰. 国内外标准中砂性土内摩擦角确定方法对比[J]. 水运工程,2021(1):42 − 47. [LIU Ning,LIU Jie. Comparison of methods for determining internal friction angle of sand by domestic and foreign standards[J]. Port & Waterway Engineering,2021(1):42 − 47. (in Chinese with English abstract)]

    LIU Ning, LIU Jie. Comparison of methods for determining internal friction angle of sand by domestic and foreign standards[J]. Port & Waterway Engineering, 2021(1): 42 − 47. (in Chinese with English abstract)

    [34] 尹成薇,梁冰,姜利国. 基于颗粒流方法的砂土宏-细观参数关系分析[J]. 煤炭学报,2011,36(增刊2):264 − 267. [YIN Chengwei,LIANG Bing,JIANG Liguo. Analysis of relationship between macro-micro-parameters of sandy soil based on particle flow theory [J]. Journal of China Coal Society,2011,36(Sup 2):264 − 267. (in Chinese with English abstract)]

    YIN Chengwei, LIANG Bing, JIANG Liguo. Analysis of relationship between macro-micro-parameters of sandy soil based on particle flow theory [J]. Journal of China Coal Society, 2011, 36(Sup 2): 264 − 267. (in Chinese with English abstract)

    [35]

    YANG Liu,WANG Deguo,GUO Yanbao,et al. Tribological behaviors of quartz sand particles for hydraulic fracturing[J]. Tribology International,2016,102:485 − 496. DOI: 10.1016/j.triboint.2016.06.017

    [36] 陈家乐,倪万魁,王海曼,等. 原状黄土土-水特征曲线与湿陷性的相关性[J]. 中国地质灾害与防治学报,2024,35(2):107 − 114. [CHEN Jiale, NI Wankui, WANG Haiman, et al. Correlation between soil-water characteristic curve and collapsibility in undisturbed loess[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2):107 − 114. (in Chinese with English abstract)]

    CHEN Jiale, NI Wankui, WANG Haiman, et al. Correlation between soil-water characteristic curve and collapsibility in undisturbed loess[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 107 − 114. (in Chinese with English abstract)

    [37] 王韵,王红雨,李其星,等. 探地雷达在湿陷性黄土挖填方高边坡土体性状探测中的应用[J]. 中国地质灾害与防治学报,2023,34(2):102 − 110. [WANG Yun, WANG Hongyu, LI Qixing, et al. Application of the ground-penetrating radar technology in detection of soil properties of the high cutting and filling slopes in collapsible loess area[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):102 − 110. (in Chinese with English abstract)]

    WANG Yun, WANG Hongyu, LI Qixing, et al. Application of the ground-penetrating radar technology in detection of soil properties of the high cutting and filling slopes in collapsible loess area[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 102 − 110. (in Chinese with English abstract)

    [38] 李同录,冯文清,刘志伟,等. Q2黄土湿陷系数试验压力取值的讨论[J]. 水文地质工程地质,2023,50(6):59 − 68. [LI Tonglu, FENG Wenqing, LIU Zhiwei, et al. A discussion of the test pressure of collapsible coefficient for Q2 loess[J]. Hydrogeology & Engineering Geology,2023,50(6):59 − 68. (in Chinese with English abstract)]

    LI Tonglu, FENG Wenqing, LIU Zhiwei, et al. A discussion of the test pressure of collapsible coefficient for Q2 loess[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 59 − 68. (in Chinese with English abstract)

    [39] 潘登丽,胡向阳,赵成,等. 砂井载荷浸水试验在深层黄土湿陷性评价中的应用[J]. 水文地质工程地质,2023,50(2):122 − 131. [PAN Dengli, HU Xiangyang, ZHAO Cheng, et al. Application of sand-well load immersion test to deep loess collapsibility evaluation[J]. Hydrogeology & Engineering Geology,2023,50(2):122 − 131. (in Chinese with English abstract)]

    PAN Dengli, HU Xiangyang, ZHAO Cheng, et al. Application of sand-well load immersion test to deep loess collapsibility evaluation[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 122 − 131. (in Chinese with English abstract)

    [40] 钱法桥,邓亚虹,慕焕东,等. 吕梁山区黄土物理性质力学参数区域分布特征[J]. 中国地质灾害与防治学报,2022,33(2):61 − 70. [QIAN Faqiao, DENG Yahong, MU Huandong, et al. Distributive characteristics of physical and mechaniscal parameters of the loess soils in Lüliang mountainous area[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):61 − 70. (in Chinese with English abstract)]

    QIAN Faqiao, DENG Yahong, MU Huandong, et al. Distributive characteristics of physical and mechaniscal parameters of the loess soils in Lüliang mountainous area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 61 − 70. (in Chinese with English abstract)

    [41] 乔峰, 薄景山, 常晁瑜, 等. 3种特殊土物理力学性质指标统计分析[J]. 吉林大学学报(地球科学版),2021,51(5):1356 − 1365. [QIAO Feng, BO Jingshan, CHANG Chaoyu, et al. Statistical analysis of physical and mechanical properties of three special soils[J]. Journal of Jilin University (Earth Science Edition),2021,51(5):1356 − 1365. (in Chinese with English abstract)]

    QIAO Feng, BO Jingshan, CHANG Chaoyu, et al. Statistical analysis of physical and mechanical properties of three special soils[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(5): 1356 − 1365. (in Chinese with English abstract)

    [42] 李林翠,李喜安,洪勃,等. 不同埋深马兰黄土孔隙结构试验[J]. 吉林大学学报(地球科学版),2019,49(2):493 − 503. [LI Lincui, LI Xi’an, HONG Bo, et al. Experiment on pore structures of Malan loess at different buried depth[J]. Journal of Jilin University (Earth Science Edition),2019,49(2):493 − 503. (in Chinese with English abstract)]

    LI Lincui, LI Xi’an, HONG Bo, et al. Experiment on pore structures of Malan loess at different buried depth[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2): 493 − 503. (in Chinese with English abstract)

  • 期刊类型引用(5)

    1. 刘新荣,罗新飏,郭雪岩,周小涵,王浩,许彬,郑颖人. 巫山段岸坡水岩劣化特征及危岩失稳破坏模式. 工程地质学报. 2025(01): 240-257 . 百度学术
    2. 陈亚洲,杨鹏,曹廷. 两河口库区常见岸坡类型及变形破坏机制研究. 四川水力发电. 2024(06): 130-133 . 百度学术
    3. 黄浩,余姝,郭健,赵鹏,张枝华. 顺层陡倾斜坡溃屈破坏机理研究. 煤炭科技. 2023(05): 9-16 . 百度学术
    4. 檀梦皎,殷坤龙,付智勇,朱春芳,陶小虎,朱延辉. 降雨及库水位影响下麻地湾滑坡地下水响应特征分析. 中国地质灾害与防治学报. 2022(01): 45-57 . 本站查看
    5. 宋俊宏. 基于PFC的乔连河岸坡岩石力学特性及动力响应特征研究. 甘肃水利水电技术. 2022(06): 27-31+37 . 百度学术

    其他类型引用(3)

图(12)  /  表(3)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  17
  • PDF下载量:  34
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-07-12
  • 修回日期:  2024-01-10
  • 录用日期:  2024-03-04
  • 网络出版日期:  2024-05-25
  • 刊出日期:  2024-08-24

目录

/

返回文章
返回