ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

西藏林芝地区崩滑流灾害影响因子定量评价

余明威, 郭永刚, 苏立彬

余明威,郭永刚,苏立彬. 西藏林芝地区崩滑流灾害影响因子定量评价[J]. 中国地质灾害与防治学报,2024,35(6): 33-43. DOI: 10.16031/j.cnki.issn.1003-8035.202307037
引用本文: 余明威,郭永刚,苏立彬. 西藏林芝地区崩滑流灾害影响因子定量评价[J]. 中国地质灾害与防治学报,2024,35(6): 33-43. DOI: 10.16031/j.cnki.issn.1003-8035.202307037
YU Mingwei,GUO Yonggang,SU Libin. Quantitative evaluation of influencing factors for landslide, rockfall and debris flow hazards in the Nyingchi area of Xizang Autonomous Region[J]. The Chinese Journal of Geological Hazard and Control,2024,35(6): 33-43. DOI: 10.16031/j.cnki.issn.1003-8035.202307037
Citation: YU Mingwei,GUO Yonggang,SU Libin. Quantitative evaluation of influencing factors for landslide, rockfall and debris flow hazards in the Nyingchi area of Xizang Autonomous Region[J]. The Chinese Journal of Geological Hazard and Control,2024,35(6): 33-43. DOI: 10.16031/j.cnki.issn.1003-8035.202307037

西藏林芝地区崩滑流灾害影响因子定量评价

基金项目: 西藏自治区重点研发计划项目(XZ202201ZY0034G);西藏自治区科技重大专项课题(XZ202201ZD0003G03);国家自然科学基金联合基金项目(U22A20596)
详细信息
    作者简介:

    余明威(1996—),男,江苏淮安人,硕士,主要从事西藏重大工程地表地质灾害链监测与冰川冰湖分析方面的研究。E-mail:708942514@qq.com

    通讯作者:

    郭永刚(1966—),男,黑龙江双城人,博士,教授,博士生导师,主要从事水利水电工程强震安全监测、重大工程地质灾害防治方面的研究。E-mail:1960373107@qq.com

  • 中图分类号: P694

Quantitative evaluation of influencing factors for landslide, rockfall and debris flow hazards in the Nyingchi area of Xizang Autonomous Region

  • 摘要:

    林芝地区地形复杂,断层活动强烈,水系分布广泛,气候条件多变,地质灾害频发,对整个林芝地区经济发展和工程建设的影响日趋显著。其中,滑坡、崩塌、泥石流是林芝地区最常见的几种地质灾害,为了定量分析林芝地区内灾害对影响因子敏感性,文章基于GIS与确定性系数分析法,选取了高程、坡向、地形起伏度、地形湿度指数等10个因子开展对崩滑流灾害敏感性分析。分析结果表明:(1)林芝地区崩滑流灾害影响因子敏感性区间为:高程在0.82~3.79 km,坡向为东向、东北向、南向、西向,地形起伏度在0~24 m/km2,距水系距离0~3 km,归一化植被指数0.47~0.81,距道路距离0~1.5 km,距活动断裂带距离0~3 km,多年平均降雨量61.38~175.37 mm,多年平均气温4.02~17.22 °C,灾害与影响因子之间表现出良好的相关性。(2)影响因子间敏感性大小:多年平均气温>距水系距离>高程>地形起伏度>距道路距离>归一化植被指数>多年平均降雨量>地形湿度指数>距活动断裂带距离>坡向。研究结果对林芝地区工程建设与防灾减灾工作提供参考。

    Abstract:

    The Nyingchi area exhibits complex topography, high fault activity, an extensive water systems distribution, variable climatic conditions, and frequent geological hazards. These factors have a significantly growing impact on the economic development and engineering construction in the entire Nyingchi area. Among these hazards, landslides, collapses, and debris flows are the most common geological hazards in Nyingchi area. In order to quantitatively analyze the sensitivity of hazards in the Nyingchi area to the impact factors, this study, based on GIS and the certainty coefficient analysis method, selected ten factors, including elevation, slope aspect, topographic relief, and topographic humidity index, to conduct sensitivity analysis on landslide, rockfall and debris flow hazards. The analysis results show that: (1) The sensitive range of factors influencing landslide, rockfall and debris flow hazards in the Nyingchi area include elevation between 0.82 and 3.79 km; slope aspects facing eastward, northeastward, southward, and westward; topographic relief ranging from 0 to 24 m/km2; distances from the water system within 0 to 3 km; normalized vegetation index ranging from 0.47 to 0.81; distances from the road wihtin 0 to 1.5 km; distances from the active fault zone within 0 to 3 km; annual average rainfall ranging from 51.15 to 146.14 mm; annual average temperatures between 4.02 and 17.22 °C. There exists a strong correlation between hazards and these impact factors. (2) Sensitivity among influencing factors follows this order: annual average temperature > distance from water system > elevation > topographic relief > distance from road > normalized vegetation index > average annual rainfall > topographic humidity index > distance from the active fault > aspect. The research results provide references for engineering construction and hazards prevention and mitigation work in the Nyingchi area.

  • 对于内部不存在潜在滑移面和控制性结构面的厚层危岩体,其破坏机理十分复杂[1-2]。这种危岩体具有分布区域广、发生频率高、突发性强、破坏范围大等特点,是一类典型的山区地质灾害,对人民生命财产安全和城镇建设造成严重威胁[3-6]。对于涉水厚层危岩体,除了崩塌的直接危害以外,产生的涌浪次生灾害将进一步扩大威胁范围[7-9]

    自2008年三峡库区正式蓄水以来,由于三峡库区水位的周期性涨落,在库岸形成了高达30 m的劣化带[10-12]。库区涉水危岩体的基座部分位于劣化带区域,基座岩体长期处于上部岩体自重下,并在干湿循环作用下逐渐劣化,导致其变形破坏机理更为复杂,进一步加大了危岩体的防治难度[13-15]

    文章在现场调查、监测数据以及室内试验的基础上,分析了三峡库区箭穿洞危岩体的变形破坏特征,并对其破坏模式进行了判定。根据其变形破坏特征,提出了危岩体的治理方案,并采用数值模拟对治理方案进行了定量评价。该危岩体的防护理念对于岩质库岸的防治具有重要的参考价值。

    箭穿洞危岩体位于重庆市巫山县望霞村。危岩体的上游侧边界为纵张裂缝(LF1: 150~226 m);下游侧边界裂缝在陡崖面上清晰可见,上宽下窄,充填或局部充填碎石土或溶蚀、残积碎石土,并向下逐渐收敛至153 m高程尖灭(LF2)。危岩体后缘边界为卸荷裂缝(LF3)张开度可达3.15 m,裂隙在高程226 m以下底部均被碎石所填充。箭穿洞危岩体的正视图见图1

    图  1  箭穿洞危岩体正视图
    Figure  1.  Front view of the Jianchuandong dangerous rock mass

    箭穿洞危岩体的三维切割边界清楚,其几何形态呈不规则的六面体,后缘高程为278~305 m,基座高程为155 m,平均高差为135 m,危岩体平均横宽约55 m,平均厚度约50 m,危岩体体积约36×104 m3,主崩方向为260°。箭穿洞危岩主要为三叠系下统大冶组第四段(T1d4)、高程280 m以上为嘉陵江组第一段(T1j1),基座以下为大冶组第三段(T1d3)。基座岩体位置处有一平硐,其中布有压力传感器。箭穿洞危岩体的典型剖面图见图2

    图  2  箭穿洞危岩体典型剖面Ⅰ−Ⅰ'
    Figure  2.  Sectional view of the Jianchuandong dangerous rock mass

    由区域地质构造可知,箭穿洞危岩体是在斜坡岩体不断卸荷,长江不断侵蚀切割、构造应力释放等条件下形成的。三维边界基本形成后,重力成为主导危岩体变形的主要因素。另外,干湿循环作用下基座岩体的持续劣化进一步加速了危岩体的变形。根据现场监测资料可知(图3),危岩体的边界裂缝及基座压力随着库水位周期性升降次数的增加而持续增大。

    图  3  箭穿洞危岩体的变形特征
    Figure  3.  Deformation characteristics of the Jianchuandong dangerous rock mass

    针对基座的泥质条带灰岩,在室内完成了30次干湿循环试验,得到了初始状态、5次、15次、20次以及30次干湿循环后基座岩体的力学参数(表1)。

    表  1  泥质条带灰岩力学参数
    Table  1.  Mechanical parameters of marlstone under dry-wet cycles in the Three Gorges Reservoir area
    干湿循环次数 单轴抗压强度 抗拉强度 /MPa 抗剪强度 变形参数
    天然状态/MPa 饱和状态/MPa 内摩擦角/(°) 黏聚力/MPa 弹性模量/(104 MPa) 泊松比μ
    0 19.07 13.24 1.10 32.6 3.36 0.405 0.30
    5 18.39 12.25 0.99 32.2 3.16 0.373 0.31
    15 16.96 11.10 0.89 31.8 2.91 0.351 0.32
    20 16.22 10.44 0.83 30.1 2.83 0.272 0.33
    30 14.98 9.67 0.79 28.4 2.76 0.238 0.35
    下载: 导出CSV 
    | 显示表格

    经过30次干湿循环后,基座岩体的单轴抗压强度下降约21%~26%,随着循环次数的增加,其强度的劣化率有所下降,但尚未收敛;抗拉强度和黏聚力下降约28%,随着循环次数增加,其劣化率有所下降,趋于收敛;岩石的内摩擦角下降约17%,在15次循环后劣化率有增大趋势,表明岩体的抗剪强度将持续降低;变形参数下降约40%,变形模量趋于减小,泊松比趋于增大,并且在15次循环后劣化率有增大趋势,表明岩体质量将持续降低。

    根据危岩体的变形特征可知,箭穿洞危岩体以基座的变形破坏为主导,内部不存在潜在的剪切面或导致倾倒变形的控制性结构面。对于这种类型的危岩体,其变形破坏发展一般有2种趋势,分别是基座压裂型崩塌和基座滑移型崩塌[1-2]图4)。

    图  4  箭穿洞危岩体破坏模式
    Figure  4.  Failure mode of Jianchuandong dangerous rock mass

    基座压裂型崩塌见图4(a)。如果缓坡岩体较坚硬,基座底部岩体受压集中,会导致基座岩体和接触岩体出现压致拉裂现象;基座破坏时,大量的拉裂缝和剪裂缝会出现,导致岩体整体失稳。基座滑移型崩塌见图4(b)。如果缓坡岩体较为软弱,在上部压力作用下,基座软弱岩体可能会出现剪切破坏,上覆岩体压力将软弱基座挤出,从而发生后靠滑移式的整体破坏。

    基座碎裂型崩塌和基座滑移型崩塌的判定与基座岩体强度有关,根据HUNGR等[1]提出的判定方法[1],可采用应力比值(Ns)来界定危岩的破坏模式,Ns的建议值为0.25,其判定公式如下:

    Ns=γHσcNs>0.25Ns<0.25 (1)

    式中:γ——危岩体重度,此处取27.2 kN/m3

    H——上部危岩体的高度,此处取135 m;

    σc——基座的抗压强度,此处取5.775 MPa;该抗压强度根据规范对室内试验数据进行了折减[16-17]

    计算可知,Ns为0.63,大于0.25,因而确定箭穿洞危岩体将发生滑移破坏。

    基于箭穿洞危岩体的破坏模式,将危岩体的治理定为两部分,分别是基座软弱岩体的补强加固,以及危岩体中上部的锚索加固(图5)。其中,基座岩体的补强是为了阻断危岩体的滑移剪出;中上部锚索加固是为了控制危岩体的变形。防护治理所涉及的力学改善措施如下:

    (1)基座软弱岩体补强加固工程

    基座平硐采用C30钢筋混凝土键体充填支撑;基底设置3排锚桩,锚桩间距为1.75 m、2.25 m,锚桩孔径为150 mm,锚固段长度为6.00 m,基座涉水岩体的表面采用板肋式锚杆挡墙。

    (2)防护工程(锚索、主动防护网、被动防护网、水下柔性防护垫)

    在危岩体中上部布置6排2 000 kN级锚索,水平夹角为15°,水平及竖向间距均为6.00 m,锚索为16 φs15.2 mm,锚固段总长度为17.00 m(3.00,3.00,2.50,3.00,3.00,2.50 m分6段设置)。

    图  5  箭穿洞危岩体防护(Ⅰ−Ⅰ'剖面)
    Figure  5.  Preventative methods for the Jianchuandong dangerous rock mass

    针对防护方案,将提高岩体稳定性的防护措施进行简化后,进行有限元数值计算(所采用数值软件为MIDAS GTS),涵盖上部危岩的预应力锚索、消落带区域砂浆锚杆、板肋式锚杆挡墙及平硐充填。未进行防护加固时,平硐区域作隧洞处理;防护加固后,平硐区域采用C30钢筋混凝土的强度参数(参考值)进行分析。此外,砂浆锚杆、预应力锚杆及板肋式锚杆挡墙相关参数均为参照值[18-19],数值分析过程中的计算参数见表2。以初始状态下的危岩防护为例,对防护措施的有效性进行评价。根据相关规范要求[20-21],泥质条带灰岩的岩体黏聚力由岩石黏聚力乘以折减系数,取0.20;岩体内摩擦角由岩石内摩擦角乘以折减系数,取0.80;岩体变形参数由岩石变形参数乘以折减系数,取0.70。数值计算时,对数值模型右侧边界和左侧边界的水平方向进行了约束,底部边界采用固定约束,将危岩体的自重设定为诱发失稳的关键因素。

    表  2  有限元数值计算岩体参数
    Table  2.  Mechanical parameters of the marlstone used in the numerical simulation
    岩性 本构模型 弹性模量/MPa 泊松比 容重/(kN·m−3) 黏聚力/MPa 内摩擦角/(°)
    灰岩(基岩) 摩尔库伦 47800 0.26 27.20 5.21 44.4
    灰岩(消落带) 摩尔库伦 42000 0.24 24.50 4.82 40.2
    泥质条带灰岩(消落带) 摩尔库伦 27200 0.33 26.50 1.79 37.6
    泥质条带灰岩(水上基岩) 摩尔库伦 40500 0.30 26.60 2.36 37.6
    水上灰岩(基岩) 摩尔库伦 50400 0.28 27.10 5.48 44.4
    平硐(充填) 摩尔库伦 27000 0.20 24.20 3.18 48.6
    砂浆锚杆 弹性 196000 0.28 78.50
    预应力锚杆 弹性 196000 0.28 78.50
    板肋式锚杆挡墙 弹性 27000 0.25 23.00
    下载: 导出CSV 
    | 显示表格

    通过对箭穿洞危岩典型剖面的有限元计算,得到该剖面加固前后的位移云图见图6。分析可知,上部岩体的锚索加固是控制危岩体变形的关键措施。危岩体的最大位移位于后缘部分,这是因为危岩体形状不规则,存在偏压应力,导致其具有沿基座滑移的变形趋势,与之前的破坏机制分析相符。在防护加固前,危岩体的最大位移为0.3235 m,综合防护加固后其最大位移为0.1313 m,降低了59.41%,危岩体的变形趋势得以控制。

    图  6  箭穿洞危岩体位移云图
    Figure  6.  The displacement field of the JDRM under different working conditions

    箭穿洞剖面最大剪应力云图见图7,分析可知,岩体基座加固是控制剪切应力集中的关键措施。防护加固前,剪应力的最大值为38.085 MPa,且在裂隙尖端出现应力集中现象。综合防护加固后,裂隙尖端的最大剪应力为11.117 MPa,降幅可达70.81%。

    图  7  箭穿洞危岩体最大剪应力云图
    Figure  7.  The maximum shear stress field of the JDRM under different working conditions

    对应力场及位移场进行分析可知,预应力锚索可有效控制危岩体由于偏压而引发的变形趋势,而基座加固在保证基座岩体完整性的同时,可以有效降低基座岩体的最大剪应力。

    通过强度折减法对危岩体的稳定性进行了分析(图8)。根据防护前危岩体的塑性变形可知,其破坏模式为基座滑移式破坏,与前文滑移破坏模式的判定是一致的,其塑性变形区由后缘裂缝尖端向平硐位置延伸,此时危岩体稳定系数为1.04,处于临界失稳状态。在平硐充填的基础上,进行砂浆锚杆以及格构梁的支护,提升基座岩体的完整性之后,其塑性变形区下移见图8(b),危岩体的稳定性大幅度提升,稳定系数可达1.82,其提高幅度为75%。当上部岩体采用预应力锚索进行加固时,见图8(c),可有效控制危岩体的变形,与防护前的危岩体相比,其稳定性提高了17.78%。当完成综合支护后,见图8(d),其稳定性可达2.451,与防护前的稳定性相比提高了135.67%。在综合防护下,基座补强尤其是砂浆锚杆的施工阻断了塑性变形区的连续性,危岩体塑性变形区的剪出口下移到破碎带下方的消落带区域,且上部预应力锚索控制住了危岩体的整体变形,从而大幅提升了危岩体的稳定性。

    图  8  箭穿洞危岩体塑性变形区
    Figure  8.  The plastic deformation zone of the JDRM under different working conditions

    通过数值模拟可知,在综合防护之后,危岩体的剪出口将下移至145 m高程处。根据原有设计方案,在145 m水位处会设置防水层以及竖向锚杆,因而,能够在之后的劣化中进一步提升危岩体的长期稳定性。由于145 m高程处的防护并非主体设计,本文在计算时并未考虑相关防护措施。箭穿洞危岩体的防护工程已经按照文中所陈述的措施完成了施工,相应的演化趋势将在之后做进一步的研究。

    在现场调查、实时监测以及室内试验的基础上,本文采用公式判定和数值模拟等方法对三峡库区箭穿洞危岩体的破坏机理和防护效果进行了分析和研究,得到以下结论:

    (1)由于箭穿洞危岩体为内部不存在潜在滑移面和控制性结构面的涉水厚层危岩体,其变形破坏机理较为复杂。箭穿洞危岩体基座部分的软弱岩层不仅承担着上覆岩层的自重,同时在库区水位的周期性升降下持续劣化,加速了危岩体的变形破坏。

    (2)通过公式判定可知,在上部压力作用下,箭穿洞危岩的基座软弱岩体可能会出现剪切破坏,上覆岩体压力将软弱基座挤出,并最终发生基座滑移式的整体破坏。

    (3)针对该危岩体的变形破坏模式,提出了基座加固及上部岩体固定的防护措施,其中,上部岩体的锚索加固用于控制危岩体的变形,基座加固用于控制危岩体的滑移。

    (4)数值模拟结果表明,本文涉及的综合防护措施效果显著,能够有效的控制危岩体的变形,使得危岩体的塑性变形区域下移,并最终提高危岩体的整体稳定性。

  • 图  1   林芝地区崩滑流灾害分布图

    Figure  1.   Distribution map of landslide, rockfall and debris flow hazards in Nyingchi area

    图  2   崩滑流灾害影响因子分布图

    Figure  2.   Distribution map of impact factors for landslide, rockfall and debris flow hazards

    图  3   崩滑流灾害影响因子各分类敏感性分布图

    Figure  3.   Sensitivity distribution map of impact factors in each classification for landslide, rockfall and debris flow hazards

    表  1   影响因子分类标准及确定性系数值

    Table  1   Classification standard for impact factors and value of certainty factors

    影响因子 因子分级 灾害点/处 PiPj/(处·km−2 CFij CFi
    高程/km 0.02~0.82 24 0.00383 −0.425 0.66
    0.82~1.54 63 0.00967 0.307
    1.54~2.19 154 0.02208 0.702
    2.19~2.77 104 0.01277 0.474
    2.77~3.31 226 0.02027 0.666
    3.31~3.79 141 0.01021 0.344
    3.79~4.22 50 0.00306 −0.540
    4.22~4.63 10 0.00053 −0.920
    4.63~5.04 5 0.00028 −0.957
    >5.04 1 0.00009 −0.986
    坡向 平面 74 0.00579 −0.137 0.21
    80 0.00629 −0.063
    东北 91 0.00690 0.027
    98 0.00745 0.098
    东南 83 0.00640 −0.046
    115 0.00804 0.163
    西南 86 0.00662 −0.014
    西 84 0.00691 0.028
    西北 71 0.00583 −0.132
    地形起伏度/(m·km−2 0~24 385 0.01582 0.572 0.64
    24~42 206 0.00508 −0.242
    42~58 130 0.00389 −0.418
    58~76 49 0.00339 −0.493
    76~101 10 0.00286 −0.573
    101~145 2 0.00689 0.027
    145~257 0 0.00000 −1.000
    257~602 0 0.00000 −1.000
    >602 0 0.00000 −1.000
    地形湿度指数 0.47~4.58 105 0.00305 −0.545 0.50
    4.58~5.96 216 0.00493 −0.265
    5.96~7.64 190 0.00796 0.154
    7.64~10.07 151 0.01598 0.576
    10.07~13.65 77 0.02164 0.685
    >13.65 43 0.03604 0.808
    归一化植被指数 0.01~0.18 4 0.00033 −0.950 0.55
    0.18~0.33 7 0.00068 −0.899
    0.33~0.47 33 0.00295 −0.560
    0.47~0.60 89 0.00738 0.088
    0.60~0.70 131 0.00984 0.315
    0.70~0.81 273 0.01456 0.535
    0.81~0.91 244 0.00634 −0.057
    距道路距离/km 0~0.3 242 0.27615 0.969 0.57
    0.3~0.6 55 0.06455 0.890
    0.6~0.9 30 0.03577 0.807
    0.9~1.2 21 0.02534 0.730
    1.2~1.5 10 0.01244 0.457
    >1.5 424 0.00378 −0.436
    距水系距离/km 0~1.5 431 0.05304 0.868 0.68
    1.5~3 225 0.03093 0.778
    3~4.5 30 0.00420 −0.372
    4.5~6 17 0.00241 −0.639
    6~7.5 29 0.00419 −0.374
    >7.5 50 0.00063 −0.906
    距活动断裂带距离/km 0~3 493 0.00806 0.688 0.44
    3~6 117 0.00297 −0.375
    6~9 70 0.00284 −0.402
    9~12 32 0.00225 −0.526
    12~15 16 0.00173 −0.636
    >15 52 0.00342 −0.280
    多年平均降雨量/mm 25.76~47.13 127 0.00749 0.099 0.54
    47.13~61.38 199 0.00422 −0.372
    61.38~78.30 206 0.01036 0.347
    78.30~99.67 67 0.00725 0.070
    99.67~123.72 77 0.01308 0.481
    123.72~149.54 64 0.01399 0.515
    149.54~175.37 37 0.00883 0.235
    175.37~201.19 5 0.00126 −0.812
    201.19~253.74 0 0.00000 −1.000
    多年平均温度/°C −21.52~−8.49 0 0.00000 −1.000 0.75
    −8.49~−5.32 1 0.00008 −0.988
    −5.32~−2.50 9 0.00048 −0.928
    −2.50~0.49 30 0.00162 −0.758
    0.49~4.02 87 0.00513 −0.237
    4.02~7.89 200 0.01475 0.539
    7.89~12.47 265 0.02312 0.704
    12.47~17.22 165 0.01741 0.609
    17.22~23.56 25 0.00218 −0.675
    下载: 导出CSV
  • [1] 王培清,徐国涛,何强. 西藏藏东南地区典型地质灾害成因及防治技术浅析[J]. 西藏大学学报(自然科学版),2013,28(1):16 − 20. [WANG Peiqing,XU Guotao,HE Qiang. Analysis on the causes of typical geological disasters in the southeastern Tibet and its prevention technology[J]. Journal of Tibet University,2013,28(1):16 − 20. (in Chinese with English abstract)]

    WANG Peiqing, XU Guotao, HE Qiang. Analysis on the causes of typical geological disasters in the southeastern Tibet and its prevention technology[J]. Journal of Tibet University, 2013, 28(1): 16 − 20. (in Chinese with English abstract)

    [2] 汪发武,陈也,刘伟超,等. 藏东南高位远程滑坡动力学特征及研究难点[J]. 工程地质学报,2022,30(6):1831 − 1841. [WANG Fawu,CHEN Ye,LIU Weichao,et al. Characteristics and challenges to dynamics of long-runout landslides with high-altitude in southeast Tibet[J]. Journal of Engineering Geology,2022,30(6):1831 − 1841. (in Chinese with English abstract)]

    WANG Fawu, CHEN Ye, LIU Weichao, et al. Characteristics and challenges to dynamics of long-runout landslides with high-altitude in southeast Tibet[J]. Journal of Engineering Geology, 2022, 30(6): 1831 − 1841. (in Chinese with English abstract)

    [3] 孙滨,祝传兵,康晓波,等. 基于信息量模型的云南东川泥石流易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):119 − 127. [SUN Bin,ZHU Chuanbing,KANG Xiaobo,et al. Susceptibility assessment of debris flows based on information model in Dongchuan,Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):119 − 127. (in Chinese with English abstract)]

    SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 119 − 127. (in Chinese with English abstract)

    [4] 胡凯衡,崔鹏,韩用顺,等. 基于聚类和最大似然法的汶川灾区泥石流滑坡易发性评价[J]. 中国水土保持科学,2012,10(1):12 − 18. [HU Kaiheng,CUI Peng,HAN Yongshun,et al. Susceptibility mapping of landslides and debris flows in 2008 Wenchuan earthquake by using cluster analysis and maximum likelihood classification methods[J]. Science of Soil and Water Conservation,2012,10(1):12 − 18. (in Chinese with English abstract)]

    HU Kaiheng, CUI Peng, HAN Yongshun, et al. Susceptibility mapping of landslides and debris flows in 2008 Wenchuan earthquake by using cluster analysis and maximum likelihood classification methods[J]. Science of Soil and Water Conservation, 2012, 10(1): 12 − 18. (in Chinese with English abstract)

    [5] 杨命青,王万东,毋利军,等. 龙门山区震后山地灾害地质因素敏感性评价[J]. 中国安全科学学报,2010,20(10):3 − 7. [YANG Mingqing,WANG Wandong,WU Lijun,et al. Sensitivity assessment of geological factors to geological disasters after earthquake in Longmen Mountain area[J]. China Safety Science Journal,2010,20(10):3 − 7. (in Chinese with English abstract)]

    YANG Mingqing, WANG Wandong, WU Lijun, et al. Sensitivity assessment of geological factors to geological disasters after earthquake in Longmen Mountain area[J]. China Safety Science Journal, 2010, 20(10): 3 − 7. (in Chinese with English abstract)

    [6] 范林峰,胡瑞林,周顺江,等. 地质灾害危险性评价因子对格网大小的敏感性与误差分析[J]. 工程地质学报,2012,20(2):152 − 159. [FAN Linfeng,HU Ruilin,ZHOU Shunjiang,et al. Sensitivity and error analysis of controlling factors due to variation of grid sizes in geohazard assessment[J]. Journal of Engineering Geology,2012,20(2):152 − 159. (in Chinese with English abstract)]

    FAN Linfeng, HU Ruilin, ZHOU Shunjiang, et al. Sensitivity and error analysis of controlling factors due to variation of grid sizes in geohazard assessment[J]. Journal of Engineering Geology, 2012, 20(2): 152 − 159. (in Chinese with English abstract)

    [7] 陈玉,郭华东,王钦军. 基于RS与GIS的芦山地震地质灾害敏感性评价[J]. 科学通报,2013,58(36):3859 − 3866. [CHEN Yu,GUO Huadong,WANG Qinjin. Geological disaster susceptibility assessment of the Lushan earthquake based on RS and GIS[J]. Chinese Sci Bull,2013,58(36):3859 − 3866. (in Chinese with English abstract)] DOI: 10.1360/972013-665

    CHEN Yu, GUO Huadong, WANG Qinjin. Geological disaster susceptibility assessment of the Lushan earthquake based on RS and GIS[J]. Chinese Sci Bull, 2013, 58(36): 3859 − 3866. (in Chinese with English abstract) DOI: 10.1360/972013-665

    [8] 林金煌,张岸,邓超,等. 闽三角城市群地质灾害敏感性评价[J]. 地球信息科学学报,2018,20(9):1286 − 1297. [LIN Jinhuang,ZHANG An,DENG Chao,et al. Sensitivity assessment of geological hazards in urban agglomeration of Fujian delta region[J]. Journal of Geo-Information Science,2018,20(9):1286 − 1297. (in Chinese with English abstract)]

    LIN Jinhuang, ZHANG An, DENG Chao, et al. Sensitivity assessment of geological hazards in urban agglomeration of Fujian delta region[J]. Journal of Geo-Information Science, 2018, 20(9): 1286 − 1297. (in Chinese with English abstract)

    [9] 赵银兵,陈利顶,孙然好,等. 基于资源利用和灾害风险的京津冀地区环境地质敏感性区划[J]. 生态学报,2022,42(6):2251 − 2264. [ZHAO Yinbing,CHEN Liding,SUN Ranhao,et al. Regionalization of environmental geological sensitivity in Beijing-Tianjin-Hebei Region based on resource utilization and disaster risk[J]. Acta Ecologica Sinica,2022,42(6):2251 − 2264. (in Chinese with English abstract)]

    ZHAO Yinbing, CHEN Liding, SUN Ranhao, et al. Regionalization of environmental geological sensitivity in Beijing-Tianjin-Hebei Region based on resource utilization and disaster risk[J]. Acta Ecologica Sinica, 2022, 42(6): 2251 − 2264. (in Chinese with English abstract)

    [10] 薛永安,王玉洁,朱婧聪,等. 县域国土空间斜坡地质灾害敏感性评价研究[J]. 自然灾害学报,2022,31(4):219 − 230. [XUE Yongan,WANG Yujie,ZHU Jingcong,et al. Study of slope geological hazard sensitivity evaluation in the county territory of territorial spatial[J]. Journal of Natural Disasters,2022,31(4):219 − 230. (in Chinese with English abstract)]

    XUE Yongan, WANG Yujie, ZHU Jingcong, et al. Study of slope geological hazard sensitivity evaluation in the county territory of territorial spatial[J]. Journal of Natural Disasters, 2022, 31(4): 219 − 230. (in Chinese with English abstract)

    [11] 王盈,金家梁,袁仁茂. 藏东南地区地质灾害空间分布及影响因素分析[J]. 地震研究,2019,42(3):428 − 437. [WANG Ying,JIN Jialiang,YUAN Renmao. Analysis on spatial distribution and influencing factors of geological disasters in southeast Tibet[J]. Journal of Seismological Research,2019,42(3):428 − 437. (in Chinese with English abstract)]

    WANG Ying, JIN Jialiang, YUAN Renmao. Analysis on spatial distribution and influencing factors of geological disasters in southeast Tibet[J]. Journal of Seismological Research, 2019, 42(3): 428 − 437. (in Chinese with English abstract)

    [12] 韩用顺,孙湘艳,刘通,等. 基于证据权-投影寻踪模型的藏东南地质灾害易发性评价[J]. 山地学报,2021,39(5):672 − 686. [HAN Yongshun,SUN Xiangyan,LIU Tong,et al. Susceptibility evaluation of geological hazards based on evidence weight-projection pursuit model in southeast Tibet,China[J]. Mountain Research,2021,39(5):672 − 686. (in Chinese with English abstract)]

    HAN Yongshun, SUN Xiangyan, LIU Tong, et al. Susceptibility evaluation of geological hazards based on evidence weight-projection pursuit model in southeast Tibet, China[J]. Mountain Research, 2021, 39(5): 672 − 686. (in Chinese with English abstract)

    [13] 熊德清,崔笑烽. 喜马拉雅山脉地震带主要地质灾害与地形地貌关系——以西藏日喀则地区为例[J]. 地质通报,2021,40(11):1967 − 1980. [XIONG Deqing,CUI Xiaofeng. The relationship between main geological hazard and topography in the Himalayan seismic belt:A case study in the Xigaze area,Tibet[J]. Geological Bulletin of China,2021,40(11):1967 − 1980. (in Chinese with English abstract)]

    XIONG Deqing, CUI Xiaofeng. The relationship between main geological hazard and topography in the Himalayan seismic belt: A case study in the Xigaze area, Tibet[J]. Geological Bulletin of China, 2021, 40(11): 1967 − 1980. (in Chinese with English abstract)

    [14] 黄艳婷,郭永刚. 考虑降雨敏感度的泥石流危险性评价——以藏东南地区为例[J]. 中国地质灾害与防治学报,2023,34(1):129 − 138. [HUANG Yanting,GUO Yonggang. Debris flow risk assessment considering different rainfall sensitivity:A case study in southeast Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):129 − 138. (in Chinese with English abstract)]

    HUANG Yanting, GUO Yonggang. Debris flow risk assessment considering different rainfall sensitivity: A case study in southeast Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 129 − 138. (in Chinese with English abstract)

    [15] 支泽民,刘峰贵,周强,等. 基于流域单元的地质灾害易发性评价——以西藏昌都市为例[J]. 中国地质灾害与防治学报,2023,34(1):139 − 150. [ZHI Zemin,LIU Fenggui,ZHOU Qiang,et al. Evaluation of geological hazards susceptibility based on watershed units:A case study of the Changdu City,Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):139 − 150. (in Chinese with English abstract)]

    ZHI Zemin, LIU Fenggui, ZHOU Qiang, et al. Evaluation of geological hazards susceptibility based on watershed units: A case study of the Changdu City, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 139 − 150. (in Chinese with English abstract)

    [16] 杨德宏. 川藏铁路昌都至林芝段主要工程地质问题分析[J]. 铁道标准设计,2019,63(9):16 − 22. [YANG Dehong. Analysis of main engineering geological problems in Changdu to Linzhi section of Sichuan-Tibet railway[J]. Railway Standard Design,2019,63(9):16 − 22. (in Chinese with English abstract)]

    YANG Dehong. Analysis of main engineering geological problems in Changdu to Linzhi section of Sichuan-Tibet railway[J]. Railway Standard Design, 2019, 63(9): 16 − 22. (in Chinese with English abstract)

    [17]

    LI Xiuping,WANG Lei,CHEN Deliang,et al. Large-scale circulation dominated precipitation variation and its effect on potential water availability across the Tibetan Plateau[J]. Environmental Research Letters,2023,18(7):074018. DOI: 10.1088/1748-9326/acdd15

    [18] 邓明枫,陈宁生,王涛,等. 藏东南地区日降雨极值的波动变化[J]. 自然灾害学报,2017,26(2):152 − 159. [DENG Mingfeng,CHEN Ningsheng,WANG Tao,et al. Fluctuation of daily rainfall extreme in southeastern Tibet[J]. Journal of Natural Disasters,2017,26(2):152 − 159. (in Chinese with English abstract)]

    DENG Mingfeng, CHEN Ningsheng, WANG Tao, et al. Fluctuation of daily rainfall extreme in southeastern Tibet[J]. Journal of Natural Disasters, 2017, 26(2): 152 − 159. (in Chinese with English abstract)

    [19] 周路旭, 刘建康, 陈龙. 藏东南交通干线(林芝段)冰湖溃决危险性分析与评价[J]. 自然灾害学报,2020,29(3):162 − 172. [ZHOU Luxu, LIU Jiankang, CHEN Long. Risk analysis and evaluation of glacier lake outburst in traffic route of southeast Tibet (Linzhi)[J]. Journal of Natural Disasters,2020,29(3):162 − 172. (in Chinese with English abstract)]

    ZHOU Luxu, LIU Jiankang, CHEN Long. Risk analysis and evaluation of glacier lake outburst in traffic route of southeast Tibet (Linzhi)[J]. Journal of Natural Disasters, 2020, 29(3): 162 − 172. (in Chinese with English abstract)

    [20] 徐新良. 中国年度植被指数(NDVI)空间分布数据集[R]. 资源环境科学数据注册与出版系统(http://www.resdc.cn/DOI),2018. [XU Xinliang. Spatial distribution dataset of annual Vegetation index (NDVI) in China[R]. Resources and Environmental Science Data Registration and Publication System (http://www.resdc.cn/DOI),2018.(in Chinese)]

    XU Xinliang. Spatial distribution dataset of annual Vegetation index (NDVI) in China[R]. Resources and Environmental Science Data Registration and Publication System (http://www.resdc.cn/DOI), 2018.(in Chinese)

    [21]

    ZELENIN E,BACHMANOV D,GARIPOVA S,et al. The active faults of eurasia database (AFEAD):The ontology and design behind the continental-scale dataset[J]. Earth System Science Data,2022,14(10):4489 − 4503. DOI: 10.5194/essd-14-4489-2022

    [22]

    PENG Shouzhang,DING Yongxia,LIU Wenzhao,et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data,2019,11(4):1931 − 1946. DOI: 10.5194/essd-11-1931-2019

    [23] 吴森,张文,刘民生. 西藏地区崩塌滑坡影响因子敏感性分析[J]. 中国地质灾害与防治学报,2023,34(3):109 − 117. [WU Sen,ZHANG Wen,LIU Minsheng. Susceptibility analysis on influencing factors of rockfalls and landslides in Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):109 − 117. (in Chinese with English abstract)]

    WU Sen, ZHANG Wen, LIU Minsheng. Susceptibility analysis on influencing factors of rockfalls and landslides in Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 109 − 117. (in Chinese with English abstract)

    [24] 刘福臻,戴天宇,王军朝,等. 耦合Random Forest算法与信息量模型的地质灾害易发性评价——以西藏自治区工布江达县为例[J]. 安全与环境学报,2023,23(7):2428 − 2438. [LIU Fuzhen,DAI Tianyu,WANG Junchao,et al. Geological hazard susceptibility evaluation by coupled Random Forest and information model:A case study of Gongbujiangda County,Tibet Autonomous Region[J]. Journal of Safety and Environment,2023,23(7):2428 − 2438. (in Chinese with English abstract)]

    LIU Fuzhen, DAI Tianyu, WANG Junchao, et al. Geological hazard susceptibility evaluation by coupled Random Forest and information model: A case study of Gongbujiangda County, Tibet Autonomous Region[J]. Journal of Safety and Environment, 2023, 23(7): 2428 − 2438. (in Chinese with English abstract)

    [25] 许模,蒋良文,李潇,等. 川藏铁路雅安至林芝段重大工程水文地质问题[J]. 水文地质工程地质,2021,48(5):13 − 22. [XU Mo,JIANG Liangwen,LI Xiao,et al. Major engineering hydrogeological problems along the Ya’an-Linzhi section of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology,2021,48(5):13 − 22. (in Chinese with English abstract)]

    XU Mo, JIANG Liangwen, LI Xiao, et al. Major engineering hydrogeological problems along the Ya’an-Linzhi section of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 13 − 22. (in Chinese with English abstract)

    [26] 张佳佳,杨东旭,高波,等. 怒江干流云南段泥石流时空分异特征、驱动因素及演化趋势分析[J/OL]. 中国地质, 2024 (2024-05-20) [2023-12-23]. [ZHANG Jiajia,YANG Dongxu,GAO Bo,et al. Characteristics, driving factors of spatial and temporal variationsand tendencyof debris flows in the Yunnan section of the Nu River 1nainstreal[J/OL]. Geology in China, 2024 (2024-05-20). [2023-12-23]. https://kns.cnki.net/kcms2/article/abstract?v=At0rObma_qP-IQMrkV7KgQHjO9Wu8hUQ6wgbeDeMaNslD1xHuEuqcFfzXZifGuGY0M_WWqpC-DbWx7M5mFQ0l3txhW7HZthKbH2jIr4LmqRMybfBBHWCXXA90RjTUFSSkKXBWGOwiEBL8dVtWJGF3eZ0YN1wJ9Z0Mj-vzuL432cF864qzDnJ4oXoVMbeCxtw&uniplatform=NZKPT&language=CHS(in Chinese with English abstract)]

    ZHANG Jiajia, YANG Dongxu, GAO Bo, et al. Characteristics, driving factors of spatial and temporal variationsand tendencyof debris flows in the Yunnan section of the Nu River 1nainstreal[J/OL]. Geology in China, 2024 (2024-05-20). [2023-12-23]. https://kns.cnki.net/kcms2/article/abstract?v=At0rObma_qP-IQMrkV7KgQHjO9Wu8hUQ6wgbeDeMaNslD1xHuEuqcFfzXZifGuGY0M_WWqpC-DbWx7M5mFQ0l3txhW7HZthKbH2jIr4LmqRMybfBBHWCXXA90RjTUFSSkKXBWGOwiEBL8dVtWJGF3eZ0YN1wJ9Z0Mj-vzuL432cF864qzDnJ4oXoVMbeCxtw&uniplatform=NZKPT&language=CHS(in Chinese with English abstract)

    [27] 刘鑫,张文,李根,等. 高位远程崩滑碎屑流-泥石流灾害链的演变过程与影响范围预测——以“4•5” 四川洪雅县铁匠湾地质灾害链为例[J]. 吉林大学学报(地球科学版),2023,53(6):1799 − 1811. [LIU Xin,ZHANG Wen,LI Gen,et al. Research on evolution process and impact range prediction of high level remote collapse and landslide-debris flow disaster chain:Taking the “4•5” tiejiangwan geological disaster chain in Hongya County, Sichuan Province as an example[J]. Journal of Jilin University (Earth Science Edition),2023,53(6):1799 − 1811. (in Chinese with English abstract)]

    LIU Xin, ZHANG Wen, LI Gen, et al. Research on evolution process and impact range prediction of high level remote collapse and landslide-debris flow disaster chain: Taking the “4•5” tiejiangwan geological disaster chain in Hongya County, Sichuan Province as an example[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(6): 1799 − 1811. (in Chinese with English abstract)

    [28] 杨云建,周学铖,何中海,等. 多时相数字孪生滑坡变形监测方法与应用研究——以金沙江白格滑坡为例[J]. 水文地质工程地质,2024,51(2):132 − 143. [YANG Yunjian,ZHOU Xuecheng,HE Zhonghai,et al. Multi-temporal digital twin method and application of landslide deformation monitoring: A case study on baige landslide in Jinsha river[J]. Hydrogeology & Engineering Geology,2024,51(2):132 − 143. (in Chinese with English abstract)]

    YANG Yunjian, ZHOU Xuecheng, HE Zhonghai, et al. Multi-temporal digital twin method and application of landslide deformation monitoring: A case study on baige landslide in Jinsha river[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 132 − 143. (in Chinese with English abstract)

    [29] 安雪莲,密长林,孙德亮,等. 基于不同评价单元的三峡库区滑坡易发性对比——以重庆市云阳县为例[J]. 吉林大学学报(地球科学版),2024,54(5):1629 − 1644. [AN Xuelian,MI Changlin,SUN Deliang,et al. Comparison of landslide susceptibility in Three Gorges Reservoir area based on different evaluation units:Take Yunyang County in Chongqing as an example[J]. Journal of Jilin University (Earth Science Edition),2024,54(5):1629 − 1644. (in Chinese with English abstract)]

    AN Xuelian, MI Changlin, SUN Deliang, et al. Comparison of landslide susceptibility in Three Gorges Reservoir area based on different evaluation units: Take Yunyang County in Chongqing as an example[J]. Journal of Jilin University (Earth Science Edition), 2024, 54(5): 1629 − 1644. (in Chinese with English abstract)

  • 期刊类型引用(11)

    1. 杨皓,魏涛. 三峡库区米仓口危岩体稳定性分析. 科技与创新. 2025(09): 121-124 . 百度学术
    2. 殷跃平. 新三峡库区长期地质安全战略研究. 中国水利. 2024(22): 26-35 . 百度学术
    3. 李伟,董远峰,邓玖林,靳鹏,高玮阳,李海洋. 基于两期机载LiDAR数据的危岩变形识别方法研究. 人民长江. 2024(S2): 121-124 . 百度学术
    4. 柴乃杰,周文梁. 基于优化组合权-模糊可变集的坝基岩体质量分级. 吉林大学学报(地球科学版). 2023(02): 514-525 . 百度学术
    5. 张燕,王庆兵,邢文超,王元新,张君,于桑,张建芝,葛江琨. 新疆某山区公路边坡危岩体影响区划分及防治建议. 安全与环境工程. 2023(04): 149-158 . 百度学术
    6. 江俊杰,刘东泽,卢应发. 库水位降落与降雨耦合作用下鸡脑壳包滑坡变形分析. 中国农村水利水电. 2023(09): 236-243 . 百度学术
    7. 蒋明,李伟,黎景. 西部某水电站枢纽区边坡危岩体防治设计研究. 小水电. 2023(05): 43-47 . 百度学术
    8. 檀梦皎,殷坤龙,付智勇,朱春芳,陶小虎,朱延辉. 降雨及库水位影响下麻地湾滑坡地下水响应特征分析. 中国地质灾害与防治学报. 2022(01): 45-57 . 本站查看
    9. 陈佳亮. 引水隧洞进口上部危岩体稳定性研究. 水利科学与寒区工程. 2022(05): 70-73 . 百度学术
    10. 杨光明,罗垚,张帆,陈也. 三峡库区生态环境三方协同治理演化博弈及系统仿真研究. 重庆理工大学学报(社会科学). 2021(12): 154-166 . 百度学术
    11. 庄明水. 厦门岛内孤(滚)石破坏模式及分布规律研究. 地质灾害与环境保护. 2021(04): 34-38+44 . 百度学术

    其他类型引用(5)

图(3)  /  表(1)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  24
  • PDF下载量:  82
  • 被引次数: 16
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2023-11-18
  • 录用日期:  2024-01-22
  • 网络出版日期:  2024-06-11
  • 刊出日期:  2024-12-24

目录

/

返回文章
返回