ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

汶川地震震后七盘沟泥石流动态物源危险性评价

苏娜, 徐林荣, 李永威, 李佳珅, 汤玉兰

苏娜,徐林荣,李永威,等. 汶川地震震后七盘沟泥石流动态物源危险性评价[J]. 中国地质灾害与防治学报,2025,36(1): 16-27. DOI: 10.16031/j.cnki.issn.1003-8035.202308010
引用本文: 苏娜,徐林荣,李永威,等. 汶川地震震后七盘沟泥石流动态物源危险性评价[J]. 中国地质灾害与防治学报,2025,36(1): 16-27. DOI: 10.16031/j.cnki.issn.1003-8035.202308010
SU Na,XU Linrong,LI Yongwei,et al. Risk assessment of single gully debris flows based on dynamic changes of provenance in the Wenchuan earthquake zone: A case study of Qipan gully[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 16-27. DOI: 10.16031/j.cnki.issn.1003-8035.202308010
Citation: SU Na,XU Linrong,LI Yongwei,et al. Risk assessment of single gully debris flows based on dynamic changes of provenance in the Wenchuan earthquake zone: A case study of Qipan gully[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 16-27. DOI: 10.16031/j.cnki.issn.1003-8035.202308010

汶川地震震后七盘沟泥石流动态物源危险性评价

基金项目: 联合基金项目(U2268213);国家重点研发计划项目(2018YFC1505403);国家自然科学基金面上项目(42172322)
详细信息
    作者简介:

    苏 娜(1989—),女,河南永城人,博士研究生,主要从事地质灾害评估、防治与预警预报研究工作。E-mail:184801021@cus.edu.cn

  • 中图分类号: P642.23

Risk assessment of single gully debris flows based on dynamic changes of provenance in the Wenchuan earthquake zone: A case study of Qipan gully

  • 摘要:

    “5•12”汶川特大地震后,震区山体表面产生大量碎屑物,植被遭到严重破坏,为泥石流暴发提供了极为丰富的物质来源,大大增加了泥石流的危险性。多年来,研究人员针对震后泥石流危险性的评估主要考虑植被恢复情况,较少考虑泥石流沟道存在大量的动储量物质对危险性评估的重要影响。为此,基于现场勘察资料,以汶川县七盘沟为研究对象,采用多源多尺度监测手段(Landsat系列、Quick-bird与无人机)对震前震后坡面物源与沟道物源进行分析统计,综合利用博弈论组合赋权结合云模型构建泥石流危险性动态评价模型,对2005—2019年泥石流暴发的危险性进行评价。结果表明:震后坡面物源是震前的7.7倍,到2019年坡面物源已基本恢复至震前水平。经相关资料记载震后泥石流暴发冲出量及清淤工程量进行统计估算可知,到2019年泥石流动态物源减少约7.813×106 m3。相对比只考虑坡面物源,分别考虑坡面和沟道物源对危险性评价所取得的结果,更切合现实。所得结果对在日益增加的高烈度山区开展重要工程所遭受的单沟泥石流危险性动态评价提供参考与借鉴作用,有效保护人民的生命和财产安全。

    Abstract:

    Following the catastrophic “5•12” Wenchuan earthquake, extensive debris was deposited on mountain surfaces in the earthquake zone, and significant vegetation damage occurred, providing abundant material for debris flow outbreaks and substantially increasing their risk. Previous studies primarily focused on vegetation recovery when assessing post-earthquake debris flow risks. However, field surveys revealed that large quantities of dynamic storage materials in the gullies significantly impact risk assessments. Based on field survey data, this study uses Qipan gully in Wenchuan County as a research subject and employs multi-source and multi-scale monitoring tools (Landsat series, Quick-bird, and UAVs) to analyze and statistically assess the source materials on slopes and gullies both pre- and post-earthquake. A dynamic risk assessment model for debris flow is constructed using game theory combined with a cloud model, assessing the risk from 2005 to 2019. Findings indicate that post-earthquake slope material sources were 7.7 times those pre-earthquake, and by 2019, with recovery to pre-earthquake levels by 2019. Statistical estimations based on recorded debris flow eruptions and sediment removal volumes show a reduction of approximately 7.813×106 m3 in dynamic material sources by 2019. Assessing both slope and gully material sources yields more realistic results than considering slope sources alone. These results provide references and guidance for dynamic risk assessments of debris flow, impacting major engineering projects in increasingly seismic regions and effectively ensuring the safety of life and property.

  • 滑坡是一种频繁且严重的地质灾害,极大地威胁着人民的生命财产安全[1-2]。天然碎石土边坡分布广泛,尤其是在南方山地丘陵地区,在发生的各类滑坡中,碎石土滑坡占比接近80%[3-6]。许多学者对砂质和岩质边坡的稳定性开展研究,并取得不少成果,然而针对碎石土边坡的成果十分有限。因此,有必要对碎石土边坡的失效机理进行研究,为评估其稳定性提供合理的参考。

    众多研究人员对碎石土边坡开展了大量的研究并取得了显著的研究成果,主要集中在理论分析、数值分析、试验研究三个方面。极限平衡法是边坡稳定性分析最早也最常用的一种理论分析方法,其理论基础是莫尔-库伦强度准则和静力平衡原理分析边坡破坏模式下的受力状态,根据边坡潜在破坏面的滑移体上沿剪切方向的抗剪力和剪切力之间的关系来计算边坡的安全系数[7-9]。然而,极限平衡法在计算过程中进行了一些假设和简化。其中之一是假设所有滑移面上的材料同时达到极限平衡状态,而实际上材料的极限平衡往往是逐步实现的。极限平衡法的另一个假设与滑动面有关。边坡的滑动面在发生破坏前通常是未知的,而在计算边坡的稳定性时,需要预先假设边坡的形状和位置,找到最小安全系数来确定一个潜在的滑移面。

    随着计算机技术的发展,许多学者采用数值分析方法来研究碎石土边坡的稳定性。有限元法(finite element method,FEM)可以模拟计算处边坡的滑移面和安全系数,被广泛应用于边坡稳定性分析[10]。Napoli等[11]分别有限元法和极限平衡法对不同含石量的边坡进行了稳定性分析。庄锦亮等[12]基于FLAC3D和Janbu法计算不同内摩擦角和黏聚力边坡的安全系数,结果表明内摩擦角对边坡稳定性的影响更明显。然而,有限元法在建模时把所有介质视为连续体,当边坡由岩土或砂土组成时这一假设是合理的。然而碎石土由碎石和细粒土组成,其同时表现出连续介质和离散介质的特征,造成有限元法的这一假设变得不再合适。因此,一些研究者采用离散元法(discrete element method,DEM)来研究碎石土边坡的稳定性。离散元法假设材料是由大量的单独粒子组成的,它们可以相互独立地运动,只在接触点相互作用。李存柱等[13]基于离散单元法发现碎石的形状会影响材料宏观力学性能,并且建立了碎石形状与其宏观力学性能之间的关系。陆烨等[14]用离散单元法对碎石土边坡的稳定性进行了分析,发现碎石的含量、形状和大小会影响边坡的安全系数。但是由于需要考虑所有颗粒的相互作用,离散元法的计算效率较低。

    目前关于碎石土边坡模型试验的研究较少,多数研究集中于碎石土的单元体试验。彭东黎等[15]基于大型的室内直剪试验,对含石量及含水量与碎石土黏聚力和内摩擦角的关系进行了深入研究。Wang[16]采用高能X射线计算机断层成像(CT)方法研究了三轴试验中碎石含量对碎石土细观结构变化和相关应变局部化行为的影响。王腾等人[17]用铝棒模拟砾石,对碎石土进行了平面应变试验,发现碎石主要通过转动阻力影响剪切带的发展。但是单元体试验无法重现碎石土边坡复杂的地质情况,不能准确地描述其破坏过程。

    碎石土具有天然的多尺度结构,其变形和强度特性很大程度受其细观结构的影响。但目前相关研究很少从宏细观尺度深入地分析碎石土边坡的失效机制。本文基于数字图像技术,对不同含石量的碎石土边坡进行模型试验,从宏细观尺度研究碎石土边坡的失稳机制。试验结果表明,含石量对碎石土边坡的承载力和位移具有显著的控制效果,并且碎石会影响剪切带的发展。

    试验所用模型箱尺寸为600 mm×290 mm×350 mm(长×宽×高),四个面均为透明面,便于使用数码相机记录试验过程中砂土边坡侧面土体连续变形过程。加载装置为万能材料试验机,通过对边坡坡顶尺寸为100 mm×290 mm×50 mm的加载板施加荷载,如图1所示。

    图  1  试验装置
    Figure  1.  Schematic view of the testing set-up

    本试验中试样是粒径2~10 mm的砾石与d50为0.29 mm的福建标准砂混合配制而成的碎石土,各试样的级配曲线如图2所示。为保证局部场拍摄效果,对局部的碎石土进行染色处理。

    图  2  颗粒级配曲线
    Figure  2.  Soil particle size distribution curve

    制备试样时,首先将所需碎石砂土烘干。然后按3%的含水率加水搅拌直至均匀,为保证密度控制在1.74 g/cm3,每次称量后分层填筑进模型箱填筑,完成的模型如图3所示,坡高250 mm,坡角为50°。

    图  3  模型示意图(单位:mm)
    Figure  3.  Schematic view of the testing model (unit: mm)

    使用4240万有效像素的数码相机在试验期间连续拍摄,捕捉全场土体位移的图像,同时使用微距摄像头拍摄局部场土体变形。为了减少自然光对图像质量的影响,在试验过程中使用两个摄影灯提供照明。试验结束后,将视频中的图像提取并导入自行编制的图像处理程序进行计算。

    为了减少壁面摩擦对边坡承载力的影响,在模型箱的壁面涂抹凡士林作为润滑剂。图4为边坡的荷载与位移关系曲线和极限承载力。

    图  4  不同含石量边坡的P-s曲线和极限承载力
    Figure  4.  P-s curves and ultimate bearing capacity curves of the slopes with different stone contents

    图4(a)可以看出,边坡的P-s曲线受碎石含量的影响。P-s曲线变化大致可以分为三个阶段。第一阶段,随着荷载的增加,坡顶沉降接近线性增大,坡顶砂土处于整体压密阶段。随含石量增加,曲线的斜率增加。第二阶段,随着荷载逐渐接近峰值,荷载的增长率逐渐降低。荷载达到峰值后为第三阶段,在此阶段,不同含石量的P-s曲线呈现不同的形式。当含石量小于70%时,边坡的承载力有明显的软化阶段。而含石量大于70%时,承载力在第三阶段没有明显的软化现象。并且,含石量越大,边坡达到承载力峰值的位移越大。边坡的极限承载力也就是试验中的峰值承载力,本文中T为加载时刻至边坡的极限承载力总时间。表1列出不同含石量的碎石土边坡所需的总时间T,从中可以看出随含石量增加,荷载达到极限承载力所需的时间逐渐增加,但是在低含石量和高含石量时,增加幅度较小。

    表  1  不同含石量碎石土边坡总时间(T
    Table  1.  Time of gravel soil slope with different stone contents
    含石量/%T/s含石量/%T/s
    015050535
    1018960624
    2022470700
    3029580715
    40426
    下载: 导出CSV 
    | 显示表格

    图4(b)比较了不同含石量边坡的极限承载力。从图中可以看出,边坡的极限承载力受碎石含量的影响。当含石量低于20%时,边坡受含石量的影响较小,这是由于此时碎石土的力学性质主要依赖于砂土,碎石悬浮在砂土之中,对边坡的极限承载力贡献较小。而当含石量高于20%且小于70%时,边坡的极限承载力随含石量增大而急剧增加,此时边坡内的碎石形成骨架结构,承载力受碎石的影响突显,承载力由碎石和砂土共同承担。而当含石量达到70%时,边坡内的碎石形成了架空结构,边坡中的砂土悬浮在碎石间,碎石土的力学性质更接近于岩体;在此基础上含石量增加,极限承载力基本没有改变。因此含石量对边坡承载力的影响存在两个阈值,下阈值为20%,上阈值为70%。

    根据含石量对边坡极限承载力影响的上、下阈值,本文选取了三个区间中各一含石量的碎石土边坡进行研究,即含石量为10%、50%和80%。将试验过程中拍摄的视频每5 s截取一张图像用于DIC的相关计算,得到边坡的位移增量。图5为不同含石量边坡达到极限承载力时的位移矢量增量,图中箭头方向为土体发生位移的方向,箭头的长度代表土体位移的大小。

    图  5  不同含石量边坡位移矢量增量
    Figure  5.  Displacement vector increment of slope with different stone content

    图5可知,在边坡达到极限承载力时,不同含石量碎石土边坡的土体位移趋势是一样的。在加载板下方,位移矢量的方向靠近垂直方向,该区域的土体主要发生竖直位移。越靠近临坡面,位移矢量接近水平,土体位移以水平方向为主。根据土体的变形情况可以分为三个区域:稳定区、剪切区和滑移区。在稳定区,土体几乎没有发生位移,位移矢量呈现点状;在滑移区,土体发生较大的位移,并且以水平位移为主;剪切区介于稳定区和滑移区之间,剪切区的范围很窄,但位移梯度变化很大。比较不同含石量边坡的位移矢量长度可以发现,边坡的位移增量随着含石量的增加而减小,这是因为含石量增加,碎石之间的接触逐渐增加并形成碎石骨架,碎石土的内摩擦角增大,边坡抵抗变形的能力增强,因此其位移增量减小。

    以位移增量0.02 mm作为土体发生变形的范围,画出位移包络线,如图6所示。从图中可以看出含石量增加,土体发生变形的范围越大。这是由于碎石之间互相嵌固,机械咬合力增大,边坡碎石发生位移和旋转时会带动更大范围内碎石土受力变形,因此随着含石量的增加,土体发生位移的范围也更大。对比不同含石量的边坡位移包络线形状可以发现含石量增大,包络线形状变得不规则且曲折。主要原因是碎石的强度和刚度都较大,土体变形的滑移面往往会沿着强度和刚度相对更低的碎石与碎石、碎石与砂土的接触面发展,从而导致其位移包络线变得曲折。

    图  6  不同含石量边坡土体包络线
    Figure  6.  Displacement envelope of slope with different stone content

    当荷载达到峰值后边坡发生失稳破坏,部分土体会沿着某一滑动面突然出现明显的运动,这个滑动面称之为剪切带,而这个滑移面的附近发生显著的应变局部化现象。图7为不同含石量碎石土边坡达到极限承载力时剪应变增量云图,以逆时针为正。

    图  7  不同含石量边坡剪应变增量云图
    Figure  7.  Cloud diagram of shear strain increment of slope with different stone content

    图7可以看出,碎石会影响边坡中剪切带的发展。当含石量为10%时,边坡内只有一条主剪切带,在滑移体内只有少量的剪应变较大的部位,剪切带也较为平顺光滑。而当含石量较高时,滑移体内的次剪切带随着含石量的增加而逐渐增多,并且剪切带形状变得曲折不规则。这是由于碎石的本身的强度和刚度较高,导致剪切带在发展路径经过碎石骨架时,会沿着碎石与碎石、碎石与砂土的接触面发展,因此剪切带可能发生绕石或分叉,从而在滑移体内产生多条次剪切带。

    当含石量较低时,碎石悬浮在砂土之中,而含石量较高时碎石形成了架空结构,边坡中的砂土悬浮在碎石间。因此本节选择了含石量50%碎石土边坡的局部场作为研究对象,在该含石量时碎石与砂土共同承担上部荷载,两种材料间的相互作用更加复杂,更能揭示碎石和周围砂颗粒的细观行为对剪切带发展的影响。图8分别拍摄了含石量50%碎石土边坡的上部和下部局部场图像,上部局部场在后文中称为局部场一,其计算区域尺寸为84 mm×48 mm;下部局部场为局部场二,其计算区域尺寸为44 mm×28 mm。

    图  8  局部场一和局部场二位置示意图(单位:mm)
    Figure  8.  Location map of the local field I and local field II (unit: mm)

    局部场土体发生剪切破坏时,会出现明显的应变局部化。图9为不同时刻局部场剪应变增量云图。由图9可以发现,在1/4T时刻,局部场一土体没有变形,此处剪切应变增量值几乎为零。而加载到1/2T时,在滑移面出现了应变局部化现象,并且剪应变连接并贯通局部场一,说明此时局部场一已经发生了剪切破坏。在剪切带外的滑移区内,分布着剪应变较大的单元。随着荷载变大,滑移区内剪应变较大的单元变多,部分形成次剪切带。这是由于碎石影响了剪切带的发展路。与局部场一相比,局部场二的剪切带形成时间更晚,在3/4T时刻时,才能看到明显的应变局部化现象。

    图  9  局部场剪应变增量
    Figure  9.  Distribution diagram of shear strain increment in local field

    对比全场的剪应变增量云图,可以发现在高含石量的边坡内,剪切带往往从开始的只有一条或两条主剪切带逐渐发展成“一主多次”的剪切带形式。这说明碎石对剪切带的发展有明显的影响作用。

    为了明确碎石对剪切带的影响,选取了局部场一中有代表性的区域进行放大,如图10所示。图中虚线红框中为选定区域,并进行编号S1~S6。

    图  10  局部场一中代表区域
    Figure  10.  Location map of the representative area in local field I

    在放大的区域,用黑色虚线描出碎石边界,用红色虚线会出剪切带位置,如图11所示。从图中可以看出,当剪切带经过碎石时,剪切带会出现几种不同的绕石模式。S2和S3处图中可以看到当剪切带经过碎石时,发生了单边绕石,碎石左右两侧都可能是剪切带的绕石方向。S1、S5和S6中剪切带的绕石方式是分叉,由一条剪切带分叉成两条甚至多条剪切带。对比这两种模式可以发现,当剪切带发展的方向与碎石的长轴方向成锐角时,剪切带大概率会以分叉的模式继续发展,当剪切带发展的方向与碎石的长轴方向成钝角时,剪切带会以单边绕石的模式继续发展,发展方向取决于碎石和剪切带之间的位置关系。S1、S3、S4和S6可以看到当发生这两种绕石模式时,剪切带会穿越碎石与碎石接触面。

    图  11  代表区域剪切带示意图
    Figure  11.  Schematic diagram of shear zone in the representative area

    选取S6区域中2个碎石和其周边20个砂土颗粒描绘出其在不同时刻的质心坐标和长轴角度,进一步验证碎石对剪切带的影响,如图12所示。XY轴均为图像的像素坐标,颗粒边上数字为编号,碎石1~2,砂颗粒1~20。两个碎石在1/4T时相互接触形成骨架,砂颗粒1~17分布在碎石骨架外,砂颗粒18~20位于碎石骨架内。当加载到1/2T时刻时,碎石和砂颗粒发生的位移和旋转角度都较小,两个碎石逐渐分开,砂颗粒与碎石的相对位置没有明显改变。继续加载,位于上方的碎石和砂颗粒出现了比较明显的位移和旋转角度,而下方的碎石基本没有运动。此时砂颗粒和碎石之间的相对位置发生改变,有部分砂颗粒沿着碎石左侧运动,在碎石之间有砂颗粒挤入碎石骨架,剩余的砂颗粒沿着下方碎石的右侧运动。碎石影响了土体变形,滑移面由一个分叉成多个滑移面。

    图  12  不同时刻颗粒的位移和旋转
    Figure  12.  Displacement and rotation of particles at different moments

    通过对像素标定,即一个像素值等于0.05 mm,计算得到各颗粒实际位移值,位移以向下为正和向右为正,旋转角度以逆时针为正,如表2所示。从表中可以看出,砂颗粒的位移和旋转角度大于碎石。碎石和周边的砂颗粒的运动行为存在差异,主要原因是一方面是当含石量为50%时,尽管碎石形成骨架结构与砂颗粒一起承受荷载,但是砂颗粒仍是主要的承力介质,导致砂颗粒发生更剧烈的运动,另一方面是碎石的内摩擦角比砂颗粒更大,碎石的运动明显弱于砂颗粒。碎石与周边砂土运动行为不协调,使得砂颗粒会沿着碎石边缘或者碎石之间的接触面运动。这也是碎石影响剪切带发展的原因之一。

    表  2  颗粒位移和旋转角度
    Table  2.  Summary table of the particle displacement and rotation angle
    颗粒水平位移/mm竖直位移/mm旋转角度/(°)颗粒水平位移/mm竖直位移/mm旋转角度/(°)
    碎石1 3.87 5.17 16砂颗粒10 2.75 8.25 −36
    碎石21.753.011砂颗粒111.785.93−20
    砂颗粒17.888.54122砂颗粒122.847.40−25
    砂颗粒28.907.30110砂颗粒132.047.20−94
    砂颗粒310.195.6890砂颗粒145.554.69−80
    砂颗粒49.416.94114砂颗粒154.694.28117
    砂颗粒59.255.9850砂颗粒165.414.6256
    砂颗粒68.394.3152砂颗粒172.413.9177
    砂颗粒75.747.6722砂颗粒182.146.35−22
    砂颗粒84.264.5160砂颗粒193.314.2430
    砂颗粒97.231.7110砂颗粒202.703.92−45
    下载: 导出CSV 
    | 显示表格

    对各个区域颗粒的运动分析,总结出碎石对剪切带发展路径影响的五种绕石模式,如图13所示,箭头为剪切带的发展方向。对比这五种剪切带的绕石模式,可以发现碎石会导致剪切带影响的范围变广,长度变长,从而提高了边坡的抗滑能力,提高了边坡的稳定性,增加了边坡的极限承载力。

    图  13  局部位置剪切带绕石示意图
    Figure  13.  Schematic diagram of shear zone around stone in local field position

    当碎石土发生剪切破坏时,碎石骨架发生破坏和重构导致孔隙率改变。研究土体破坏过程中孔隙率的变化,有利于了解碎石土的破坏机制。

    图14给出了局部场一和局部场二不同区域孔隙率的时程曲线。从图14(a)可以发现,局部场一的碎石土在未加载时,孔隙率为0.31左右。随着荷载增加,局部场一整体的孔隙率开始缓慢减小。这是因为一开始边坡处于整体压密的阶段,使得孔隙率降低。当加载到0.46T左右时,此时孔隙率最小,为0.28左右。稳定区的孔隙率在此之后开始保持稳定,说明局部场一已经完成压密。而剪切带的孔隙率开始突然增加,增长趋势维持0.18T左右,在图中用虚线标出,此时孔隙率达到0.35左右,然后在这一值上下波动。剪切带的形成过程中,碎石颗粒会发生位移、旋转等运动导致土体的孔隙率产生变化,因此剪切内孔隙率时程曲线的拐点可以认定为剪切带的初始化时间,孔隙率变化的这段时间可以看作剪切带的形成过程。滑移区的孔隙率在0.46T后和剪切带一样,开始突然增加,不过达到稳定时的值小于剪切带,为0.32左右。这是因为滑移区内也出现次剪切带,从而导致了孔隙率上升。局部场二的孔隙率的变化趋势与局部场一相似,不过局部场二剪切带的孔隙率在大约0.65T时才突然增大,并且剪切带发展的时间为0.11T比局部场一更短。这说明边坡剪切带发展是一个逐渐加速过程。

    图  14  局部场不同区域孔隙率时程曲线
    Figure  14.  Time history curves of porosity in different regions of the local field

    本文基于数字图像技术,通过静力超载法对碎石土边坡进行模型试验,从宏细观角度研究了碎石土边坡的失稳机制,得到以下几点结论:

    (1)含石量会影响碎石土边坡的承载力和变形特性且存在两个阈值,下阈值为20%,上阈值为70%。当含石量小于20%时,极限承载力随着含石量增大而缓慢提高,边坡受含石量的影响较小;当含石量高于20%且小于70%时,边坡的极限承载力随含石量增大而急剧增加;当含石量大于70%时,含石量增加,极限承载力增加较小。

    (2)碎石会影响边坡的土体变形和剪切带的发展。碎石与周边砂颗粒的运动行为存在差异,使得剪切带在经过碎石骨架时,其发展路径存在五种不同的绕石模式。

    (3)在剪切前,碎石土的孔隙率会因为边坡被压密而逐渐减小。在剪切后,由于强烈的剪切应变和碎石土骨架的破坏重构,剪切带内的孔隙率在剪切过程中突然增大,并在剪切带形成后稳定。可以通过孔隙率的变化研究剪切带的初始化和发展。

  • 图  1   七盘沟泥石流拦挡防治工程分布图

    注:1#坝顶长181 m,有效坝高20 m,库容73.9×104 m3;2#坝桩40根,总长323 m,库容4.3×104 m3;3#坝顶长94.8 m,有效坝高10 m;4#坝顶长34.5 m,有效坝高10 m,库容1.4×104 m3;5#坝顶长30.7 m,有效坝高10 m,库容3.4×104 m3;排导槽长2351 m。

    Figure  1.   Layout map of blocking dams in Qipan gully

    图  2   七盘沟物源减少途径

    注:a为2013年大规模泥石流前(2008.9.12);b为2013年泥石流冲出量;c为植被固源;d为拦挡结构清淤。

    Figure  2.   Decrease patterns of provenance of debris flow in Qipan gully

    图  3   2005—2019年七盘沟植被覆盖率变化

    Figure  3.   Changes in vegetation coverage in Qipan gully from 2005 to 2019

    图  4   2005—2019年七盘沟物源遥感解译

    Figure  4.   Remote sensing interpretation of materials sources in Qipan gully from 2005 to 2019

    图  5   2019年3月18日无人机测试七盘沟情况

    注:a为沟道物源;b为沟口建筑物情况;c为3#拦挡坝淤埋情况。

    Figure  5.   UAV exploration of Qipan gully on March 18, 2019

    图  6   泥石流物源统计分析图

    Figure  6.   Statistical analysis of vegetation coverage and provenance of debris flow in Qipan gully

    图  7   七盘沟泥石流危险性评价指标体系

    Figure  7.   Risk assessment indicator system for debris flow in Qipan gully

    表  1   七盘沟流域的历史泥石流事件[26]

    Table  1   Historical debris-flow events in the Qipan gully watershed, Wenchuan, China

    日期 降雨强度/mm 泥石流
    类型
    峰值流量
    /(m3·s−1
    持续时间
    /min
    泥石流冲出量
    /(104 m3
    72 h 24 h 1 h 10 min
    1933 黏性 150
    1961-07-06 99.5 79.9 75 60 13.5
    1964-07-23 48.3 41.7 1.2 稀性 65 50 9.1
    1965-07-16 69.5 41.2 65 50 9.9
    1970-07-28 56.5 33.0 60 60 5.8
    1971-07-24 79.4 53.4 62 45 8.4
    1975-07-29 32.5 9.6 3.8 81 40 9.8
    1977-07-07 39.4 7.6 1.6 黏性 65 30 5.8
    1978-07-15 79.5 66.7 36.4 17.0 稀性 90 50 13.5
    1979-08-15 48.0 30.8 6.1 42 30 3.8
    1980-07-26 4.4 65 20 5.4
    1981-08-12 53.8 9.5 2.1 90 25 6.7
    1983-07-19 31.3 8.1 1.7 黏性 50 15 2.3
    2013-07-11 109.6 54.3 6.4 1745 30 78.2
    2017-07-05 18.6 18.5
    2018-08-22 33.4 11.5
    2019-08-20 28.1 15
      注:“—” 指数据缺失。
    下载: 导出CSV

    表  2   七盘沟泥石流危险性因子评价标准及实际值转换

    Table  2   Risk assessment criteria and actual value conversion for debris flow factors in Qipan gully

    评价指标 极低危险(Ⅰ) 较低危险(Ⅱ) 中等危险(Ⅲ) 较高危险(Ⅳ) 极高危险(Ⅴ)
    X1 0~25 25~50 50~100 100~250 250~1000
    X2 0~10 10~20 20~30 30~40 40~60
    X3 0~1 1~5 5~10 10~100 100~700
    X4 0~5 5~10 10~20 20~100 100~150
    X5 0~25 25~50 50~75 50~100 100~500
    X6 0~0.5 0.5~5 5~15 15~35 35~70
    X7 0~1 1~2 2~5 5~10 10~50
    X8 0~0.2 0.2~0.5 0.5~0.7 0.7~1.0 1.0~6.0
    X9 0~2 2~5 5~10 10~20 20~100
    X10 80~100 80~60 60~40 20~40 0~20
    X11 80~100 80~60 60~40 20~40 0~20
    X12 0.8~1 0.6~0.8 0.4~0.6 0.2~0.4 0~0.2
    X13 0.8~1 0.6~0.8 0.4~0.6 0.2~0.4 0~0.2
    X14 0~20 20~50 50~100 100~200 200~3000
      注:X12[37]:新修(Ⅰ);1/3库容(Ⅱ);2/3库容(Ⅲ);淤满(Ⅳ);未修(Ⅴ)。X13[38]:坝基、坝肩、坝体、溢流口未发生损毁, 排水孔不堵塞(Ⅰ);坝基未被淘蚀, 坝肩、坝体、溢流口有较少部分发生损毁,排水孔不堵塞(Ⅱ);坝基未被淘蚀, 坝肩、坝体、溢流口有较少部分发生损毁,排水孔堵塞较少(Ⅲ);坝基被淘蚀,坝体、坝肩发生损毁,排水孔较少部分未堵塞(Ⅳ);极差 坝基被严重淘蚀,坝肩、坝体破坏严重,排水孔全部堵塞(Ⅴ)。
    下载: 导出CSV

    表  3   七盘沟泥石流样本实测值

    Table  3   Measured value of debris flow samples in Qipan gully

    样本 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14
    2005 75 34 5 20 26 54.2 15.2 3.04 2.12 60 0.4 0 0 90
    2008 574 26 8 22 34 54.2 15.2 3.04 2.12 18 0.09 0 0 65
    2011 157 32 8 24 38.3 54.2 15.2 3.04 2.12 24 0.15 0 0 135
    2013 581 54 78.2 25 54.3 54.2 15.2 3.04 2.12 13 0.17 0 0 135
    2018 149 37 11.5 27 33.4 54.2 15.2 3.04 2.12 34 0.30 0.6 0.8 165
    2019 114 33 15 28 28.1 54.2 15.2 3.04 2.12 57 0.37 0.6 0.7 185
    下载: 导出CSV

    表  4   2005—2019年七盘沟泥石流危险性评价结果

    Table  4   Risk assessment results of debris flow in Qipan gully, 2005—2019

    年份危险性评价值危险级别
    20050.00090.00460.22820.10150.0237中等危险
    20080.00020.01260.04890.00110.1572极高危险
    20110.00190.00190.07520.14300.0936较高危险
    20130.00010.00020.02450.13270.1657极高危险
    20180.02350.12800.00000.23660.0006较高危险
    20190.00070.35340.00840.12100.0005较低危险
    下载: 导出CSV
  • [1] 崔鹏,韦方强,何思明,等. 5•12汶川地震诱发的山地灾害及减灾措施[J]. 山地学报,2008,26(3):280 − 282. [CUI Peng,WEI Fangqiang,HE Siming,et al. Mountain disasters induced by the earthquake of May 12 in Wenchuan and the disasters mitigation[J]. Mountain Research,2008,26(3):280 − 282. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2008.03.006

    CUI Peng, WEI Fangqiang, HE Siming, et al. Mountain disasters induced by the earthquake of May 12 in Wenchuan and the disasters mitigation[J]. Mountain Research, 2008, 26(3): 280 − 282. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2008.03.006

    [2] 许强. 四川省8•13特大泥石流灾害特点、成因与启示[J]. 工程地质学报,2010,18(5):596 − 608. [XU Qiang. The 13 August 2010 catastrophic debris flows in Sichuan Province:Characteristics,genetic mechanism and suggestions[J]. Journal of Engineering Geology,2010,18(5):596 − 608. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2010.05.002

    XU Qiang. The 13 August 2010 catastrophic debris flows in Sichuan Province: Characteristics, genetic mechanism and suggestions[J]. Journal of Engineering Geology, 2010, 18(5): 596 − 608. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2010.05.002

    [3]

    LI Ning,TANG Chuan,ZHANG Xianzheng,et al. Characteristics of the disastrous debris flow of Chediguan gully in Yinxing Town,Sichuan Province,on August 20,2019[J]. Scientific Reports,2021,11(1):23666. DOI: 10.1038/s41598-021-03125-x

    [4] 陈晓清,崔鹏,李泳,等. 汶川地震后北川干溪沟山地灾害及长期发展趋势初步分析[J]. 四川大学学报(工程科学版),2010,42(增刊1):22 − 32. [CHEN Xiaoqing,CUI Peng,LI,Yong,et al. Mountain Hazard Induced by Wenchuan Earthquake and its long-term development trends of Ganxi Gully,Beichuan[J]. Journal of Sichuan University (Engineering Science Edition),2010,42(Sup 1):22 − 32. (in Chinese with English abstract]

    CHEN Xiaoqing, CUI Peng, LI, Yong, et al. Mountain Hazard Induced by Wenchuan Earthquake and its long-term development trends of Ganxi Gully, Beichuan[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(Sup 1): 22 − 32. (in Chinese with English abstract

    [5] 黄润秋. 汶川地震地质灾害后效应分析[J]. 工程地质学报,2011,19(2):145 − 151. [HUANG Runqiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2011,19(2):145 − 151. (in Chinese)] DOI: 10.3969/j.issn.1004-9665.2011.02.001

    HUANG Runqiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(2): 145 − 151. (in Chinese) DOI: 10.3969/j.issn.1004-9665.2011.02.001

    [6]

    FAN Xuanmei,SCARINGI G,DOMÈNECH G,et al. Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake[J]. Earth System Science Data,2019,11(1):35 − 55. DOI: 10.5194/essd-11-35-2019

    [7]

    YANG Wentao,QI Wenwen,ZHOU Jinxing. Decreased post-seismic landslides linked to vegetation recovery after the 2008 Wenchuan earthquake[J]. Ecological Indicators,2018,89:438 − 444. DOI: 10.1016/j.ecolind.2017.12.006

    [8]

    FAN R L,ZHANG L M,WANG H J,et al. Evolution of debris flow activities in Gaojiagou Ravine during 2008–2016 after the Wenchuan earthquake[J]. Engineering Geology,2018,235:1 − 10. DOI: 10.1016/j.enggeo.2018.01.017

    [9]

    CHEN M,TANG C,XIONG J,et al. The long-term evolution of landslide activity near the epicentral area of the 2008 Wenchuan earthquake in China[J]. Geomorphology,2020,367:107317. DOI: 10.1016/j.geomorph.2020.107317

    [10]

    FAN Xuanmei,DOMÈNECH G,SCARINGI G,et al. Spatio-temporal evolution of mass wasting after the 2008 Mw 7.9 Wenchuan earthquake revealed by a detailed multi-temporal inventory[J]. Landslides,2018,15(12):2325 − 2341. DOI: 10.1007/s10346-018-1054-5

    [11]

    LIU Jinfeng,YOU Yong,CHEN Xiaoqing,et al. Mitigation planning based on the prediction of river blocking by a typical large-scale debris flow in the Wenchuan earthquake area[J]. Landslides,2016,13(5):1231 − 1242. DOI: 10.1007/s10346-015-0615-0

    [12] 眭海刚,刘超贤,刘俊怡,等. 典型自然灾害遥感快速应急响应的思考与实践[J]. 武汉大学学报(信息科学版),2020,45(8):1137 − 1145. [SUI Haigang,LIU Chaoxian,LIU Junyi,et al. Reflection and exploration of rapid remote sensing emergency response for typical natural disasters[J]. Geomatics and Information Science of Wuhan University,2020,45(8):1137 − 1145. (in Chinese with English abstract)]

    SUI Haigang, LIU Chaoxian, LIU Junyi, et al. Reflection and exploration of rapid remote sensing emergency response for typical natural disasters[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1137 − 1145. (in Chinese with English abstract)

    [13]

    TANG Chenxiao,LIU Xinlei,CAI Yinghua,et al. Monitoring of the reconstruction process in a high mountainous area affected by a major earthquake and subsequent hazards[J]. Natural Hazards and Earth System Sciences,2020,20(4):1163 − 1186. DOI: 10.5194/nhess-20-1163-2020

    [14]

    CUI Peng,XIANG Lingzhi,ZOU Qiang. Risk assessment of highways affected by debris flows in Wenchuan earthquake area[J]. Journal of Mountain Science,2013,10(2):173 − 189. DOI: 10.1007/s11629-013-2575-y

    [15] 侯圣山,曹鹏,陈亮,等. 基于数值模拟的耳阳河流域泥石流灾害危险性评价[J]. 水文地质工程地质,2021,48(2):143 − 151. [HOU Shengshan,CAO Peng,CHEN Liang,et al. Debris flow hazard assessment of the Eryang River watershed based on numerical simulation[J]. Hydrogeology & Engineering Geology,2021,48(2):143 − 151. (in Chinese with English abstract)]

    HOU Shengshan, CAO Peng, CHEN Liang, et al. Debris flow hazard assessment of the Eryang River watershed based on numerical simulation[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 143 − 151. (in Chinese with English abstract)

    [16] 李永威,徐林荣,谷丰宇,等. 孕灾环境对泥石流危险性影响[J/OL]. 地球科学,2022:1 − 12. (2022-03-01)[2024-01-20]. https://kns.cnki.net/kcms/detail/42.1874.P.20220228.1828.004.html. [LI Yongwei,XU Linrong,GU Fengyu,et al. Influence of disaster-prone environment on debris flow risk[J/OL]. Earth Science,2022:1 − 12. (2022-03-01)[2024-01-20]. https://kns.cnki.net/kcms/detail/42.1874.P.20220228.1828.004.html. (in Chinese with English abstract)]

    LI Yongwei, XU Linrong, GU Fengyu, et al. Influence of disaster-prone environment on debris flow risk[J/OL]. Earth Science, 2022: 1 − 12. (2022-03-01)[2024-01-20]. https://kns.cnki.net/kcms/detail/42.1874.P.20220228.1828.004.html. (in Chinese with English abstract)

    [17] 殷启睿,苏娜. 基于DEA冗余分析的泥石流危险度评价[J]. 中国地质灾害与防治学报,2020,31(3):30 − 34. [YIN Qirui,SU Na. Debris-flow risk assessment based on DEA redundancy analysis[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):30 − 34. (in Chinese with English abstract)]

    YIN Qirui, SU Na. Debris-flow risk assessment based on DEA redundancy analysis[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 30 − 34. (in Chinese with English abstract)

    [18] 周亮,何晓英,晋云超,等. 泥石流拦挡坝工程服役性能特征分析——以甘肃省陇南市武都区为例[J]. 中国地质灾害与防治学报,2023,34(6):37 − 46. [ZHOU Liang,HE Xiaoying,JIN Yunchao,et al. Analysis of service performance characteristics of debris flow check dams:A case study in Wudu District,Longnan City,Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):37 − 46. (in Chinese with English abstract)]

    ZHOU Liang, HE Xiaoying, JIN Yunchao, et al. Analysis of service performance characteristics of debris flow check dams: A case study in Wudu District, Longnan City, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 37 − 46. (in Chinese with English abstract)

    [19] 龙玉洁,李为乐,黄润秋,等. 汶川地震震后10 a绵远河流域滑坡遥感自动提取与演化趋势分析[J]. 武汉大学学报(信息科学版),2020,45(11):1792 − 1800. [LONG Yujie,LI Weile,HUANG Runqiu,et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River Basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1792 − 1800. (in Chinese with English abstract)]

    LONG Yujie, LI Weile, HUANG Runqiu, et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River Basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1792 − 1800. (in Chinese with English abstract)

    [20] 李志,陈宁生,侯儒宁,等. 基于机器学习的伊犁河谷黄土区泥石流易发性评估[J]. 中国地质灾害与防治学报,2024,35(3):129 − 140. [LI Zhi,CHEN Ningsheng,HOU Runing,et al. Susceptibility assessment of debris flow disaster based on machine learning models in the loess area along Yili Valley[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):129 − 140. (in Chinese with English abstract)]

    LI Zhi, CHEN Ningsheng, HOU Runing, et al. Susceptibility assessment of debris flow disaster based on machine learning models in the loess area along Yili Valley[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 129 − 140. (in Chinese with English abstract)

    [21] 汪明武,王霄,龙静云,等. 基于多维联系正态云模型的泥石流危险性评价[J]. 应用基础与工程科学学报,2021,29(2):368 − 375. [WANG Mingwu,WANG Xiao,LONG Jingyun,et al. Risk assessment of debris flow based on multidimensional connection normal cloud model[J]. Journal of Basic Science and Engineering,2021,29(2):368 − 375. (in Chinese with English abstract)]

    WANG Mingwu, WANG Xiao, LONG Jingyun, et al. Risk assessment of debris flow based on multidimensional connection normal cloud model[J]. Journal of Basic Science and Engineering, 2021, 29(2): 368 − 375. (in Chinese with English abstract)

    [22] 严惊涛,刘树光. 基于组合赋权的对地攻击无人机自主能力云模型评价[J]. 北京航空航天大学学报,2023,49(12):3500 − 3510. [YAN Jingtao,LIU Shuguang. Combination weighting based cloud model evaluation of autonomous capability of ground-attack UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3500 − 3510. (in Chinese with English abstract)]

    YAN Jingtao, LIU Shuguang. Combination weighting based cloud model evaluation of autonomous capability of ground-attack UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(12): 3500 − 3510. (in Chinese with English abstract)

    [23] 曾超,崔鹏,葛永刚,等. 四川汶川七盘沟“7•11” 泥石流破坏建筑物的特征与力学模型[J]. 地球科学与环境学报,2014,36(2):81 − 91. [ZENG Chao,CUI Peng,GE Yonggang,et al. Characteristics and mechanism of buildings damaged by debris flows on 11 July,2013 in qipangou of Wenchuan,Sichuan[J]. Journal of Earth Sciences and Environment,2014,36(2):81 − 91. (in Chinese with English abstract)]

    ZENG Chao, CUI Peng, GE Yonggang, et al. Characteristics and mechanism of buildings damaged by debris flows on 11 July, 2013 in qipangou of Wenchuan, Sichuan[J]. Journal of Earth Sciences and Environment, 2014, 36(2): 81 − 91. (in Chinese with English abstract)

    [24]

    HU Tao,HUANG Runqiu. A catastrophic debris flow in the Wenchuan Earthquake area,July 2013:Characteristics,formation,and risk reduction[J]. Journal of Mountain Science,2017,14(1):15 − 30. DOI: 10.1007/s11629-016-3965-8

    [25] 袁亚东. 强震区“宽缓” 型沟道物源起动机理及动储量评价研究——以七盘沟为例[D]. 绵阳:西南科技大学,2020. [YUAN Yadong. Study on provenance starting mechanism and dynamic reserve evaluation of “wide and slow” channel in strong earthquake area:Taking Qipangou as an example[D]. Mianyang:Southwest University of Science and Technology,2020. (in Chinese with English abstract)]

    YUAN Yadong. Study on provenance starting mechanism and dynamic reserve evaluation of “wide and slow” channel in strong earthquake area: Taking Qipangou as an example[D]. Mianyang: Southwest University of Science and Technology, 2020. (in Chinese with English abstract)

    [26]

    HU Xudong,YANG Feng,HU Kaiheng,et al. Estimating the debris-flow magnitude using landslide sediment connectivity,Qipan catchment,Wenchuan County,China[J]. Catena,2023,220:106689. DOI: 10.1016/j.catena.2022.106689

    [27] 七盘沟泥石流勘查报告[R]. 四川:四川省蜀通岩土工程公司,2013 [Investigation of emergency actions to mitigate debris flow hazards in the Qipan Gully, Wenchuan County, Aba Prefecture, Sichuan Province[R]. Sichuan: Sichuan Shutong geotechnical engineering company,2013. (in Chinese)]

    Investigation of emergency actions to mitigate debris flow hazards in the Qipan Gully, Wenchuan County, Aba Prefecture, Sichuan Province[R]. Sichuan: Sichuan Shutong geotechnical engineering company, 2013. (in Chinese)

    [28] 张伟 , 吴鄂, 刘宁鉴. 七盘沟滑坡泥石流勘查报告[R]. 四川:四川省华地建设工程有限责任公司. 2008. [ZHANG Wei, WU E, LIU Ningjian. Field investigation report on emergency management project of landslide and debris flow in the Qipan gully in Wenchuan county,Aba Prefecture,Sichuan Province[R]. the Sichuan Huadi Construction Engineering Co. Ltd,2008. (in Chinese)]

    ZHANG Wei, WU E, LIU Ningjian. Field investigation report on emergency management project of landslide and debris flow in the Qipan gully in Wenchuan county, Aba Prefecture, Sichuan Province[R]. the Sichuan Huadi Construction Engineering Co. Ltd, 2008. (in Chinese)

    [29]

    SHI Qingyun,TANG Chuan,GONG Lingfeng,et al. Activity evolution of landslides and debris flows after the Wenchuan earthquake in the Qipan catchment,Southwest China[J]. Journal of Mountain Science,2021,18(4):932 − 951. DOI: 10.1007/s11629-020-6494-4

    [30] 李敬强,樊天辰,周妍汝,等. 基于云模型的民航监察员队伍能力综合评价[J]. 北京航空航天大学学报,2022,48(12):2425 − 2433. [LI Jingqiang,FAN Tianchen,ZHOU Yanru,et al. Comprehensive evaluation on capability of civil aviation supervisor team based on cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics,2022,48(12):2425 − 2433. (in Chinese with English abstract)]

    LI Jingqiang, FAN Tianchen, ZHOU Yanru, et al. Comprehensive evaluation on capability of civil aviation supervisor team based on cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2425 − 2433. (in Chinese with English abstract)

    [31]

    YANG Fan,FAN Xuanmei,SIVA SUBRAMANIAN S,et al. Catastrophic debris flows triggered by the 20 August 2019 rainfall,a decade since the Wenchuan earthquake,China[J]. Landslides,2021,18(9):3197 − 3212. DOI: 10.1007/s10346-021-01713-6

    [32]

    ZHU Jing,TANG Chuan,CHANG Ming,et al. Field observations of the disastrous 11 July 2013 debris flows in qipan gully,Wenchuan area,southwestern China[C]//Engineering Geology for Society and Territory - Volume 2. Cham:Springer International Publishing,2015:531 − 535.

    [33]

    CHEN Ming,TANG Chuan,LI Mingwei,et al. Changes of surface recovery at coseismic landslides and their driving factors in the Wenchuan earthquake-affected area[J]. Catena,2022,210:105871. DOI: 10.1016/j.catena.2021.105871

    [34]

    ZHANG Xianzheng,TANG Chenxiao,LI Ning,et al. Investigation of the 2019 Wenchuan County debris flow disaster suggests nonuniform spatial and temporal post-seismic debris flow evolution patterns[J]. Landslides,2022,19(8):1935 − 1956. DOI: 10.1007/s10346-022-01896-6

    [35]

    GUZZETTI F,ARDIZZONE F,CARDINALI M,et al. Distribution of landslides in the upper Tiber River Basin,central Italy[J]. Geomorphology,2008,96(1/2):105 − 122.

    [36] 叶小兵. 强震区震后泥石流坡面物源起动机制研究[D]. 绵阳:西南科技大学,2020. [YE Xiaobing. Study on provenance starting mechanism of debris flow slope after earthquake in strong earthquake area[D]. Mianyang:Southwest University of Science and Technology,2020. (in Chinese with English abstract)]

    YE Xiaobing. Study on provenance starting mechanism of debris flow slope after earthquake in strong earthquake area[D]. Mianyang: Southwest University of Science and Technology, 2020. (in Chinese with English abstract)

    [37] 王念秦,韩波,庞琦,等. 泥石流防治工程效果后评价初探[J]. 工程地质学报,2015,23(2):219 − 226. [WANG Nianqin,HAN Bo,PANG Qi,et al. Post-evaluation model on effectiveness of debris flow control[J]. Journal of Engineering Geology,2015,23(2):219 − 226. (in Chinese with English abstract)]

    WANG Nianqin, HAN Bo, PANG Qi, et al. Post-evaluation model on effectiveness of debris flow control[J]. Journal of Engineering Geology, 2015, 23(2): 219 − 226. (in Chinese with English abstract)

    [38] 张文涛,柳金峰,游勇,等. 泥石流防治工程损毁度评价——以汶川地区为例[J]. 中国地质灾害与防治学报,2022,33(4):77 − 83. [ZHANG Wentao,LIU Jinfeng,YOU Yong,et al. Damage evaluation of control works against debris flow:A case study in Wenchuan area[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):77 − 83. (in Chinese with English abstract)]

    ZHANG Wentao, LIU Jinfeng, YOU Yong, et al. Damage evaluation of control works against debris flow: A case study in Wenchuan area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 77 − 83. (in Chinese with English abstract)

图(7)  /  表(4)
计量
  • 文章访问数:  359
  • HTML全文浏览量:  12
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-07
  • 修回日期:  2023-12-10
  • 录用日期:  2024-12-30
  • 网络出版日期:  2025-01-03
  • 刊出日期:  2025-02-24

目录

/

返回文章
返回