ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

聚丙烯纤维水泥加固土质边坡的抗冲刷有效性分析

亓星, 杨浪, 刘焕, 曹汝亮

亓星,杨浪,刘焕,等. 聚丙烯纤维水泥加固土质边坡的抗冲刷有效性分析[J]. 中国地质灾害与防治学报,2025,36(1): 84-91. DOI: 10.16031/j.cnki.issn.1003-8035.202309004
引用本文: 亓星,杨浪,刘焕,等. 聚丙烯纤维水泥加固土质边坡的抗冲刷有效性分析[J]. 中国地质灾害与防治学报,2025,36(1): 84-91. DOI: 10.16031/j.cnki.issn.1003-8035.202309004
QI Xing,YANG Lang,LIU Huan,et al. Analysis of the anti-erosion effectiveness of polypropylene fiber (PPF) cement-reinforced soil for slope protection[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 84-91. DOI: 10.16031/j.cnki.issn.1003-8035.202309004
Citation: QI Xing,YANG Lang,LIU Huan,et al. Analysis of the anti-erosion effectiveness of polypropylene fiber (PPF) cement-reinforced soil for slope protection[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 84-91. DOI: 10.16031/j.cnki.issn.1003-8035.202309004

聚丙烯纤维水泥加固土质边坡的抗冲刷有效性分析

基金项目: 地质灾害防治与地质环境保护国家重点实验室开放基金(SKLGP2022K008);四川矿产资源研究中心资助项目(SCKCZY2022-YB017)
详细信息
    作者简介:

    亓 星(1988—),男,四川成都人,博士,副教授,主要从事地质灾害监测预警与预测评价。E-mail:qixing2009@163.com

  • 中图分类号: P642.22

Analysis of the anti-erosion effectiveness of polypropylene fiber (PPF) cement-reinforced soil for slope protection

  • 摘要:

    以水泥和聚丙烯纤维在粉质黏土边坡坡面抗冲刷防护应用为背景,探讨了聚丙烯纤维水泥加固粉质黏土边坡的抗冲刷有效性。基于室内试验,开展水泥和纤维的掺量对粉质黏土抗剪强度影响试验,并基于试验配比进行边坡冲刷模拟。结果表明:水泥掺量与粉质黏土的抗剪强度呈正相关,聚丙烯纤维可进一步提高加固土的黏聚力;边坡坡比对土体的抗冲刷效果呈先增大后减小的影响;与未加固的素土坡面相比,加固后的边坡坡面抗冲刷能力得到显著提高,从SEM试验中发现,加固土抗冲刷能力提高是由于水泥水化作用和聚丙烯纤维的分散排列使加固后的土壤颗粒相互吸引,形成了坚固的结构,从而提高了土壤抗渗透性。研究结果为边坡抗冲刷防护提供了新的工程应用思路。

    Abstract:

    Taking the application of cement and polypropylene fiber in the protection of silty clay slope as the research background, this paper explores the validity analysis of polypropylene fiber cement reinforcement material on the anti-erosion ability of silty clay slope. Based on indoor experiments, the research investigated the effects of varying cement and fiber content on the shear strength of silty clay. A slope erosion model experiment was conducted based on predetermined experimental ratios. The results indicate a positive correlation between cement content and the shear strength of silty clay. Additionally, polypropylene fiber was found to further improve the cohesion of the reinforced soil. The slope ratio initially enhances and then diminishes the anti-erosion effect on the soil. Compared to unreinforced slopes, the erosion resistance of the strengthened side slope is significantly improved. Scanning electron microscopy (SEM) analyses revealed that the improved erosion resistance of the reinforced soil results from the hydration of cement and the dispersed arrangement of polypropylene fibers, which promote interparticle cohesion and form a robust structure, thereby enhancing the soil’s impermeability. The research results offer novel engineering application insights for protecting slopes against erosion.

  • 滑坡的突发性强,危害性大[1],是一种在陆地环境中普遍存在的地质灾害,对人类社会具有较大影响和威胁[2]。滑坡预警的研究一直以来都备受国内外学者的关注[34],很多国家在滑坡灾害的应对中,都选择布设了早期监测预警系统[5]。通过预警系统得到的相关位移数据,可直观地体现滑坡的变形演化。由此可见,监测预警数据在滑坡的预警预报中起到了至关重要的作用。

    在这个信息技术快速发展的时代,人工智能被广泛应用,而机器学习是其中的一个重要分支。从20世纪80年代以来,机器学习已在算法、理论和应用等方面获得了巨大的成功[6]。近年来,机器学习也在预测领域中得到了广泛的运用,常见的几种算法如随机森林[7]、支持向量机[8]、人工神经网络[9]和循环神经网络[10]等在环境、金融、电力和交通等方面都有相关的应用。长短期记忆网络(long short term memory network,LSTM)是一种时间循环神经网络,是循环神经网络(recurrent neural network,RNN)中的一个变体,但与传统RNN不同,LSTM的记忆单元更复杂,对于时间跨度较大的时间序列有良好的记忆[11],同时也解决了神经网络的易陷入局部最小值、梯度消失和梯度爆炸等问题[12]。LSTM在语音识别[13]、图像处理[14]以及最常见的股票预测[1516]中运用广泛,但目前在滑坡的位移时序预测中较少。

    本文将LSTM应用到立节北山滑坡的变形预测中,预测监测点位移数据,并将预测数据与实际数据进行对比分析,为立节北山滑坡提供新的预测参考。

    立节北山滑坡灾害位于舟曲县西部的白龙江上游左岸立节镇的北侧山体,由多个滑坡共同构成,滑坡区涵盖已经发生过变形滑动的古滑坡体、老滑坡体、正在发生变形的新滑坡体以及已有明显变形迹象的但未发生位移的潜在滑坡体的区域,共有古、老、新滑坡10处,整体范围南北长1388 m,东西宽610 m,总面积约0.85 km2

    根据立节北山的滑坡性质、地形条件、地层分布和滑动条件等特征将滑坡分为7个块体(图1),以滑坡中部的地形转折处为界,分为上下两级。上级滑坡主要是老滑坡,其覆盖区域为H1,以及已有明显变形迹象但未发生滑动的潜在滑坡H1-1和H1-2;下级滑坡主要为变形滑动明显,并且变形面积较大的H2—H7滑坡。统计数据显示,滑坡区内堆积体总体积为3.270 54×106 m3,滑坡变形量从大到小排序为:H4>H5>H3>H2>H7>H6>H1。

    图  1  立节北山滑坡GNSS分布图
    Figure  1.  The North Mountain of Lijie landslide GNSS distribution map

    LSTM早在1997年就被提出,它的出现解决了隐变量一直存在的长期信息贮存和短期输入缺失的问题。和传统神经网络相比,LSTM引入了记忆元和三种门结构(图2),其中记忆元(C)用于记录附加的信息,而门结构用于控制记忆元,分别为遗忘门(f)、输入门(i)和输出门(o)。

    图  2  LSTM模型结构
    Figure  2.  LSTM model structure

    首先在遗忘门中决定记忆或忽略隐状态的输入信息,此处的sigmoid激活函数(σ)将判断当前输入是否遗忘;其次输入门用于决定在记忆元中读取哪些信息,此处有两个分支构成,一个是记忆门决定要读入的值,另一个是tanh激活函数得到新的候选记忆元C~t,通过这两个分支得到的值以传导新的信息;然后通过前两个步骤得到的ftit·C~t以更新Ct-1得到新的记忆元Ct;最后输出门决定记忆元的哪些信息被输出,通过该处的sigmoid激活函数(σ)得到Ot,再结合tanh激活函数最后输出新的数据ht。整个过程中的详细计算如下:

    ft=σ(XtWxf+ht1Whf+bf) (1)
    it=σ(XtWxi+ht1Whi+bi) (2)
    C~t=tanh(XtWxc+ht1Whc+bc) (3)
    Ct=ftCt1+itC~t (4)
    Ot=σ(XtWxo+ht1Who+bo) (5)
    ht=Ottanh(Ct) (6)

    其中,WxfWxiWxoWxcWhfWhiWhoWhc分别是遗忘门、输入门、输出门和候选记忆元的权值向量,bfbibobc分别是遗忘门、输入门、输出门和候选记忆元的偏置向量,Xtt时刻的输入值。

    为了衡量预测结果的精度,本文采用均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R2)以及可解释方差(Evar)作为评价指标,具体表达式如下:

    RMSE=1mi=1m(yty^t)2 (7)
    MAE=1mi=1m|yty^t| (8)
    R2=11mi=1m(yty^t)21mi=1m(yty¯)2 (9)
    y¯=1mi=1myt (10)
    Evar=1Var{yty^t}Var{yt} (11)

    式中:yty^t——t时刻的真实值和预测值;

    m——数据个数;

    Var——方差。

    立节北山滑坡监测点分布如图1所示,共布设11个GNSS监测点。本文的数据来源于监测点实时监测的位移数据,数据范围为2021年3—12月的每日位移数据,其中有少量缺失数据,对其进行了采取邻日数据的中间值的填充预处理。

    立节北山滑坡稳定性除了受滑坡本身内在结构影响,也受外在因素影响。除累计位移外,图3为GNSS1监测站垂直和水平位移和雨量的相关曲线,由图可知,位移量与雨量间具有明显相关性。雨水下渗需要一定的时间,将导致滑坡体的下滑力增大,因此影响滑坡的稳定性。

    图  3  GNSS1累计位移与雨量关系
    Figure  3.  GNSS1 relationship between cumulative displacement and rainfall

    Pearson相关系数是用来表示两个变量之间线性相关程度的大小与方向的指标,数值范围为−1≤r≤1,小于0为负相关,大于0为正相关,等于0则不存在相关性,绝对值越大,则表示两变量间的相关程度越强烈。通过GNSS1位移量与雨量的Pearson相关性分析,得到相关系数值为0.993,接近于1,说明之间有显著的正相关关系,雨量对滑坡的应力状态影响明显,特征评价因子选取适宜。

    将影响因素累计位移、雨量作为模型的输入变量,因数据的类型、量纲以及取值范围不同,需先对数据进行归一化处理,进而输出模型预测值。

    本文基于LSTM模型建立了立节北山滑坡的变形预测模型,首先以GNSS1监测站为例,GNSS1监测站发出红色预警,形变量显著,通过2021年4月9日至12月2日的数据进行预测,其中GNSS1因该处形变量过大,于12月3日掉落数据中断,所以采取前八月的数据进行相应的预测试验。运用Python 3.7语言和PyTorch 1.12机器学习框架进行构建LSTM模型,在试验中,首先需要对参数进行初始化,发现采用不同的隐藏层神经元数预测结果的精度会有所不同。如图4所示,选取8、16以及几个32的倍数为不同隐藏神经元数量进行精度对比:以64为转折点,神经元数量在8~64时,RMSE呈下降趋势;神经元数量在64~128时,RMSE呈上升趋势,所以选取隐藏层神经元数为64,此时RMSE最低,精度最高。

    图  4  不同隐藏神经元数量的RMSE变化
    Figure  4.  RMSE variation with different numbers of hidden neurons

    通过参数初始化调整,设置LSTM模型循环层数为2,隐藏层神经元数为64,序列长度为30,将数据集以6∶4的比例,划分为训练集和测试集。首先对GNSS1的垂直位移进行预测,在LSTM预测模型训练中,损失函数(Loss)变化正常,随训练次数的增加,损失函数值越接近于0(图5)。

    图  5  LSTM模型训练中的损失函数数值变化
    Figure  5.  Numerical changes in loss function during LSTM model training

    测试集预测精度结果见表1,均方根误差为12.88 mm,平均绝对误差为6.56 mm,决定系数及可解释方差均达到0.99,精度评价良好,本文的LSTM模型试验性能有效。

    表  1  GNSS1垂直位移精度评价指标
    Table  1.  Evaluation metrics for vertical displacement precision of GNSS1
    评价指标 RMSE/mm MAE/mm R2 Evar
    数值 12.88 6.56 0.99 0.99
    下载: 导出CSV 
    | 显示表格

    监测站GNSS1最终预测结果见图6,分别为垂直及水平位移的预测,测试数据与预测数据的比例为5∶1。

    图  6  GNSS1位移预测结果
    Figure  6.  GNSS1 displacement prediction results

    为进一步验证本文LSTM模型在滑坡位移中预测的广泛性,又选取了蓝色预警区域GNSS8监测站数据,进行预测对比,评价指标见表23,决定系数及可解释方差均达到0.99,预测结果如图7

    表  2  GNSS8垂直位移精度评价指标
    Table  2.  Evaluation metrics for vertical displacement precision of GNSS8
    评价指标 RMSE/mm MAE/mm R2 Evar
    数值 6.63 5.66 0.99 0.99
    下载: 导出CSV 
    | 显示表格

    以GNSS1水平位移为例,见图8所示,对2021年12月2日后48 d(测试数据与预测数据的比例为2∶1)的数据进行预测,位移值超过20000 mm后,预测值增长趋势明显增加,故选取测试数据与预测数据的比例为5∶1。说明LSTM模型具有短期预测的能力,但不适用于长期预测,长期预测呈现的效果不佳,可能导致模型失去预测效能。

    表  3  GNSS8水平位移精度评价指标
    Table  3.  Evaluation metrics for horizontal displacement precision of GNSS8
    评价指标 RMSE/mm MAE/mm R2 Evar
    数值 4.00 3.79 0.99 0.99
    下载: 导出CSV 
    | 显示表格
    图  7  GNSS8位移预测结果
    Figure  7.  GNSS8 displacement prediction results
    图  8  GNSS1水平位移未来48 d预测结果
    Figure  8.  Forecasted results for horizontal displacement of GNSS1 for the next 48 days

    本文以GNSS1和GNSS8两个发出预警的典型监测站为例进行预测试验,其中GNSS1位于块体H4,其为立节北山滑坡变形量最大的块体,故以GNSS1监测站为首要监测对象进行预测试验,GNSS8监测站为辅,进行进一步验证。立节北山滑坡后续进行施工防治措施,如图9治理工程三维地表分布图所示,上部进行了格构护坡和抗滑桩等的施工措施见图9(b),下部GNSS1处进行了削坡措施,见图9(c)。施工成效显著,目前处于稳定状态,本文仅以研究新方法与应用为目的进行相关预测。

    图  9  治理工程实施GNSS三维分布图
    Figure  9.  The GNSS three-dimensional distribution map of the governance project implementation

    本文运用LSTM神经网络预测模型对立节北山滑坡的变形进行预测,并说明北山滑坡主要的影响因素,以选取恰当的特征因子,是将人工智能机器学习应用于北山滑坡变形预测的有效实验,实现了北山滑坡的定量位移预测。

    GNSS1在损坏掉落前,水平及垂直位移分别已达15 000 mm和12 000 mm,通过本次LSTM模型预测,可良好的预测出位移数值,对于测点仪器及财产安全也将起到良好的预警作用。

    预测结果性能显示良好,精度评价较高,虽然LSTM模型在长期预测中表现不突出,但短期预测的能力显著,不仅为立节北山滑坡变形预测提供了辅助参考,也为滑坡预警预测打开了新的思路,对早期预警预报和地质灾害防治具有重要的意义。LSTM模型更是在GNSS8监测站的水平位移预测值中的评价指标较为良好,均方根误差为4.00 mm,平均绝对误差为3.79 mm,体现出了在滑坡变形预测中很好的适用性,进一步说明在滑坡变形预测中引入人工智能,是一个可实行的策略方法。

  • 图  1   素土与水泥掺量土竖向应力与抗剪强度之间的关系

    Figure  1.   Relationship between vertical stress and shear strength of soil and cement-modified soil

    图  2   水泥掺量对粉质黏土内摩擦角和黏聚力的影响

    Figure  2.   Effect of cement content on the internal friction angle and cohesion of silty clay

    图  3   水泥土与聚丙烯纤维掺量土竖向应力与抗剪强度之间的关系

    Figure  3.   Relationship between vertical stress and shear strength of cemented soil mixed with polypropylene fibers

    图  4   不同掺量聚丙烯纤维水泥土的黏聚力和内摩擦角以及增长百分比

    Figure  4.   Cohesion, internal friction angle and percentage increase in cement soil with varied polypropylene fiber contents

    图  5   边坡冲刷模拟装置

    Figure  5.   Slope scour simulator

    图  6   不同流量下的素土和加固土冲刷过程

    Figure  6.   Erosion processes of plain and reinforced soil under different flow rates

    图  7   加固前后坡面产土颗粒量与放水流量的关系曲线

    Figure  7.   Relationship curve between soil particle yield and water discharge on slope before and after reinforcement

    图  8   加固前后产土颗粒总量与放水流量的关系曲线

    Figure  8.   Relationship curve between total soil particle production and water discharge before and after slope reinforcement

    图  9   产土颗粒总量与坡比的关系曲线

    Figure  9.   The relationship curve between total soil particle production and slope ratio

    图  10   素土和加固土SEM图像

    Figure  10.   SEM images of plain soil and reinforced soil

    表  1   试验用土的物理性质

    Table  1   Physical properties of test soils

    参数 天然含水率/% 最优含水率/% 塑限 液限 塑性指数 最大干密度
    /(g·cm−3
    粒径/%
    >0.25 mm 0.25~0.075 mm <0.075 mm
    取值 11.5 12 18.09 33.54 15.45 2.28 6.88 28.26 64.86
    下载: 导出CSV

    表  2   聚丙烯纤维主要物理特性

    Table  2   Physical properties of polypropylene fibers

    类型 直径/mm 密度/(g·cm−3 抗拉强度/MPa 弹性模量/MPa 熔点/°C 燃点/°C 耐酸碱性
    束状单丝 3 0.91 ≥350 3500 160 550 极强
    下载: 导出CSV

    表  3   试验主要参数

    Table  3   Main parameters of the experiment

    组数 土壤类型 坡比 放水流量/(L·h−1
    8组 素土
    聚丙烯纤维加固土
    1∶1.73 50
    100
    150
    200
    10组 素土
    聚丙烯纤维加固土
    1∶1.73 100
    1∶1.19
    1∶1
    1∶0.84
    1∶0.58
    下载: 导出CSV
  • [1] 潘俊义,侯大勇,李荣建,等. 不同雨强下黄土边坡降雨入渗测试与分析[J]. 工程地质学报,2018,26(5):1170 − 1177. [PAN Junyi,HOU Dayong,LI Rongjian,et al. Rainfall infiltration test and analysis of loess slope under different rainfall intensities[J]. Journal of Engineering Geology,2018,26(5):1170 − 1177. (in Chinese with English abstract)]

    PAN Junyi, HOU Dayong, LI Rongjian, et al. Rainfall infiltration test and analysis of loess slope under different rainfall intensities[J]. Journal of Engineering Geology, 2018, 26(5): 1170 − 1177. (in Chinese with English abstract)

    [2] 周志军,赵涛,钟世福,等. 基于地震力作用下的黄土边坡稳定性分析[J]. 公路交通科技,2013,30(9):38 − 42. [ZHOU Zhijun,ZHAO Tao,ZHONG Shifu,et al. Analysis on stability of loess slope based on effect of earthquake force[J]. Journal of Highway and Transportation Research and Development,2013,30(9):38 − 42. (in Chinese with English abstract)]

    ZHOU Zhijun, ZHAO Tao, ZHONG Shifu, et al. Analysis on stability of loess slope based on effect of earthquake force[J]. Journal of Highway and Transportation Research and Development, 2013, 30(9): 38 − 42. (in Chinese with English abstract)

    [3] 许强,唐然. 红层及其地质灾害研究[J]. 岩石力学与工程学报,2023,42(1):28 − 50. [XU Qiang,TANG Ran. Study on red beds and its geological hazards[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(1):28 − 50. (in Chinese with English abstract)]

    XU Qiang, TANG Ran. Study on red beds and its geological hazards[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(1): 28 − 50. (in Chinese with English abstract)

    [4] 彭和鹏,李馨馨. 考虑土层软化及渗流应力耦合的边坡稳定性分析[J]. 武汉大学学报(工学版),2022,55(2):117 − 122. [PENG Hepeng,LI Xinxin. Slope stability analysis considering soil softening and seepage-stress coupling effect[J]. Engineering Journal of Wuhan University,2022,55(2):117 − 122. (in Chinese with English abstract)]

    PENG Hepeng, LI Xinxin. Slope stability analysis considering soil softening and seepage-stress coupling effect[J]. Engineering Journal of Wuhan University, 2022, 55(2): 117 − 122. (in Chinese with English abstract)

    [5] 孙永帅,贾苍琴,王贵和. 降雨对边坡稳定性影响研究综述[J]. 施工技术,2012,41(17):63 − 66. [SUN Yongshuai,JIA Cangqin,WANG Guihe. Overview of research on stability of slope during rainfall[J]. Construction Technology,2012,41(17):63 − 66. (in Chinese with English abstract)]

    SUN Yongshuai, JIA Cangqin, WANG Guihe. Overview of research on stability of slope during rainfall[J]. Construction Technology, 2012, 41(17): 63 − 66. (in Chinese with English abstract)

    [6] 柯建武,张国沅. 地质灾害治理工程施工中边坡稳定性分析及治理方法探究[J]. 西部资源,2021(6):70 − 72. [KE Jianwu,ZHANG Guoyuan. Slope stability analysis and treatment methods in geological disaster control engineering construction[J]. Western Resources,2021(6):70 − 72. (in Chinese)]

    KE Jianwu, ZHANG Guoyuan. Slope stability analysis and treatment methods in geological disaster control engineering construction[J]. Western Resources, 2021(6): 70 − 72. (in Chinese)

    [7] 唐晓松,郑颖人,唐辉明. 边坡变形破坏演化特征的数值分析[J]. 重庆大学学报,2013,36(10):101 − 113. [TANG Xiaosong,ZHENG Yingren,TANG Huiming. Numerical analysis on the evolutionary features of deformation and failure modes of slopes[J]. Journal of Chongqing University,2013,36(10):101 − 113. (in Chinese with English abstract)]

    TANG Xiaosong, ZHENG Yingren, TANG Huiming. Numerical analysis on the evolutionary features of deformation and failure modes of slopes[J]. Journal of Chongqing University, 2013, 36(10): 101 − 113. (in Chinese with English abstract)

    [8]

    SUN Shuwei,HU Jjiabing,DENG An,et al. Comparative tests on the failure characteristics and mechanisms of slopes with curved surfaces[J]. Bulletin of Engineering Geology and the Environment,2023,82(9):357. DOI: 10.1007/s10064-023-03379-x

    [9] 王康,畅俊斌,李晓科,等. 基于水文过程和应力应变耦合的陕北黄土滑坡复活机理分析——以延安二庄科滑坡为例[J]. 中国地质灾害与防治学报,2023,34(6):47 − 56. [WANG Kang,CHANG Junbin,LI Xiaoke,et al. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution:A case study of the Erzhuangke landslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):47 − 56. (in Chinese with English abstract)]

    WANG Kang, CHANG Junbin, LI Xiaoke, et al. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution: A case study of the Erzhuangke landslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 47 − 56. (in Chinese with English abstract)

    [10] 刘冉,余新晓,蔡强国,等. 黄土丘陵沟壑区黄土坡面侵蚀过程及其影响因素[J]. 应用生态学报,2021,32(8):2886 − 2894. [LIU Ran,YU Xinxiao,CAI Qiangguo,et al. Erosion process of loess slope and influencing factors in the loess hilly-gully region,China[J]. Chinese Journal of Applied Ecology,2021,32(8):2886 − 2894. (in Chinese with English abstract)]

    LIU Ran, YU Xinxiao, CAI Qiangguo, et al. Erosion process of loess slope and influencing factors in the loess hilly-gully region, China[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2886 − 2894. (in Chinese with English abstract)

    [11] 夏万云. 银西高铁董志塬地区边坡侵蚀特性分析[J]. 中国地质灾害与防治学报,2022,33(1):99 − 106. [XIA Wanyun. Analysis on characteristic of slope erosion in Dongzhiyuan plateau of Yinchuan-Xi’an high-speed railway[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):99 − 106. (in Chinese with English abstract)]

    XIA Wanyun. Analysis on characteristic of slope erosion in Dongzhiyuan plateau of Yinchuan-Xi’an high-speed railway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 99 − 106. (in Chinese with English abstract)

    [12]

    ADAJAR M A,CUTORA M,BOLIMA S J,et al. Strength performance of nonwoven coir geotextiles as an alternative material for slope stabilization[J]. Applied Sciences,2023,13(13):7590. DOI: 10.3390/app13137590

    [13] 王银梅,徐鹏飞. 新型高分子材料固化黄土边坡的抗冲刷试验[J]. 中国地质灾害与防治学报,2018,29(6):92 − 96. [WANG Yinmei,XU Pengfei. Experimental stady on erosion resistance of loess slope solidified with new high polymer material[J]. The Chinese Journal of Geological Hazard and Control,2018,29(6):92 − 96. (in Chinese with English abstract)]

    WANG Yinmei, XU Pengfei. Experimental stady on erosion resistance of loess slope solidified with new high polymer material[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(6): 92 − 96. (in Chinese with English abstract)

    [14] 卢浩,晏长根,杨晓华,等. 麦秆纤维加筋土对黄土边坡抗冲刷的试验研究[J]. 合肥工业大学学报(自然科学版),2016,39(12):1671 − 1675. [LU Hao,YAN Changgen,YANG Xiaohua,et al. Experimental research on anti-eroding effect of reinforced soil with wheat straw in loess slope[J]. Journal of Hefei University of Technology (Natural Science),2016,39(12):1671 − 1675. (in Chinese with English abstract)]

    LU Hao, YAN Changgen, YANG Xiaohua, et al. Experimental research on anti-eroding effect of reinforced soil with wheat straw in loess slope[J]. Journal of Hefei University of Technology (Natural Science), 2016, 39(12): 1671 − 1675. (in Chinese with English abstract)

    [15] 徐岗,裴向军,袁进科,等. 改性纳米硅材料加固松散砂土的工程特性研究[J]. 水文地质工程地质,2019,46(4):142 − 149. [XU Gang,PEI Xiangjun,YUAN Jinke,et al. A study of the engineering characteristics of reinforced loose sand by modified nano-Si materials[J]. Hydrogeology & Engineering Geology,2019,46(4):142 − 149. (in Chinese with English abstract)]

    XU Gang, PEI Xiangjun, YUAN Jinke, et al. A study of the engineering characteristics of reinforced loose sand by modified nano-Si materials[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 142 − 149. (in Chinese with English abstract)

    [16] 马少坤,马敏,韦榕宽,等. 基于新型防渗护壁材料的膨胀土边坡抗入渗及抗冲刷特性[J]. 中南大学学报(自然科学版),2022,53(1):335 − 349. [MA Shaokun,MA Min,WEI Rongkuan,et al. Anti-infiltration and anti-scour characteristics of expansive soil slopes based on rubber polymer waterproof coating[J]. Journal of Central South University (Science and Technology),2022,53(1):335 − 349. (in Chinese with English abstract)]

    MA Shaokun, MA Min, WEI Rongkuan, et al. Anti-infiltration and anti-scour characteristics of expansive soil slopes based on rubber polymer waterproof coating[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 335 − 349. (in Chinese with English abstract)

    [17] 樊恒辉, 吴普特, 高建恩, 等. 水泥基土壤固化剂固化土的微观结构特征[J]. 建筑材料学报,2010,13(5):669 − 674. [FAN Henghui, WU Pute, GAO Jianen, et al. Microstructure characteristics of soil stabilized with cement-based soil stabilizer[J]. Journal of Building Materials,2010,13(5):669 − 674. (in Chinese with English abstract)]

    FAN Henghui, WU Pute, GAO Jianen, et al. Microstructure characteristics of soil stabilized with cement-based soil stabilizer[J]. Journal of Building Materials, 2010, 13(5): 669 − 674. (in Chinese with English abstract)

    [18] 王逢睿,王旭东,王捷,等. 偏高岭土复合加固剂改性生土材料的结构及性能研究[J]. 兰州大学学报(自然科学版),2020,56(3):341 − 348. [WANG Fengrui,WANG Xudong,WANG Jie,et al. The structure and properties of soil materials modified by the metakaolin composite reinforcer[J]. Journal of Lanzhou University (Natural Sciences),2020,56(3):341 − 348. (in Chinese with English abstract)]

    WANG Fengrui, WANG Xudong, WANG Jie, et al. The structure and properties of soil materials modified by the metakaolin composite reinforcer[J]. Journal of Lanzhou University (Natural Sciences), 2020, 56(3): 341 − 348. (in Chinese with English abstract)

    [19] 李岩,凌贤长,杨英姿,等. 静力荷载作用下纤维材料增强路基性能的试验研究[J]. 防灾减灾工程学报,2018,38(6):996 − 1002. [LI Yan,LING Xianchang,YANG Yingzi,et al. Research on the behavior of subgrade improved by the material of fibers under static loadings[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(6):996 − 1002. (in Chinese with English abstract)]

    LI Yan, LING Xianchang, YANG Yingzi, et al. Research on the behavior of subgrade improved by the material of fibers under static loadings[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(6): 996 − 1002. (in Chinese with English abstract)

    [20] 李长雨,马桂霞,郝光,等. 季节冻土地区路基冷阻层温度场效应[J]. 吉林大学学报(地球科学版),2018,48(4):1174 − 1181. [LI Changyu,MA Guixia,HAO Guang,et al. Effect on temperature field of subgrade cold resistive layer in seasonal frost region[J]. Journal of Jilin University (Earth Science Edition),2018,48(4):1174 − 1181. (in Chinese with English abstract)]

    LI Changyu, MA Guixia, HAO Guang, et al. Effect on temperature field of subgrade cold resistive layer in seasonal frost region[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(4): 1174 − 1181. (in Chinese with English abstract)

    [21]

    TIWARI N,SATYAM N. An experimental study on strength improvement of expansive subgrades by polypropylene fibers and geogrid reinforcement[J]. Scientific Reports,2022,12(1):6685. DOI: 10.1038/s41598-022-10773-0

    [22]

    SINGH K,PATEL M,KUMAR S. Soil performance evaluation on mixing polypropylene fiber,fly ash in different layers of subgrade[J]. Materials Today:Proceedings,2021,47:6317 − 6324.

  • 期刊类型引用(2)

    1. 伊明. 软弱围岩条件下高速公路隧道施工围岩滑坡变形检测. 科技创新与生产力. 2025(04): 144-146 . 百度学术
    2. 姜鑫,张卫雄,杨校辉,陈昆全,丁保艳. 甘肃舟曲县江顶崖滑坡抗滑桩变形监测与治理效果分析. 中国地质灾害与防治学报. 2024(05): 174-182 . 本站查看

    其他类型引用(1)

图(10)  /  表(3)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  20
  • PDF下载量:  47
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-09-04
  • 修回日期:  2024-01-03
  • 录用日期:  2024-12-30
  • 网络出版日期:  2025-01-01
  • 刊出日期:  2025-02-24

目录

/

返回文章
返回