Structural degradation and permeability evolution of red sandstone under dry-wet cycles in the Baihetan hydropower station reservoir area
-
摘要:
受库水位周期性波动及降雨的影响,库岸边坡岩石长期处于干湿交替的环境中,导致其劣化损伤,对岸坡稳定性构成巨大威胁。文章以白鹤滩水电站的红层砂岩为研究对象,开展硫酸钠盐溶液干湿循环试验、CT扫描、数字岩心建模及Avizo渗流模拟,研究了红层砂岩在干湿循环作用下的结构劣化及渗透性演化规律。结果表明:红层砂岩的质量损失率(α)和渗透率(k)随循环次数(N)的增加呈指数形式上升;总孔隙度、有效孔隙度及有效孔隙度占比随N的增加均先减小后增大;讨论认为红层砂岩在盐溶液干湿循环作用下的结构劣化,是溶蚀和盐结晶共同作用的结果。早期主要由于方解石、斜长石等矿物在溶液中发生溶解而产生结构损伤;中期岩石受到盐结晶和溶蚀作用的共同损伤;后期盐结晶作用逐渐减弱,岩石损伤再次以溶蚀作用为主。研究结果为白鹤滩水电站库滑坡长期稳定性评价提供重要理论依据。
Abstract:Influenced by the cyclic fluctuation of reservoir water levels and rainfall, the rocks of reservoir bank slopes have been subjected to alternating wet and dry environments for a long time. This leads to their deterioration and damage, posing a great threat to the stability of the bank slopes. This study investigates the red sandstone of the Baihetan hydropower station as the research object, and the structural deterioration of the red sandstone under wetting-drying cycles of sodium sulfate salt solution were investigated by carrying out wetting-drying cycles test, CT scanning test, digital core modeling and seepage simulation. The results show that the mass loss rate (α) and permeability (k) of the red sandstone increase exponentially with the number of cycles (N). The total porosity, effective porosity, and effective porosity ratio initially decrease and then increase with N. The study suggests that the structural deterioration of the red sandstone under wetting-drying cycles in the salt solution results from the combined effect of dissolution and salt crystallization. In the early stages, structural damage is mainly due to calcite, plagioclase feldspar and other minerals in solution dissolution. In the middle stages, the rocks undergoes damage from both salt crystallization and dissolution. In the later stages, the effect of salt crystallization is gradually weakened and rock dissolution becomes the dominant factor causing rock damage again. The results of the study provide an important theoretical basis for the long-term stability evaluation of reservoir slopes at the Baihetan hydropower station.
-
Keywords:
- red sandstone /
- wetting-drying cycles /
- CT scan /
- pore structure /
- permeability
-
0. 引 言
每年由于滑坡形成的地质灾害都会给我国造成巨大的人员伤亡和财产损失。根据最新公布的《中国统计年鉴2024》统计,近5年共发生地质灾害
28109 起,其中滑坡地质灾害16290 起,占总地质灾害数量的57.67%[1],是最常见的灾害类型之一。因此,对滑坡地质灾害进行早期防控,对于减少人员伤亡和经济损失都具有十分重要的实际意义。其中,变形速率作为对滑坡地质灾害预警和防控最主要的依据之一,其预测的准确度和时效性对于滑坡地质灾害的预测和防控起着关键作用。然而,滑坡地质灾害特别是突发型滑坡在其变形过程中,可能会发生与历史变形趋势完全不符的变形趋势[2],导致现有方法在预测此类问题时产生困难。随着近年来人工智能技术的飞速发展,在线监测与深度学习相结合的超前预测逐渐成为滑坡地质灾害防控研究的热点[3 − 5]。其中,长短时记忆(long short term memory network,LSTM)神经网络由于其在处理时序数据上的优势而得到广泛关注[6 − 7]。如李丽敏等[8]将滑坡累计位移分解为趋势项与波动项,并用多项式拟合预测趋势项、LSTM网络预测波动项;张明岳等[9]预测对比了循环神经网络(recurrent neural network,RNN)和LSTM2种模型在滑坡位移预测时的精度;LI等[10]采用自回归、LSTM和支持向量机(support vector machines,SVM)建立了综合模型并分析了各模型的权重;唐宇峰等[11]采用了一种动态残差修正的LSTM进行了滑坡位移预测。然而,传统LSTM网络难以同时提取从后向前的信息,使其应用受到了一定的限制。相比于传统LSTM网络,Tengtrairat等[12]提出了一种双向长短期记忆(bi-directional long short term memory network,BiLSTM)神经网络算法,该方法采用双向重叠计算的方法,比单向LSTM可以更好地捕捉双向时序特征,因此具有更好的应用前景[13]。在滑坡领域,Cui等[14]提出一种基于语义门(semantic gate,SG)和双时长短期记忆网络(SG-BiLSTM)的方法,并识别了滑坡体图像;Wang等[15]通过BiLSTM-RNN及卷积神经网络(convolutional neural network,CNN)结合LSTM的方法,生成了基于人工智能的香港滑坡敏感性地图。Lin等[16]采用GRA-MIC融合相关计算方法选取了影响滑坡位移的因素,最后采用CNN-BiLSTM模型进行了预测。综上,BiLSTM方法在滑坡领域内已经取得许多成果。然而,对于突发型滑坡灾害,由于其在加速变形过程中的变形速率发展历程可能与历史变形速率历程完全不符,导致了现有方法在预测此类问题时存在精度及效率不足的困难。因此,建立一种动态预测且深层优化的多层耦合算法,在提高预测准确率的同时保证较快的响应速度,对于准确地进行突发型滑坡预警及增加预警后的应急响应时间是具有十分重要的实际意义的。
鉴于此,本文提出一种基于动态串联PSO- BiLSTM的滑坡变形速率预测方法,首先,通过集合经验模态分解(EEMD)将变形速率序列进行分解,得到周期项及趋势项变形速率序列;其次,设置PSO启动阈值,并分别通过多项式拟合及周期项PSO-BiLSTM预测网络,得到趋势项及周期项变形速率预测值,将预测值分别加入趋势项变形速率序列及周期项变形速率序列;再次,以趋势项变形速率序列、周期项变形速率序列及残差变形速率序列为输入,建立总PSO-BiLSTM预测网络,得到总预测变形速率,最后,由总预测变形速率和监测变形速率,相减得到下一循环计算所需的残差变形速率。通过以上方式,提高对变形速率预测的准确率及滑坡预警的响应速度,为增加滑坡预警时间提供一种新的思路。
1. PSO-BiLSTM算法理论基础
1.1 LSTM算法理论基础
LSTM神经网络是对RNN的改进算法,其工作原理见图1[17]。LSTM算法在RNN的基础上引入了单元状态c以及“门”的概念,解决了在RNN中存在的梯度消失和爆炸问题。
LSTM神经网络的基本单元称为细胞,由遗忘门、输入门及输出门构成。其中,遗忘门决定上一时刻的状态St−1保留至当前时刻的信息,其通过一个取值为0~1范围的Sigmoid函数,将输入xt与上一时刻的输出ht−1相联系来决定遗忘的信息,Sigmoid函数取0表示全部遗忘,取1代表全部记忆;输入门的作用是控制当前输入xt保存到状态单元St中的记忆量,其主要结构算法为:
(1) (2) (3) (4) (5) (6) 式中:
、 、 、 、 、 ——遗忘门、输入门、当前输 入单元状态、当前时刻单 元状态、输出、最终输出; 、 、 、 ——遗忘门、输入门、当前输入 单元和输出的权重矩阵, 、 、 、 ——遗忘门、输入门、当前输入单 元和输出的偏置项; ——2个向量连接为一个更长向量; ——Sigmoid函数; ——将实数映射到 的双正切函数[18]。1.2 BiLSTM算法理论基础
BiLSTM网络是在LSTM网络基础上发展起来的,其可在不增加数据量的前提下学习序列数据和时间步长之间的双向依赖关系[12]。BiLSTM和单向LSTM最大的区别在于,前者可以同时保存过去和未来的信息,而后者只保存过去的信息,如图2所示。
1.3 PSO-BiLSTM算法
PSO常用来求解最优化问题,其基本思路是将待求解问题的解描述为粒子,每个粒子在N维解空间中可以不断寻求,其粒子极值
代表粒子所经过位置中的最优解,而粒子群中最好的粒子位置定义为 [19]。每一个粒子都会在循环中追踪 和 从而进行位置更新,并通过计算适应度重新获取 和 ,从而不断逼近最优解。对某一个粒子 ,其速度和位置更新方法如下:式中:
——惯性权重; ——空间的维数, ; ——粒子的个数, ; 、 ——粒子的速度、位置; ——当前迭代次数; 、 ——学习因子; 、 —— 之间的随机数; 、 ——粒子 最佳位置和全部粒子的最佳位置。基于以上理论,基于PSO优化的BiLSTM网络训练流程如图3所示。
2. 动态串联PSO-BiLSTM算法
2.1 动态串联PSO-BiLSTM算法基本原理
滑坡体在随着时间的演变过程中,其滑坡变形速率趋势会呈现出“稳定型”、“渐变型”、“突发型”等不同的变化趋势。对于突发型滑坡,其从变形速率突变到产生滑坡的时间非常短(图4),现有方法在解决突变型滑坡位移预测时存在明显的精度不足、效率低下等困难。
(1)传统BiLSTM网络仅通过已有监测数据一次性建立和验证网络,并将该网络作为后续预测的依据,即“静态网络”。这种网络训练完成后不再更新,当变形速率发展趋势与前期变形速率趋势发生较大变化时,难以适应新趋势的发展,无法对变形速率进行有效预测。
(2)“动态网络”,即在每一次得到新的监测数据后对网络进行更新,可使网络具备更新后的变形速率信息,相比于静态网络可以显著提高预测精度。然而,一方面,动态BiLSTM网络预测的准确率与经验设定的网络参数有关,参数不当会严重影响其预测精度;另一方面,在变形速率产生突变时,其突变后的数据量少、突变速率变化快,动态网络的方法在预测时仍存在严重的滞后性。
(3)PSO优化可以对BiLSTM参数进行寻优从而提高准确率,但会大大增加计算成本,导致过长的预测时间而不利于工程的实际应用。
基于以上现状,本文建立了一种基于动态串联PSO-BiLSTM的滑坡变形速率预测方法。首先,设置每一次要分析的变形速率数据量N,通过“动态滑窗”方式截取待分析数据(“动态滑窗”指每获取最新一轮时序数据,将序列中最早的一轮时序数据去除,从而保持总数据量始终不变,达到减小待分析数据量和历史数据的影响的目的),并通过集合经验模态分解(EEMD)将变形速率序列进行分解,得到周期项及趋势项变形速率序列;其次,分别通过多项式拟合及周期项PSO-BiLSTM预测网络,得到趋势项及周期项变形速率预测值,并将预测值分别加入趋势项变形速率序列及周期项变形速率序列;再次,以趋势项变形速率序列、周期项变形速率序列及残差变形速率序列为输入,建立总PSO-BiLSTM预测网络,得到总预测变形速率;最后,由总预测变形速率和监测变形速率,相减得到下一循环建立总PSO-BiLSTM所需的残差变形速率。需要指出的是:(1)为提升预测效率,为PSO-BiLSTM网络仅当某一次预测的周期项残差率
( 为PSO启动阈值)时PSO才会启动,否则直接进行BiLSTM网络预测;(2)残差变形速率由下一循环监测的实际数据与当前循环的总预测变形速率之差求得,而当计算循环数i≤S(S为串联PSO-BiLSTM启动阈值)时总预测变形速率=趋势项变形速率预测值+周期项变形速率预测值,当i>S时总预测变形速率为串联PSO-BiLSTM网络求得。其流程图如图5所示。通过以上方式,在动态训练网络的基础上,考虑了不同历史时刻条件下动态网络速率预测的误差,实现了不同动态网络之间的学习,且仅当预测误差过大时才启动PSO优化,因此可在提高预测准确率的前提下保证较高的计算效率。
2.2 模型性能指标
为全面评价该滑坡变形速率预测模型精度,采用平均绝对误差(mean absolute error,MAE)、绝对百分比误差(mean absolute percentage error,MAPE)、均方根误差(root mean square error,RMSE)及拟合优度R2来作为模型性能指标,如下[20]:
(7) (8) (9) (10) 式中:
——实测值; ——预测值; ——样本数量。3. 工程实例
3.1 滑坡变形速率实测及预处理
以四川省某滑坡体实测变形速率为例。自2020年3月14日—9月17日间对该案例进行了地表裂缝监测及降雨量监测(图6),其中每小时一组数据,共得到了
11776 组滑坡变形速率监测数据。该滑坡体在前期监测中变形一直相对稳定,自9月13日12时起,该滑坡隐患点在连日降雨影响下,其变形速率有明显突变迹象。如图7所示为9月13日前500 h内变形速率变化情况。
由图7所示, 该滑坡体在前期一直处于稳定状态,仅在突变前极短时间内变形速率发生了突变。由于本文的研究目的主要是针对变形速率产生突变情况下的预测研究,稳定期的变形速率对文章研究意义不大。因此仅选取了2020年9月12日17时—14日6时间的50 h为例进行探讨分析。
在实际工程中,存在变形速率的发展不是单向放大过程的情况,而是在某些时刻内会存在阶梯性的变化,这给变形速率的预测带来了困难。在本文中,采用“相邻极大值”方法来对数据进行预处理,即每一个时刻t的变形速率
,从而平滑变形速率曲线,有利于进一步进行变形速率预测。相比于常用的“相邻平均”的方法,极大值法关注最大变形速率,因此在实际工程中是偏于安全的,如图8所示。从图8可以看出,该滑坡体的变形速率在20 h之后呈快速增加的趋势,其变化形态与历史趋势有着较大的差异,即产生了“突变”。
3.2 模型建立与参数选取
为验证本文方法的优势,分别采用动态BiLSTM网络(类型Ι)、动态PSO-BiLSTM网络(类型Ⅱ)、文中提出的动态串联PSO-BiLSTM网络在PSO启动残差率C=0(类型Ⅲ)和C=0.1(类型IV)4种情况进行预测分析。每类BiLSTM网络的输出均为一维。其中,动态BiLSTM的BiLSTM层节点数选取为50,正则化系数为0,初始学习率为0.2;PSO优化的参数为BiLSTM层节点数、初始学习率和正则化系数;PSO启动残差率C取0.1,动态滑窗截取数据为30,预测数据量为20。
3.3 预测结果及指标评价
4种类型算法均进行了3次预测,取计算结果的平均值。图9为4种方法变形速率预测结果与实测结果20轮预测对比。
其中,为获取总PSO-BiLSTM网络所需的残差变形速率,在前10个预测循环中仅采用周期项PSO-BiLSTM网络进行预测,而最后10项采用动态串联PSO-BiLSTM网络进行预测。因此,以下仅选择最后10次数据进行对比分析,如图10所示。
为进一步对比预测结果,采用MAE、MAPE、RMSE及R2共4种评价指标评价位移预测结果,表1为各模型位移预测结果的评价结果。
表 1 预测结果评价Table 1. Evaluation of prediction results预测
类型位移评价指标 计算时间/s MAE MAPE/% RMSE R2 类型Ⅰ 0.43 8.45 0.70 0.96 24.89 类型Ⅱ 0.36 7.07 0.61 0.97 294.50 类型Ⅲ 0.30 5.82 0.51 0.98 1861.87 类型Ⅳ 0.28 5.41 0.57 0.98 380.22 其中,MAE为绝对误差;MAPE为预测值与实测值的平均偏离程度,其越接近0表示效果越好;RMSE为预测值与真实值之间的偏差,越接近0表示预测值与真实值越吻合;R2越接近1说明预测越准确。
从图10及表1可以看出:(1)动态BiLSTM网络(类型Ⅰ)的绝对误差和平均偏离程度、偏差均为最大,且拟合优度R2最小,说明此时类型Ⅰ在四种类型中效果最差,但由于未采用PSO优化算法,此时拥有最佳的计算效率;(2)加入PSO算法后(类型Ⅱ),其MAE、MAPE和RMSE值相比类型Ⅰ均有明显的下降,且拟合优度上升,说明PSO优化算法对预测结果有明显的提升;(3)当加入串联算法后(类型Ⅲ和类型Ⅳ),其MAE、MAPE和RMSE值进一步下降,而拟合优度进一步提升,说明串联算法对预测精度有进一步提升;(4)类型Ⅲ与类型Ⅳ的各评价指标差距较小且各有优劣,但类型Ⅳ相比与类型Ⅲ计算效率大大提升,这对于滑坡变形速率的快速预测具有重要的实用价值。
4. 结论
(1)传统动态BiLSTM算法在进行滑坡变形速率预测时具有较高的计算效率,但在面临滑坡变形速率快速变化的情况时预测精度偏低;而相对于传统动态BiLSTM算法,PSO-BiLSTM优化算法对突发型滑坡变形速率预测结果有明显的提升。
(2)动态串联PSO-BiLSTM算法可以有效地提高突发型滑坡变形速率的预测准确率,但由于PSO优化计算时间过长,不利于工程应用;加入PSO启动机制后,其MAE、MAPE、RMSE、R2分别为0.28、5.41%、0.57、0.98,计算时间为380.22 s,在具有较高的精度的同时保证了计算效率,对于滑坡预测的快速响应、提高工程实用价值都有重要的意义。
-
表 1 红层砂岩的矿物组成及含量
Table 1 Mineral composition and content of red-bedded sandstone
矿物名称 质量分数/% 黏土矿物 36.6 石英 22.7 方解石 16.8 斜长石 15.3 黄铁矿 3.2 白云石 2.1 钾长石 1.9 菱铁矿 1.3 其他矿物 0.1 表 2 岩样在盐溶液中发生的化学反应
Table 2 Chemical reactions of rock samples in salt solution
矿物 化学反应方程式 石英 SiO2+2H2O=H4SiO4 方解石 CaCO3=Ca2++ 斜长石 NaAlSi3O8+5.5H2O=0.5Al2Si2O5(OH)4+Na++OH−+2H4SiO4 -
[1] 孙钱程,徐晓,丰光亮,等. 长时浸泡红砂岩加/卸荷条件下的剪切特性及细观损伤机理[J]. 水文地质工程地质,2024,51(2):77 − 89. [SUN Qiancheng, XU Xiao, FENG Guangliang, et al. Shear characteristics and mesoscopic damage mechanism of long time soaking red sandstone under loading and unloading conditions[J]. Hydrogeology & Engineering Geology,2024,51(2):77 − 89. (in Chinese with English abstract)] SUN Qiancheng, XU Xiao, FENG Guangliang, et al. Shear characteristics and mesoscopic damage mechanism of long time soaking red sandstone under loading and unloading conditions[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 77 − 89. (in Chinese with English abstract)
[2] 许旭堂,鲜振兴,杨枫,等. 水-力耦合及干湿循环效应对浅层残积土斜坡稳定性的影响[J]. 中国地质灾害与防治学报,2022,33(4):28 − 36. [XU Xutang,XIAN Zhenxing,YANG Feng,et al. Influence of hydraulic-mechanical coupling and dry-wet cycle effect on surficial layer stability of residual soil slopes[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):28 − 36. (in Chinese with English abstract)] XU Xutang, XIAN Zhenxing, YANG Feng, et al. Influence of hydraulic-mechanical coupling and dry-wet cycle effect on surficial layer stability of residual soil slopes[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 28 − 36. (in Chinese with English abstract)
[3] 于越,李长冬,洪望兵,等. 干湿循环作用下白鹤滩小坝组红层砂岩强度特性与结构损伤研究[J]. 安全与环境工程,2022,29(4):24 − 32. [YU Yue,LI Changdong,HONG Wangbing,et al. Strength characteristics and structural damage of red sandstone in Baihetan Xiaoba formation under wetting-drying cycles[J]. Safety and Environmental Engineering,2022,29(4):24 − 32. (in Chinese with English abstract)] YU Yue, LI Changdong, HONG Wangbing, et al. Strength characteristics and structural damage of red sandstone in Baihetan Xiaoba formation under wetting-drying cycles[J]. Safety and Environmental Engineering, 2022, 29(4): 24 − 32. (in Chinese with English abstract)
[4] YAO Wenmin,LI Changdong,ZHAN Hongbin,et al. Multiscale study of physical and mechanical properties of sandstone in Three Gorges Reservoir Region subjected to cyclic wetting–drying of Yangtze River water[J]. Rock Mechanics and Rock Engineering,2020,53(5):2215 − 2231. DOI: 10.1007/s00603-019-02037-7
[5] HUA Wen,DONG Shiming,PENG Fan,et al. Experimental investigation on the effect of wetting-drying cycles on mixed mode fracture toughness of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences,2017,93:242 − 249. DOI: 10.1016/j.ijrmms.2017.01.017
[6] 梁金同,文华国,李笑天,等. 碳酸盐岩储层埋藏溶蚀改造与水岩模拟实验研究进展[J]. 地球科学,2023,48(2):814 − 834. [LIANG Jintong,WEN Huaguo,LI Xiaotian,et al. Research progress of burial dissolution and modification of carbonate reservoirs and fluid-rock simulation experiments[J]. Earth Science,2023,48(2):814 − 834. (in Chinese with English abstract)] LIANG Jintong, WEN Huaguo, LI Xiaotian, et al. Research progress of burial dissolution and modification of carbonate reservoirs and fluid-rock simulation experiments[J]. Earth Science, 2023, 48(2): 814 − 834. (in Chinese with English abstract)
[7] 张子翼,胡冉,廖震,等. 重力条件下粗糙裂隙溶蚀过程的可视化试验研究[J]. 水文地质工程地质,2023,50(2):178 − 188. [ZHANG Ziyi,HU Ran,LIAO Zhen,et al. Visualization experimental investigation into the dissolution processes in rough fracture under gravity conditions[J]. Hydrogeology & Engineering Geology,2023,50(2):178 − 188. (in Chinese with English abstract)] ZHANG Ziyi, HU Ran, LIAO Zhen, et al. Visualization experimental investigation into the dissolution processes in rough fracture under gravity conditions[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 178 − 188. (in Chinese with English abstract)
[8] 李华明,蔡乐军,陈南南,等. 基于室内试验的四川峨眉—汉源高速廖山隧道碳酸盐岩溶蚀特征分析[J]. 中国地质灾害与防治学报,2021,32(4):73 − 84. [LI Huaming,CAI Lejun,CHEN Nannan,et al. Experimental analysis on dissolution characteristics of carbonate rocks in Liaoshan tunnel of Emei-Hanyuan expressway in Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):73 − 84. (in Chinese with English abstract)] LI Huaming, CAI Lejun, CHEN Nannan, et al. Experimental analysis on dissolution characteristics of carbonate rocks in Liaoshan tunnel of Emei-Hanyuan expressway in Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 73 − 84. (in Chinese with English abstract)
[9] WU Y. Mechanism analysis of hazards caused by the interaction between groundwater and geo-environment[J]. Environmental Geology,2003,44(7):811 − 819. DOI: 10.1007/s00254-003-0819-9
[10] 王剑,应春业,胡新丽,等. 浸泡作用下碎石土剪切强度衰减规律及机理[J]. 地质科技通报,2022(6):294 − 300. [WANG Jian,YING Chunye,HU Xinli,et al. Shear strength attenuation law and mechanism of gravel-soil under immersion[J]. Bulletin of Geological Science and Technology,2022(6):294 − 300. (in Chinese with English abstract)] WANG Jian, YING Chunye, HU Xinli, et al. Shear strength attenuation law and mechanism of gravel-soil under immersion[J]. Bulletin of Geological Science and Technology, 2022(6): 294 − 300. (in Chinese with English abstract)
[11] ZHAO Chongbin,HOBBS B E,ORD A. Chemical dissolution-front instability associated with water-rock reactions in groundwater hydrology:Analyses of porosity-permeability relationship effects[J]. Journal of Hydrology,2016,540:1078 − 1087. DOI: 10.1016/j.jhydrol.2016.07.022
[12] YAO Huayan,ZHANG Zhenhua,ZHU Zhaohui. Uniaxial mechanical properties of sandstone under cyclic of drying and wetting[J]. Advanced Materials Research,2011,243/244/245/246/247/248/249:2310-2313.
[13] HALE P A. A laboratory investigation of the effects of cyclic heating and cooling,wetting and drying,and freezing and thawing on the compressive strength of selected sandstones[J]. Environmental and Engineering Geoscience,2003,9(2):117 − 130. DOI: 10.2113/9.2.117
[14] 袁璞,马芹永. 干湿循环条件下煤矿砂岩分离式霍普金森压杆试验研究[J]. 岩土力学,2013,34(9):2557 − 2562. [YUAN Pu,MA Qinyong. Split Hopkinson pressure bar tests on sandstone in coalmine under cyclic wetting and drying[J]. Rock and Soil Mechanics,2013,34(9):2557 − 2562. (in Chinese with English abstract)] YUAN Pu, MA Qinyong. Split Hopkinson pressure bar tests on sandstone in coalmine under cyclic wetting and drying[J]. Rock and Soil Mechanics, 2013, 34(9): 2557 − 2562. (in Chinese with English abstract)
[15] ZHAO Yunfeng,REN Song,JIANG Deyi,et al. Influence of wetting-drying cycles on the pore structure and mechanical properties of mudstone from Simian Mountain[J]. Construction and Building Materials,2018,191:923 − 931. DOI: 10.1016/j.conbuildmat.2018.10.069
[16] ESPINOSA-MARZAL R M,SCHERER G W. Impact of in-pore salt crystallization on transport properties[J]. Environmental Earth Sciences,2013,69(8):2657 − 2669. DOI: 10.1007/s12665-012-2087-z
[17] BENAVENTE D,MARTÍNEZ-MARTÍNEZ J,CUETO N,et al. Salt weathering in dual-porosity building dolostones[J]. Engineering Geology,2007,94(3/4):215 − 226.
[18] JIANG Xihui,LI Changdong,ZHOU Jiaqing,et al. Salt-induced structure damage and permeability enhancement of Three Gorges Reservoir sandstone under wetting-drying cycles[J]. International Journal of Rock Mechanics and Mining Sciences,2022,153:105100. DOI: 10.1016/j.ijrmms.2022.105100
[19] SCRIVANO S,GAGGERO L. An experimental investigation into the salt-weathering susceptibility of building limestones[J]. Rock Mechanics and Rock Engineering,2020,53(12):5329 − 5343. DOI: 10.1007/s00603-020-02208-x
[20] 张贵,胡文君,李倩,等. 金沙江河谷巧家段地下水化学特征[J]. 中国岩溶,2017,36(3):339 − 345. [ZHANG Gui,HU Wenjun,LI Qian,et al. Groundwater chemical characteristics of the Qiaojia district in Jinshajiang River valley,Yunnan,China[J]. Carsologica Sinica,2017,36(3):339 − 345. (in Chinese with English abstract)] DOI: 10.11932/karst20170307 ZHANG Gui, HU Wenjun, LI Qian, et al. Groundwater chemical characteristics of the Qiaojia district in Jinshajiang River valley, Yunnan, China[J]. Carsologica Sinica, 2017, 36(3): 339 − 345. (in Chinese with English abstract) DOI: 10.11932/karst20170307
[21] ZHANG Dujie,KANG Yili,SELVADURAI A P S,et al. Experimental investigation of the effect of salt precipitation on the physical and mechanical properties of a tight sandstone[J]. Rock Mechanics and Rock Engineering,2020,53(10):4367 − 4380. DOI: 10.1007/s00603-019-02032-y
[22] 张丙吉,辛全明,季铁军,等. 干湿循环作用下砂岩力学特性及能量损伤演化[J]. 水运工程,2022(1):192 − 197. [ZHANG Bingji,XIN Quanming,JI Tiejun,et al. Mechanical properties and energy damage evolution of sandstone under dry-wet cycle[J]. Port & Waterway Engineering,2022(1):192 − 197. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1002-4972.2022.01.033 ZHANG Bingji, XIN Quanming, JI Tiejun, et al. Mechanical properties and energy damage evolution of sandstone under dry-wet cycle[J]. Port & Waterway Engineering, 2022(1): 192 − 197. (in Chinese with English abstract) DOI: 10.3969/j.issn.1002-4972.2022.01.033
[23] HECKBERT P S. A seed fill algorithm[M]. Amsterdam:Elsevier,1990:275 − 277.
[24] 孙亮,王晓琦,金旭,等. 微纳米孔隙空间三维表征与连通性定量分析[J]. 石油勘探与开发,2016,43(3):490 − 498. [SUN Liang,WANG Xiaoqi,JIN Xu,et al. Three dimensional characterization and quantitative connectivity analysis of micro/nano pore space[J]. Petroleum Exploration and Development,2016,43(3):490 − 498. (in Chinese with English abstract)] DOI: 10.1016/S1876-3804(16)30057-X SUN Liang, WANG Xiaoqi, JIN Xu, et al. Three dimensional characterization and quantitative connectivity analysis of micro/nano pore space[J]. Petroleum Exploration and Development, 2016, 43(3): 490 − 498. (in Chinese with English abstract) DOI: 10.1016/S1876-3804(16)30057-X
[25] HAMMECKER C,MERTZ J D,FISCHER C,et al. A geometrical model for numerical simulation of capillary imbibition in sedimentary rocks[J]. Transport in Porous Media,1993,12(2):125 − 141. DOI: 10.1007/BF00616976
[26] DARCY H. Les Fontaines Publiques de La Ville de Dijon[M]. Victor Dalmont; 1856. (in French
[27] 傅晏,王子娟,刘新荣,等. 干湿循环作用下砂岩细观损伤演化及宏观劣化研究[J]. 岩土工程学报,2017,39(9):1653 − 1661. [FU Yan,WANG Zijuan,LIU Xinrong,et al. Meso damage evolution characteristics and macro degradation of sandstone under wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering,2017,39(9):1653 − 1661. (in Chinese with English abstract)] DOI: 10.11779/CJGE201709013 FU Yan, WANG Zijuan, LIU Xinrong, et al. Meso damage evolution characteristics and macro degradation of sandstone under wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1653 − 1661. (in Chinese with English abstract) DOI: 10.11779/CJGE201709013
[28] 张莹, 任战利, 兰华平, 等. 关中盆地新近系蓝田-灞河组热储层物性及渗流特征研究[J]. 地质通报,2024,43(5):712 − 725. [ZHANG Ying, REN Zhanli, LAN Huaping, et al. Physical properties and percolation characteristics of Neogene Lantian-Bahe Formation thermal reservoir in Guanzhong Basin[J]. Geological Bulletin of China,2024,43(5):712 − 725. (in Chinese with English abstract)] ZHANG Ying, REN Zhanli, LAN Huaping, et al. Physical properties and percolation characteristics of Neogene Lantian-Bahe Formation thermal reservoir in Guanzhong Basin[J]. Geological Bulletin of China, 2024, 43(5): 712 − 725. (in Chinese with English abstract)
[29] 刘庆, 林天懿, 杨淼, 等. 北京地区雾迷山组地热储层微观孔隙结构及孔渗特征[J]. 地质通报,2022,41(4):657 − 668. [LIU Qing, LIN Tianyi, YANG Miao, et al. Micropore structure and physical property of geothermal reservoir of Wumishan Formation in Beijing area[J]. Geological Bulletin of China,2022,41(4):657 − 668. (in Chinese with English abstract)] LIU Qing, LIN Tianyi, YANG Miao, et al. Micropore structure and physical property of geothermal reservoir of Wumishan Formation in Beijing area[J]. Geological Bulletin of China, 2022, 41(4): 657 − 668. (in Chinese with English abstract)
[30] GHOBADI M H,BABAZADEH R. Experimental studies on the effects of cyclic freezing–thawing,salt crystallization,and thermal shock on the physical and mechanical characteristics of selected sandstones[J]. Rock Mechanics and Rock Engineering,2015,48(3):1001 − 1016. DOI: 10.1007/s00603-014-0609-6
[31] 胡文龙,刘赞群,裴敏. 引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响[J]. 材料导报,2019,33(增刊1):239 − 243. [HU Wenlong,LIU Zanqun,PEI Min. Effect of air entraining agent on sulfate crystallization distress on sulphoaluminate cement concrete[J]. Materials Reports,2019,33(Sup 1):239 − 243. (in Chinese with English abstract)] HU Wenlong, LIU Zanqun, PEI Min. Effect of air entraining agent on sulfate crystallization distress on sulphoaluminate cement concrete[J]. Materials Reports, 2019, 33(Sup 1): 239 − 243. (in Chinese with English abstract)
[32] ZHAO Fei,SUN Qiang,ZHANG Weiqiang. Combined effects of salts and wetting–drying cycles on granite weathering[J]. Bulletin of Engineering Geology and the Environment,2020,79(7):3707 − 3720. DOI: 10.1007/s10064-020-01773-3
[33] YUAN Wen,LIU Xinrong,FU Yan. Chemical thermodynamics and chemical kinetics analysis of sandstone dissolution under the action of dry–wet cycles in acid and alkaline environments[J]. Bulletin of Engineering Geology and the Environment,2019,78(2):793 − 801. DOI: 10.1007/s10064-017-1162-9
[34] 肖娜,李实,林梅钦. CO2-水-岩石相互作用对岩石孔渗参数及孔隙结构的影响——以延长油田35-3井储层为例[J]. 油田化学,2018,35(1):85 − 90. [XIAO Na,LI Shi,LIN Meiqin. Effect of CO2-water-rock interaction on porosity,permeability and pore structure characters of reservoir rock:a case study of 35-3 well in Yanchang oilfield[J]. Oilfield Chemistry,2018,35(1):85 − 90. (in Chinese with English abstract)] XIAO Na, LI Shi, LIN Meiqin. Effect of CO2-water-rock interaction on porosity, permeability and pore structure characters of reservoir rock: a case study of 35-3 well in Yanchang oilfield[J]. Oilfield Chemistry, 2018, 35(1): 85 − 90. (in Chinese with English abstract)
[35] PIRIZADEH S,SARIKHANI R,JAMSHIDI A,et al. Physico-mechanical properties of the sandstones and effect of salt crystallization on them:A comparative study between stable and unstable slopes (a case study of the Khorramabad-Zal highway in Iran)[J]. Case Studies in Construction Materials,2022,17:e01375. DOI: 10.1016/j.cscm.2022.e01375
[36] WANG Fugang,ZHAO Yanjie,LI Chuang,et al. An experimental study on the corrosion characteristics of the karst tunnel engineering area in southwest China[J]. Bulletin of Engineering Geology and the Environment,2019,78(6):4047 − 4061. DOI: 10.1007/s10064-018-1411-6
[37] PALCHIK V,HATZOR Y H. The influence of porosity on tensile and compressive strength of porous chalks[J]. Rock Mechanics and Rock Engineering,2004,37(4):331 − 341. DOI: 10.1007/s00603-003-0020-1
-
期刊类型引用(7)
1. 蔡小东. 暴雨条件下赣南山区高速公路高边坡稳定性研究. 价值工程. 2025(04): 139-141 . 百度学术
2. 赖波,江金进,江山,江宁,赵风顺. 珠海市南水镇金龙边坡变形破坏特征及稳定性评价. 城市地质. 2024(01): 20-28 . 百度学术
3. 王玉刚,袁伟. 基于遗传算法的地下暗挖工程边坡稳定性分析. 大众标准化. 2023(15): 103-105 . 百度学术
4. 林逸晖,李广涛,杨天雨,乔登攀,王俊,张希,赵怀军. 基于PCA-RF的边坡稳定性预测. 化工矿物与加工. 2023(12): 59-65 . 百度学术
5. 王猛,何德伟,贾志宏,胡至华. 基于多源遥感数据的高位滑坡特征分析——以广元市利州区荣山镇岩窝村滑坡为例. 中国地质灾害与防治学报. 2023(06): 57-68 . 本站查看
6. 刘顺青,蔡宇宸,程涛,周萍,王旭畅. 降雨入渗条件下下蜀土边坡稳定性分析. 地质灾害与环境保护. 2022(02): 32-37 . 百度学术
7. 郭世兴. 关于崩滑地质灾害抢险治理工程的斜坡稳定性分析. 世界有色金属. 2021(21): 203-204 . 百度学术
其他类型引用(1)