ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

考虑负样本取样策略的滑坡易发性评价与区划以四川省巴中地区为例

龚学强, 席传杰, 胡卸文, 胡亚运, 周永豪, 张瑜

龚学强,席传杰,胡卸文,等. 考虑负样本取样策略的滑坡易发性评价与区划−以四川省巴中地区为例[J]. 中国地质灾害与防治学报,2025,36(1): 146-155. DOI: 10.16031/j.cnki.issn.1003-8035.202309028
引用本文: 龚学强,席传杰,胡卸文,等. 考虑负样本取样策略的滑坡易发性评价与区划−以四川省巴中地区为例[J]. 中国地质灾害与防治学报,2025,36(1): 146-155. DOI: 10.16031/j.cnki.issn.1003-8035.202309028
GONG Xueqiang,XI Chuanjie,HU Xiewen,et al. Landslide susceptibility assessment and zonation using negative sampling strategy: A case study of Bazhong area, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 146-155. DOI: 10.16031/j.cnki.issn.1003-8035.202309028
Citation: GONG Xueqiang,XI Chuanjie,HU Xiewen,et al. Landslide susceptibility assessment and zonation using negative sampling strategy: A case study of Bazhong area, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 146-155. DOI: 10.16031/j.cnki.issn.1003-8035.202309028

考虑负样本取样策略的滑坡易发性评价与区划——以四川省巴中地区为例

基金项目: 国家自然科学基金项目(42377170)
详细信息
    作者简介:

    龚学强(2000—),男,四川简阳人,硕士研究生,主要从事地质灾害成因与防治方面的研究。E-mail:xueqianggong.swjtu.edu.cn@my.swjtu.edu.cn

    通讯作者:

    胡卸文(1963—),男,浙江金华人,教授,主要从事工程地质、环境地质方面的教学与研究。E-mail:huxiewen@163.com

  • 中图分类号: P642.22

Landslide susceptibility assessment and zonation using negative sampling strategy: A case study of Bazhong area, Sichuan Province

  • 摘要:

    滑坡易发性评价是滑坡风险管理的重要环节,能够有效指导防灾减灾工作,但滑坡易发性评价精度受到多种因素制约。当前针对斜坡单元的负样本采样优化策略研究相对较少。文章以四川省巴中地区为研究对象,选取高程、相对高差、历年平均降雨等11个影响因子,以优化斜坡单元负样本采样策略建立地理加权回归-随机森林(GWR-RF)耦合模型,并将评估结果与多次全域随机采样策略进行对比。结果表明:(1)全域随机采样会导致易发性评价结果存在较大差异,且评估结果准确率较差,全域随机采样不适用于以斜坡单元为基础的滑坡易发性评价;(2)GWR-RF耦合模型的滑坡易发性评价结果存在空间差异,主要分布于研究区的恩阳区、巴州区、平昌县,以及南江县中—南部,文章提出的GWR-RF耦合模型通过优化负样本取样策略,提升了滑坡易发性评价的精度,可为巴中地区滑坡灾害防治提供科学依据。

    Abstract:

    Landslide susceptibility assessment is a crucial component of landslide risk management, effectively guiding disaster prevention and mitigation efforts. However, the accuracy of landslide susceptibility assessments is constrained by various factors, and current research on optimizing negative sample sampling strategies based on slope units remains relatively limited. This study, focuses on Bazhong City as the research area, incorporates eleven conditioning factors including elevation, relief, and annual average rainfall to develop a geographically weighted regression - random forest (GWR-RF) coupling model. This model optimize the negative sampling strategy by comparing it against traditional random sampling across the entire area. The results indicate the following: (1) Random sampling from the entire area leads to significant disparities in susceptibility assessments, accompanied by a relatively diminished accuracy, rendering it unsuitable for slope unit-based assessments. (2) The coupled GWR-RF model demonstrates spatial variations in landslide susceptibility, predominantly distributing in the Enyang, Bazhou, Pingchang Counties, and the central - southern region of Nanjiang County. The proposed GWR-RF coupled model improves the accuracy of landslide susceptibility assessments by optimizing the negative sample sampling strategy, providing a scientific basis for landslide disaster prevention and mitigation in the Bazhong region.

  • 银西高铁董志塬段沟谷深切、地形破碎、多呈“V”字型,在降雨作用下侵蚀作用强烈,线路周边调绘发现滑坡1500余处,溜坍体900余处。因此地表重力式不良地质灾害成为影响银西高铁线路走向的决定因素。分析黄土边坡侵蚀特性,研究其对黄土地区铁路工程的影响和破坏,对保障铁路工程建设安全,维护铁路运营安全有着举足轻重的作用。

    溯源侵蚀[1-7]是黄土地区沟谷发育演化的主要形式。陈绍宇等[8-9]将沟头溯源侵蚀划分为水力冲刷型、裂缝诱发型、陷穴诱发型和人为诱发型等4种类型;史倩华等[10]采用模拟降雨和放水冲刷的方法,研究集水区不同坡度和不同流量对黄土地区沟头溯源侵蚀过程和孔隙水压力特征值的影响规律;张科利[11]通过黄土坡面径流冲刷试验对细沟水力学特性进行了研究;沙际德等[12]通过室内模拟试验等手段,从水力学及能耗等方面深入了解细沟的水力学特征;张光辉[13]通过变坡水槽实验探寻不同坡度条件下的薄层水流水动力学特性;覃超等[14]在三维倾斜测量的基础上,通过人工模拟不同流量和坡度径流冲刷,根据其不同条件下的产沙特征,得出溯源侵蚀下沟头变化与产沙规律。

    现场试验对于深化黄土边坡侵蚀特性的认识具有重要意义,但以往研究多基于室内试验,模型及试验条件过于理想化,与实际情况相差较大。鉴于此,文章在前人研究的基础上,进行现场冲刷试验,旨在了解一定条件下的坡面冲刷情况,并对坡面流水动力学特性及产沙机理进行分析[15-17],从而对铁路路基和边坡的防护提供指导[18-19]

    董志塬地区发生溯源侵蚀[20]的沟头上方汇水面积巨大,由此产生了很大的径流量,给坡面及沟头造成很大的破坏。调查中汇水面积非常难测量,基于当地气候及降雨因素分析,利用体积法拟定坡面冲刷流量,通过若干扁平软管从坡顶对原状黄土坡面直接给水进行冲刷试验,研究董志塬地区土体在特定水动力条件下,坡面水动力参数与边坡地形地貌的关系、坡面侵蚀产沙机理,并确定侵蚀启动的水动力和斜坡结构条件。

    现场试验选在董志塬庆阳市西峰区隧道口护坡上(图1)。该段表层黄土结构疏松,孔隙发育,均为自重湿陷性黄土场地,湿陷等级多为Ⅲ~Ⅳ级。勘探揭示,试验区表层为深厚第四系上、中更新统黄土覆盖,下伏新近系上新统泥岩,基底为白垩系砂岩夹泥岩,铁路工程设置主要位于黄土层中。银西高铁对董志塬段黄土进行了大量取样试验工作,试验组数6800组,统计表明[21]:上更新统黄土天然含水率在16.17%~19.32%,塑性指数在10.27~11.73,内摩擦角为21.26°~22.45°,黏聚力为28.33~30.04 kPa。

    图  1  坡面冲刷试验位置
    Figure  1.  Site of the scour experiment of loess slope

    试验现场基本测试项目:径冲刷流量、冲刷流速、泥沙冲刷量、冲沟几何形态等。

    径冲刷流量通过在试验槽末端安置集流桶,用体积法测定。冲刷流速测定是在坡面槽的标记点处设置测流断面,采用高锰酸钾作为示踪剂,通过DIC摄影机连续拍照来近似计算坡面流速,重复测速3~5次,获取其平均值,得出断面间平均流速。泥沙冲刷量在坡底收集冲刷的泥沙,并记录水流量,两者相比即可得到单位流量水体的含泥沙率。另外,冲沟几何形态用卷尺测量。

    依据现场实际坡面及试验器材,绘制试验基本模型如图2所示,坡长2.5 m、宽12.5 m,图2中涉及到的器材主要有蓄水箱、水泵、消防水带、4寸软水管、可控流量阀门、压力表、20 cm宽的扁形状出水口、导流板(分割坡面为小的区域并用于径流模拟)、DIC摄影机。

    图  2  冲刷试验示意图
    Figure  2.  Diagram of the scour experiment

    依据董志塬地区自然斜坡坡度统计结果,取4个代表性坡面角度:30°、45°、60°、90°;同时,通过对原位试验场地汇水区面积的计算,以及庆阳市西峰区气象站点降雨数据的统计与分析,用体积法标定冲刷初始流量:1 L/min、2 L/min、4 L/min、6 L/min。

    (1)构建蓄水池,铺设管路,先将蓄水池中的水用潜水泵引导至一定高度的蓄水箱中,并保持蓄水箱满水状态,蓄水箱下端连接4寸软水管并安装用来调节流量水阀和压力表,软水管末端连接扁平形状的出水口。

    (2)沿坡向将坡面用导流板隔成9个20 cm宽的窄段坡面,以便于分别进行不同工况的试验。

    (3)将9个窄段坡面修葺为4组不同坡度的窄段坡面,平整坡面,并对坡面进行灌溉给水使其完全饱和。

    (4)在2.5 m长的窄段坡面侧壁上,每隔0.5 m标记刻度,以便于分别测量坡面不同位置处的流速。

    (5)坡面上滴高锰酸钾染色剂,并用摄像机实时监控拍摄稳定后的坡面水流。

    (6)每隔一段时间在坡面的标记处,收集搬运得到的泥沙,描述坡面冲刷形貌并测量坡面上冲沟的长宽深。

    (7)烘干各个位置各个时间的泥沙得到产沙量,视频处理得到每个位置的水流流速。

    (8)通过改变流量、坡体坡度,再重复(3)~(8)的步骤,进行新的一组试验。

    (9)试验完毕整理数据,计算不同坡度、流速下的侵蚀率、含沙量、流速之间的关系,利用已有的侵蚀模型,如WEPP模型[22],构建与本地区相适应的侵蚀模型参数。

    以冲刷流量4 L/min,坡度45°为例,记录不同时长下坡面冲刷情况见图3

    图  3  不同时长的坡面冲刷情况(冲刷流量4 L/min,坡度45°)
    Figure  3.  Slope scouring results in different time periods

    由图3可见,冲刷历时3 min坡面并未发生明显的下切侵蚀,坡面的主要侵蚀方式为层流侵蚀;6 min时坡面小部分黄土颗粒被水流冲走,坡面上形成许多小的跌坑;随着坡面冲刷历时的增加,小跌坑逐渐连在一起形成细沟,细沟出现后侵蚀明显加快。坡顶和坡底的侵蚀较为显著,坡面中部形成保水泥膜阻挡了水流的深入与冲刷。侵蚀加剧直至实验结束,冲刷实验结束时(24 min)侵蚀量最大。

    以冲刷历时20 min,坡度60°为例,观察发现,随着流量的增大,冲沟最大沟深由10 cm增加到30 cm,冲沟逐渐加深,坡面的冲刷破坏越来越严重,不同流量下坡面冲刷情况见图4

    图  4  不同流量下的坡面冲刷情况(冲刷历时20 min,坡度60°)
    Figure  4.  Slope scouring results under different feed flow

    以历时20 min,流量2 L/min为例,30°的坡面不易形成冲沟,坡面几乎没有侵蚀,坡面末端收集的水含沙很少;60°的坡面很快形成冲沟,冲沟迅速加深并很快就破坏;可见,坡度越大受到的冲刷越严重,不同坡度条件下坡面冲刷情况见图5

    图  5  不同坡度下的坡面冲刷情况(冲刷历时20 min,冲刷流量 2 mL/min)
    Figure  5.  Slope scouring results at different gradient

    图6反应了在不同坡度试验条件下平均流速与冲刷流量的关系,可见,平均流速与冲刷流量呈正相关,这与张科利[11]、张光辉[13]的实验结果一致。而相同径流条件下,地表坡度与平均流速关系不明显,这与NEARING等[3]、GOVERS[4]和沙际德等[12]研究结果相似。不少学者[3-4,11-12]在研究水动力学基本关系过程中,发现细沟水流平均流速与坡度和单宽流量之间存在如式(1)所示的幂函数关系。

    图  6  平均流速与冲刷流量、坡度的关系
    Figure  6.  Relationship between average flow velocity and feed flow at different gradient
    u=KQαJβ (1)

    式中:u——平均流速/(m·s−1);

    Q——流量/(L·min−1);

    J——水力坡度;

    K——综合阻力系数;

    α——流量项指数值;

    β——水力坡度项指数值。

    经过拟合,本试验中平均流速与单宽流量、水力坡度的关系可用式(2)表示。

    u=0.158Q0.123J0.041 (2)

    可见,β值为0.041,表明坡度的变化对平均流速影响较小,该数值与张科利[11]试验结果(平均流速与水力速度呈幂函数变化趋势)有所不同,分析造成这种现象的原因是径流侵蚀过程中沟道床面形态和各水力因素之间相互影响、相互作用的结果。当流量不变,水力坡度不同时产生的细沟径流导致沟床形态变化而产生的糙率不同。当水力坡度增大的时候,水流均速随之增大,水流具有的能量增大,相应地水流对床面的冲刷更加剧烈,致使流道摆动,沟壁坍塌,水流含沙量增大,最终导致床面综合粗糙率增大,而糙率的增加则意味着径流所受阻力变大,径流克服阻力做功及能量耗散加大,从而平均流速的增加退居次要地位。总的来说,相比张科利[11]试验,本试验设计更接近实际情况。

    各试验工况平均雷诺数见表1,由表可知,雷诺数变化范围为466~2012,水流主要处于过渡流区。在相同坡度条件下,雷诺数与冲刷流量呈正相关关系;在相同流量条件下,雷诺数与坡度变化并无明显关系。该结果表明细沟雷诺数Re的变化受冲刷流量的影响要比坡度大,其原因可能是水流下渗、坡面流冲刷等因素造成的。从能量转换的角度分析,水力坡度较大时,水流对细沟坡面冲刷作用较强,径流势能转化为动能的过程中,容易形成较多较深的跌坎,因而雷诺数与坡度关系相对变得复杂。

    表  1  坡面冲沟水流雷诺数
    Table  1.  Values of Re of gully flow on slope
    试验坡度/(°)冲刷流量/(L·min−1
    1246
    9046668711001891
    6055679414322012
    456138558651922
    307858766331444
    下载: 导出CSV 
    | 显示表格

    图7所示为不同冲刷流量作用下,达西阻力系数与坡度的关系。可见,阻力系数随坡度的增大而减小,且减小趋势相对变缓;同时,阻力系数与冲刷流量呈反比关系。出现上述现象的原因是,流量较小时,坡面较为粗糙,地表径流紊动性较强,细小颗粒间的吸附摩擦力较强,相对的阻力系数值较大;伴随地表径流量的变大,增大了水流切应力值,致使颗粒间的吸附摩擦力减弱,削弱了地表径流紊动性,阻力值对应变小。

    图  7  达西阻力系数与冲刷流量、坡度的关系
    Figure  7.  Relationship between average flow velocity and gradient at different values of Re

    黄土坡面细小颗粒的摩擦与吸附直接影响了地表径流过程,现将达西阻力系数λ与雷诺数Re的关系示于图8,分析可见,阻力系数与雷诺数并无直接明显关系,其阻力系数主要与黄土坡面的颗粒含量和颗粒粒径大小有密切相关,说明冲刷阻力主要受床面跌坑与坡面结皮影响。由于试验是在大于30°坡面上进行的,水力梯度大,水流扰动性强,因此,坡面阻力系数既受坡面条件作用,同时也与坡面侵蚀三维形态变化有密切关系。当同等流量条件下,黄土的黏粒含量决定着阻力系数值,当黏粒含量越高,其颗粒黏聚力越大,越容易在黄土表层形成保护层即所谓的结皮,其水流流速越大,阻力系数越小;当黏粒含量越小,其颗粒黏聚力越小,在水流的冲刷作用下越容易形成跌坑,从而减小水流能量,增大其阻力系数,进一步加剧了跌坑发展,加大坡面产沙量,更易发生坡面及坑壁坍塌等现象。

    图  8  达西阻力系数与雷诺数的双对数关系
    Figure  8.  The log-log relationship between Darcy resistance coefficient and value of Re

    总体而言,坡面剥蚀产沙量是评判径流侵蚀机理的重要指数,对于研究董志塬地区黄土溯源侵蚀机理具有举足轻重的作用。

    根据水力冲刷历时30 min,测定冲蚀下来的泥沙量,绘制不同坡度下产沙率与冲刷流量之间的关系如图9所示。可知,平均含沙量随冲刷流量增大而增大,增大趋势趋缓;含沙量而随坡度的增大一直呈增加趋势。通过三维激光扫描及现场摄影技术可以看出,冲刷过程中由滴坑发展成为细沟及后续的阶梯状沟谷,且其位置随着冲刷历时的变化而变化;随着坡面冲刷及泥沙搬运、沉积反复交替作用,坡面侵蚀沟谷的变化亦反作用改变着水流流速与侵蚀产沙量。

    图  9  不同坡度下产泥沙率与冲刷流量的关系
    Figure  9.  Relationship between sediment yield rate and feed flow at different gradient

    不同时段细沟侵蚀剧烈程度量化表现为该时段区域范围内的产沙量多少。本次选取不同试验组次下的含沙量为研究对象,整理结果如图10所示。

    图  10  不同坡度下产泥沙率与冲刷历时的关系
    Figure  10.  Relationship between sediment yield rate and scour time at different gradient

    可见,冲刷初始阶段,含沙量随历时近似线性增加,且坡度越大,增加速率越快。其中,在坡度较小情况下,含沙量变化更为稳定,可能原因是坡度越缓,坡面方向分力越小,流速越慢,冲刷能力越小。约20 min以后,含沙量基本稳定,呈微小波动,可能原因是随着冲刷历时增加,坡面逐渐出现不同跌坑,并持续发展,由于冲刷与淤积的反复作用,部分跌坑贯通连续形成细沟,因此从侵蚀产沙量的时间曲线上表现为细小波动的现象,此过程即为沟道发展阶段。

    假定坡面流态为均匀流,利用FOSTER[2]提出的剪切力计算公式,可得各工况下的坡面冲刷剪切力见表2。可见,剪切应力与坡度及冲刷流量密切相关,其大小随冲刷流量及坡度的增大而增大,相较而言,坡度对其变化趋势的影响更为明显。

    表  2  各工况下坡面冲刷剪切力
    Table  2.  Slope scour shear forces under various conditions
    坡度/(°)冲刷流量/(L·min-1
    1246
    300.3480.4240.5360.613
    450.8121.2011.451.561
    601.3451.8802.4852.554
    901.6512.0013.0313.974
    下载: 导出CSV 
    | 显示表格

    由此可得不同工况下坡面冲刷产沙量和切应力的关系如图11所示。由图可知,坡面冲刷产沙量与侵蚀切应力二者关系较为密切,产沙量的多少随切应力的增加而增加,近似呈线性相关关系,经过拟合,含沙量与径流切应力的关系为如式(3)所示。

    G=48.98τ+4.899 (3)

    式中:G——含沙量/(g·L−1);

    τ——径流切应力[2]/Pa。

    图  11  坡面侵蚀切应力与含沙量关系
    Figure  11.  Relationship between scour shear stress and sediment yield rate on slope

    黄土边坡径流强烈的主要判定标准为产沙量的多少,而产沙量与侵蚀切应力二者关系较为密切,其相关系数为0.875。

    借鉴BAGNOLD[1]在渠道水力学方面给出的水流功率概念,则在不同工况下坡面侵蚀产沙量与有效水流功率的关系如图12所示。通过水流功率能更有效的表示冲刷过程中克服黄土表层阻力消耗的能量,通过多次试验,对比分析含沙量与有效水流功率,绘制相关关系图并进行拟合,可见两者呈幂函数关系,具体关系如下:

    图  12  坡面有效水流功率与含沙量关系
    Figure  12.  Relationship between effective scour power and sediment yield rate on slope
    G=17.85P0.763 (4)

    式中:G——含义同式(3);

    P——有效水流功率[1]/(N·ms−1)。

    其与有效水流功率相关系数大于与有效切应力,综合表明,有效水流功率能更有效的描述黄土坡面侵蚀产沙量,二者关系更为显著。

    文中选取银西高铁董志塬段某路基护坡,通过原状黄土坡面冲刷试验,获得了不同冲刷历时、冲刷流量、坡度等条件下的坡面冲刷情况,进一步分析了坡面流水动力学特性、不同控制条件下的坡面产沙情况及产沙机理,主要得出以下结论:

    (1)坡度越大受到的冲刷越严重;相比坡面中部,坡顶和坡底的侵蚀较为显著;冲刷流量越大,坡面冲刷破坏越严重;30°~60°斜坡在较小的冲刷强度(1~4 L/min)下也能产生较明显的侵蚀沟,斜坡角度大于45°后,侵蚀会剧烈发展,因而宜采取45°左右的多级矮陡坡来减弱侵蚀强度。

    (2)坡面流水动力学特性分析表明:平均流速与冲刷流量、坡度的关系可用幂函数来描述,平均流速与冲刷流量呈正相关,与坡度的关系不太显著;分析雷诺数变化范围可得试验工况水流主要处于过渡流区,在相同坡度条件下,雷诺数与冲刷流量呈正相关关系;在相同流量条件下,雷诺数与坡度变化并无直接明显关系;达西阻力系数随坡度的增大而减小,且减小趋势相对变缓;同时,阻力系数与冲刷流量呈反比关系;阻力系数与雷诺数并无直接明显关系,其阻力系数主要与黄土坡面的颗粒含量和颗粒粒径大小有密切相关,说明冲刷阻力主要受床面跌坑与坡面结皮影响。

    (3)平均含沙量与冲刷流量及坡度有密切相关性,其含量随冲刷流量增大而增大,增大趋势趋缓;含沙量而随坡度的增大呈一直增加趋势,其中,在坡度较小情况下,含沙量变化更为稳定;含沙量随历时近似线性增加,约20 min以后,含沙量基本稳定,仅呈微小波动,此过程为沟道发展阶段。

    (4)剪切应力与坡度及冲刷流量密切相关,呈正相关关系,其大小随冲刷流量及坡度的增大而增大,相较而言,坡度对其变化趋势的影响更为明显。坡面侵蚀产沙量与侵蚀切应力相关性较大,两者近似呈线性增大关系;坡面侵蚀产沙量与有效水流功率呈显著正相关关系,且可近似用幂函数拟合。

  • 图  1   研究区位置及斜坡单元划分图

    注:a为研究区位置;b为斜坡单元划分;c为斜坡单元形态示意图。

    Figure  1.   Location and slope unit division of the research area

    图  2   易发性影响因子图

    Figure  2.   Map of susceptibility conditioning factors

    图  3   因子地理加权回归结果

    Figure  3.   Geographically weighted regression results for factors

    图  4   地理加权空间分类图

    Figure  4.   Spatial classification map from geographically weighted results

    图  5   滑坡易发性分区制图

    Figure  5.   Landslide susceptibility zoning map

    图  6   ROC曲线

    Figure  6.   ROC curve

    表  1   滑坡易发性分区结果

    Table  1   Results of landslide susceptibility zoning

    模型 易发性等级 分区面积/km2 面积占比/% 分区滑坡数量/个 滑坡数量占比/% 滑坡密度/(个每100 km2
    GWR-RF 极低易发 1704.02 13.85 7 0.65 0.41
    低易发 1339.37 10.89 16 1.49 1.19
    中易发 2231.27 18.13 66 6.15 2.96
    高易发 3698.50 30.06 444 41.38 12.00
    极高易发 3331.41 27.07 540 50.33 16.21
    RS2 极低易发 1380.00 11.22 4 0.37 0.29
    低易发 1344.82 10.93 17 1.58 1.26
    中易发 2560.44 20.81 88 8.20 3.44
    高易发 6959.27 56.56 935 87.14 13.44
    极高易发 60.04 0.49 29 2.70 48.30
    RS3 极低易发 1101.49 8.95 1 0.09 0.09
    低易发 1219.89 9.91 13 1.21 1.07
    中易发 1118.98 9.09 23 2.14 2.06
    高易发 5489.84 44.62 522 48.65 9.51
    极高易发 3374.37 27.42 514 47.90 15.23
    RS7 极低易发 1987.32 16.15 8 0.75 0.40
    低易发 1800.17 14.63 17 1.58 0.94
    中易发 4941.03 40.16 234 21.81 4.74
    高易发 3430.03 27.88 733 68.31 21.37
    极高易发 146.07 1.19 81 7.55 55.45
    下载: 导出CSV

    表  2   模型效果对比

    Table  2   Comparative analysis of model performance

    模型 评价指标
    精确率 召回率 F1分数 准确率 AUC
    RS1 0.763 0.798 0.744 0.846 0.873
    RS2 0.649 0.693 0.825 0.801 0.730
    RS3 0.749 0.785 0.669 0.839 0.847
    RS4 0.619 0.643 0.661 0.779 0.698
    RS5 0.595 0.626 0.670 0.778 0.663
    RS6 0.608 0.637 0.671 0.780 0.684
    RS7 0.581 0.623 0.679 0.781 0.624
    RS8 0.613 0.644 0.682 0.782 0.679
    RS9 0.619 0.649 0.785 0.783 0.695
    RS 0.644±0.066 0.678±0.068 0.715±0.070 0.796±0.027 0.721±0.084
    GWR-RF 0.700 0.735 0.773 0.814 0.845
    下载: 导出CSV
  • [1] 牛朝阳,高欧阳,刘伟,等. 光学遥感图像滑坡检测研究进展[J]. 航天返回与遥感,2023,44(3):133 − 144. [NIU Chaoyang,GAO Ouyang,LIU Wei,et al. Research progress of landslide detection in optical remote sensing images[J]. Spacecraft Recovery & Remote Sensing,2023,44(3):133 − 144. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1009-8518.2023.03.014

    NIU Chaoyang, GAO Ouyang, LIU Wei, et al. Research progress of landslide detection in optical remote sensing images[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(3): 133 − 144. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-8518.2023.03.014

    [2]

    YALCIN A,REIS S,AYDINOGLU A C,et al. A GIS-based comparative study of frequency ratio,analytical hierarchy process,bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon,NE Turkey[J]. Catena,2011,85(3):274 − 287. DOI: 10.1016/j.catena.2011.01.014

    [3]

    MERGHADI A,YUNUS A P,DOU Jie,et al. Machine learning methods for landslide susceptibility studies:A comparative overview of algorithm performance[J]. Earth-Science Reviews,2020,207:103225. DOI: 10.1016/j.earscirev.2020.103225

    [4] 郭飞,赖鹏,黄发明,等. 基于知识图谱的滑坡易发性评价文献综述及研究进展[J]. 地球科学,2024,49(5):1584 − 1606. [GUO Fei,LAI Peng,HUANG Faming,et al. Literature review and research progress of landslide susceptibility mapping based on knowledge graph[J]. Earth Science,2024,49(5):1584 − 1606. (in Chinese with English abstract)]

    GUO Fei, LAI Peng, HUANG Faming, et al. Literature review and research progress of landslide susceptibility mapping based on knowledge graph[J]. Earth Science, 2024, 49(5): 1584 − 1606. (in Chinese with English abstract)

    [5] 陈航, 刘惠军, 王韬, 等. 基于频率比-深度神经网络耦合模型的滑坡易发性评价——以盐源县为例[J]. 水文地质工程地质,2024,51(5):161 − 171. [CHEN Hang, LIU Huijun, WANG Tao, et al. Landslide susceptibility evaluation based on FR-DNN coupling model: A case study on Yanyuan County[J]. Hydrogeology & Engineering Geology,2024,51(5):161 − 171. (in Chinese with English abstract)]

    CHEN Hang, LIU Huijun, WANG Tao, et al. Landslide susceptibility evaluation based on FR-DNN coupling model: A case study on Yanyuan County[J]. Hydrogeology & Engineering Geology, 2024, 51(5): 161 − 171. (in Chinese with English abstract)

    [6] 吕蓓茹,彭玲,李樵民. 顾及样本敏感性的滑坡易发性评价[J]. 测绘通报,2022(11):20 − 25. [LYU Beiru,PENG Ling,LI Qiaomin. Landslide susceptibility evaluation considering sample sensitivity[J]. Bulletin of Surveying and Mapping,2022(11):20 − 25. (in Chinese with English abstract)]

    LYU Beiru, PENG Ling, LI Qiaomin. Landslide susceptibility evaluation considering sample sensitivity[J]. Bulletin of Surveying and Mapping, 2022(11): 20 − 25. (in Chinese with English abstract)

    [7] 黄发明,陈佳武,唐志鹏,等. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性[J]. 岩石力学与工程学报,2021,40(6):1155 − 1169. [HUANG Faming,CHEN Jiawu,TANG Zhipeng,et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1155 − 1169. (in Chinese with English abstract)]

    HUANG Faming, CHEN Jiawu, TANG Zhipeng, et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1155 − 1169. (in Chinese with English abstract)

    [8] 刘纪平,梁恩婕,徐胜华,等. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价[J]. 测绘学报,2022,51(10):2034 − 2045. [LIU Jiping,LIANG Enjie,XU Shenghua,et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica,2022,51(10):2034 − 2045. (in Chinese with English abstract)] DOI: 10.11947/j.AGCS.2022.20220326

    LIU Jiping, LIANG Enjie, XU Shenghua, et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2034 − 2045. (in Chinese with English abstract) DOI: 10.11947/j.AGCS.2022.20220326

    [9] 魏文豪,贾雨霏,盛逸凡,等. 基于Ⅰ、SVM、Ⅰ-SVM的滑坡灾害易发性评价模型研究[J]. 安全与环境工程,2023,30(3):136 − 144. [WEI Wenhao,JIA Yufei,SHENG Yifan,et al. Research on landslide susceptibility evaluation model based on Ⅰ,SVM and Ⅰ-SVM[J]. Safety and Environmental Engineering,2023,30(3):136 − 144. (in Chinese)]

    WEI Wenhao, JIA Yufei, SHENG Yifan, et al. Research on landslide susceptibility evaluation model based on Ⅰ, SVM and Ⅰ-SVM[J]. Safety and Environmental Engineering, 2023, 30(3): 136 − 144. (in Chinese)

    [10] 何万才,赵俊三,林伊琳,等. 基于证据权和支持向量机模型的威信县滑坡易发性评价[J]. 科学技术与工程,2023,23(15):6350 − 6360. [HE Wancai,ZHAO Junsan,LIN Yilin,et al. Landslide susceptibility assessment in Weixin County based on evidence weight and support vector machine model[J]. Science Technology and Engineering,2023,23(15):6350 − 6360. (in Chinese with English abstract)] DOI: 10.12404/j.issn.1671-1815.2023.23.15.06350

    HE Wancai, ZHAO Junsan, LIN Yilin, et al. Landslide susceptibility assessment in Weixin County based on evidence weight and support vector machine model[J]. Science Technology and Engineering, 2023, 23(15): 6350 − 6360. (in Chinese with English abstract) DOI: 10.12404/j.issn.1671-1815.2023.23.15.06350

    [11] 黄发明,曾诗怡,姚池,等. 滑坡易发性预测建模的不确定性:不同“非滑坡样本”选择方式的影响[J]. 工程科学与技术,2023:1 − 14. [HUANG Faming,ZENG Shiyao,YAO Chi,et al. Uncertainties of landslide susceptibility prediction modeling:Influence of different selection methods of "non-landslide samples[J]. Advanced Engineering Sciences,2023,23(15):6350 − 6360. (in Chinese with English abstract)]

    HUANG Faming, ZENG Shiyao, YAO Chi, et al. Uncertainties of landslide susceptibility prediction modeling: Influence of different selection methods of "non-landslide samples[J]. Advanced Engineering Sciences, 2023, 23(15): 6350 − 6360. (in Chinese with English abstract)

    [12]

    JACOBS L,KERVYN M,REICHENBACH P,et al. Regional susceptibility assessments with heterogeneous landslide information:Slope unit- vs. pixel-based approach[J]. Geomorphology,2020,356:107084. DOI: 10.1016/j.geomorph.2020.107084

    [13] 张勇,温智,程英建. 四川巴中市滑坡灾害与降雨雨型关系探讨[J]. 水文地质工程地质,2020,47(2):178 − 182. [ZHANG Yong,WEN Zhi,CHENG Yingjian. A discussion of the relationship between landslide disaster and rainfall types in Bazhong of Sichuan[J]. Hydrogeology & Engineering Geology,2020,47(2):178 − 182. (in Chinese with English abstract)]

    ZHANG Yong, WEN Zhi, CHENG Yingjian. A discussion of the relationship between landslide disaster and rainfall types in Bazhong of Sichuan[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 178 − 182. (in Chinese with English abstract)

    [14]

    COMBER A,BRUNSDON C,CHARLTON M,et al. A route map for successful applications of geographically weighted regression[J]. Geographical Analysis,2023,55(1):155 − 178. DOI: 10.1111/gean.12316

    [15] 卢宾宾,葛咏,秦昆,等. 地理加权回归分析技术综述[J]. 武汉大学学报(信息科学版),2020,45(9):1356 − 1366. [LU Binbin,GE Yong,QIN Kun,et al. A review on geographically weighted regression[J]. Geomatics and Information Science of Wuhan University,2020,45(9):1356 − 1366. (in Chinese with English abstract)]

    LU Binbin, GE Yong, QIN Kun, et al. A review on geographically weighted regression[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1356 − 1366. (in Chinese with English abstract)

    [16] 于宪煜,熊十力. 基于空间多尺度分析的滑坡易发性评价——以三峡库区秭归-巴东段为例[J]. 大地测量与地球动力学,2020,40(2):187 − 192. [YU Xianyu,XIONG Shili. Landslide susceptibility assessment based on spatial multi-scale analysis:A case study of Zigui to Badong in the Three Gorges Reservoir area[J]. Journal of Geodesy and Geodynamics,2020,40(2):187 − 192. (in Chinese with English abstract)]

    YU Xianyu, XIONG Shili. Landslide susceptibility assessment based on spatial multi-scale analysis: A case study of Zigui to Badong in the Three Gorges Reservoir area[J]. Journal of Geodesy and Geodynamics, 2020, 40(2): 187 − 192. (in Chinese with English abstract)

    [17] 方匡南,吴见彬,朱建平,等. 随机森林方法研究综述[J]. 统计与信息论坛,2011,26(3):32 − 38. [FANG Kuangnan,WU Jianbin,ZHU Jianping,et al. A review of technologies on random forests[J]. Statistics & Information Forum,2011,26(3):32 − 38. (in Chinese with English abstract)]

    FANG Kuangnan, WU Jianbin, ZHU Jianping, et al. A review of technologies on random forests[J]. Statistics & Information Forum, 2011, 26(3): 32 − 38. (in Chinese with English abstract)

    [18] 于新洋,赵庚星,常春艳,等. 随机森林遥感信息提取研究进展及应用展望[J]. 遥感信息,2019,34(2):8 − 14. [YU Xinyang,ZHAO Gengxing,CHANG Chunyan,et al. Random forest classifier in remote sensing information extraction:A review of applications and future development[J]. Remote Sensing Information,2019,34(2):8 − 14. (in Chinese with English abstract)]

    YU Xinyang, ZHAO Gengxing, CHANG Chunyan, et al. Random forest classifier in remote sensing information extraction: A review of applications and future development[J]. Remote Sensing Information, 2019, 34(2): 8 − 14. (in Chinese with English abstract)

    [19] 吴先谭,邓辉,张文江,等. 基于斜坡单元自动划分的滑坡易发性评价[J]. 山地学报,2022,40(4):542 − 556. [WU Xiantan,DENG Hui,ZHANG Wenjiang,et al. Evaluation of landslide susceptibility based on automatic slope unit division[J]. Mountain Research,2022,40(4):542 − 556. (in Chinese with English abstract)]

    WU Xiantan, DENG Hui, ZHANG Wenjiang, et al. Evaluation of landslide susceptibility based on automatic slope unit division[J]. Mountain Research, 2022, 40(4): 542 − 556. (in Chinese with English abstract)

    [20] 李星,杨赛,李远耀,等. 面向区域滑坡易发性精细化评价的改进斜坡单元法[J]. 地质科技通报,2023,42(3):81 − 92. [LI Xing,YANG Sai,LI Yuanyao,et al. Improved slope unit method for fine evaluation of regional landslide susceptibility[J]. Bulletin of Geological Science and Technology,2023,42(3):81 − 92. (in Chinese with English abstract)]

    LI Xing, YANG Sai, LI Yuanyao, et al. Improved slope unit method for fine evaluation of regional landslide susceptibility[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 81 − 92. (in Chinese with English abstract)

    [21] 赵晓燕,谈树成,李永平. 基于斜坡单元与组合赋权法的东川区地质灾害危险性评价[J]. 云南大学学报(自然科学版),2021,43(2):299 − 305. [ZHAO Xiaoyan,TAN Shucheng,LI Yongping. Risk assessment of geological hazards in Dongchuan District based on the methods of slope unit and combination weighting[J]. Journal of Yunnan University (Natural Sciences Edition),2021,43(2):299 − 305. (in Chinese with English abstract)]

    ZHAO Xiaoyan, TAN Shucheng, LI Yongping. Risk assessment of geological hazards in Dongchuan District based on the methods of slope unit and combination weighting[J]. Journal of Yunnan University (Natural Sciences Edition), 2021, 43(2): 299 − 305. (in Chinese with English abstract)

    [22] 刘传正,陈春利. 中国地质灾害成因分析[J]. 地质论评,2020,66(5):1334 − 1348. [LIU Chuanzheng,CHEN Chunli. Research on the origins of geological disasters in China[J]. Geological Review,2020,66(5):1334 − 1348. (in Chinese with English abstract)]

    LIU Chuanzheng, CHEN Chunli. Research on the origins of geological disasters in China[J]. Geological Review, 2020, 66(5): 1334 − 1348. (in Chinese with English abstract)

    [23]

    HONG Haoyuan,POURGHASEMI H R,POURTAGHI Z S. Landslide susceptibility assessment in Lianhua County (China):A comparison between a random forest data mining technique and bivariate and multivariate statistical models[J]. Geomorphology,2016,259:105 − 118. DOI: 10.1016/j.geomorph.2016.02.012

    [24] 蒋文学,李益敏,杨雪,等. 基于斜坡单元的怒江州滑坡易发性研究[J]. 水土保持学报,2023,37(5):160 − 167. [JIANG Wenxue,LI Yimin,YANG Xue,et al. Study on landslide susceptibility in Nujiang prefecture based on slope unit[J]. Journal of Soil and Water Conservation,2023,37(5):160 − 167. (in Chinese with English abstract)]

    JIANG Wenxue, LI Yimin, YANG Xue, et al. Study on landslide susceptibility in Nujiang prefecture based on slope unit[J]. Journal of Soil and Water Conservation, 2023, 37(5): 160 − 167. (in Chinese with English abstract)

    [25] 郭衍昊,窦杰,向子林,等. 基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价[J]. 地质科技通报,2024,43(3):251 − 265. [GUO Yanhao,DOU Jie,XIANG Zilin,et al. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology,2024,43(3):251 − 265. (in Chinese with English abstract)]

    GUO Yanhao, DOU Jie, XIANG Zilin, et al. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 251 − 265. (in Chinese with English abstract)

    [26] 阳清青,余秋兵,张廷斌,等. 基于GDIV模型的大渡河中游地区滑坡危险性评价与区划[J]. 中国地质灾害与防治学报,2023,34(5):130 − 140. [YANG Qingqing,YU Qiubing,ZHANG Tingbin,et al. Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):130 − 140. (in Chinese with English abstract)]

    YANG Qingqing, YU Qiubing, ZHANG Tingbin, et al. Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 130 − 140. (in Chinese with English abstract)

    [27] 于宪煜, 汤礼. 基于SMOTE-Tomek和CNN耦合的滑坡易发性评价模型及其应用——以三峡库区秭归—巴东段为例[J]. 中国地质灾害与防治学报,2024,35(3):141 − 151. [YU Xianyu, TANG Li. Landslide susceptibility mapping model based on a coupled model of SMOTE-Tomek and CNN and its application: A case study in the Zigui-Badong section of the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):141 − 151. (in Chinese with English abstract)]

    YU Xianyu, TANG Li. Landslide susceptibility mapping model based on a coupled model of SMOTE-Tomek and CNN and its application: A case study in the Zigui-Badong section of the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 141 − 151. (in Chinese with English abstract)

    [28]

    PETSCHKO H,BRENNING A,BELL R,et al. Assessing the quality of landslide susceptibility maps:case study Lower Austria[J]. Natural Hazards and Earth System Sciences,2014,14(1):95 − 118. DOI: 10.5194/nhess-14-95-2014

    [29] 王惠,许月卿,刘超,等. 基于地理加权回归的生境质量对土地利用变化的响应 ——以河北省张家口市为例[J]. 北京大学学报(自然科学版),2019,55(3):509 − 518. [WANG Hui,XU Yueqing,LIU Chao,et al. Response of habitat quality to land use change based on geographical weighted regression[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2019,55(3):509 − 518. (in Chinese with English abstract)]

    WANG Hui, XU Yueqing, LIU Chao, et al. Response of habitat quality to land use change based on geographical weighted regression[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(3): 509 − 518. (in Chinese with English abstract)

    [30] 陈强,朱慧敏,何溶,等. 基于地理加权回归模型评估土地利用对地表水质的影响[J]. 环境科学学报,2015,35(5):1571 − 1580. [CHEN Qiang,ZHU Huimin,HE Rong,et al. Evaluating the impacts of land use on surface water quality using geographically weighted regression[J]. Acta Scientiae Circumstantiae,2015,35(5):1571 − 1580. (in Chinese with English abstract)]

    CHEN Qiang, ZHU Huimin, HE Rong, et al. Evaluating the impacts of land use on surface water quality using geographically weighted regression[J]. Acta Scientiae Circumstantiae, 2015, 35(5): 1571 − 1580. (in Chinese with English abstract)

    [31]

    SHIRZADI A,SOLAIMANI K,ROSHAN M H,et al. Uncertainties of prediction accuracy in shallow landslide modeling:Sample size and raster resolution[J]. Catena,2019,178:172 − 188. DOI: 10.1016/j.catena.2019.03.017

图(6)  /  表(2)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  25
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2023-11-06
  • 录用日期:  2025-01-05
  • 网络出版日期:  2025-01-10
  • 刊出日期:  2025-02-24

目录

/

返回文章
返回