ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

考虑负样本取样策略的滑坡易发性评价与区划以四川省巴中地区为例

龚学强, 席传杰, 胡卸文, 胡亚运, 周永豪, 张瑜

龚学强,席传杰,胡卸文,等. 考虑负样本取样策略的滑坡易发性评价与区划−以四川省巴中地区为例[J]. 中国地质灾害与防治学报,2025,36(1): 146-155. DOI: 10.16031/j.cnki.issn.1003-8035.202309028
引用本文: 龚学强,席传杰,胡卸文,等. 考虑负样本取样策略的滑坡易发性评价与区划−以四川省巴中地区为例[J]. 中国地质灾害与防治学报,2025,36(1): 146-155. DOI: 10.16031/j.cnki.issn.1003-8035.202309028
GONG Xueqiang,XI Chuanjie,HU Xiewen,et al. Landslide susceptibility assessment and zonation using negative sampling strategy: A case study of Bazhong area, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 146-155. DOI: 10.16031/j.cnki.issn.1003-8035.202309028
Citation: GONG Xueqiang,XI Chuanjie,HU Xiewen,et al. Landslide susceptibility assessment and zonation using negative sampling strategy: A case study of Bazhong area, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2025,36(1): 146-155. DOI: 10.16031/j.cnki.issn.1003-8035.202309028

考虑负样本取样策略的滑坡易发性评价与区划——以四川省巴中地区为例

基金项目: 国家自然科学基金项目(42377170)
详细信息
    作者简介:

    龚学强(2000—),男,四川简阳人,硕士研究生,主要从事地质灾害成因与防治方面的研究。E-mail:xueqianggong.swjtu.edu.cn@my.swjtu.edu.cn

    通讯作者:

    胡卸文(1963—),男,浙江金华人,教授,主要从事工程地质、环境地质方面的教学与研究。E-mail:huxiewen@163.com

  • 中图分类号: P642.22

Landslide susceptibility assessment and zonation using negative sampling strategy: A case study of Bazhong area, Sichuan Province

  • 摘要:

    滑坡易发性评价是滑坡风险管理的重要环节,能够有效指导防灾减灾工作,但滑坡易发性评价精度受到多种因素制约。当前针对斜坡单元的负样本采样优化策略研究相对较少。文章以四川省巴中地区为研究对象,选取高程、相对高差、历年平均降雨等11个影响因子,以优化斜坡单元负样本采样策略建立地理加权回归-随机森林(GWR-RF)耦合模型,并将评估结果与多次全域随机采样策略进行对比。结果表明:(1)全域随机采样会导致易发性评价结果存在较大差异,且评估结果准确率较差,全域随机采样不适用于以斜坡单元为基础的滑坡易发性评价;(2)GWR-RF耦合模型的滑坡易发性评价结果存在空间差异,主要分布于研究区的恩阳区、巴州区、平昌县,以及南江县中—南部,文章提出的GWR-RF耦合模型通过优化负样本取样策略,提升了滑坡易发性评价的精度,可为巴中地区滑坡灾害防治提供科学依据。

    Abstract:

    Landslide susceptibility assessment is a crucial component of landslide risk management, effectively guiding disaster prevention and mitigation efforts. However, the accuracy of landslide susceptibility assessments is constrained by various factors, and current research on optimizing negative sample sampling strategies based on slope units remains relatively limited. This study, focuses on Bazhong City as the research area, incorporates eleven conditioning factors including elevation, relief, and annual average rainfall to develop a geographically weighted regression - random forest (GWR-RF) coupling model. This model optimize the negative sampling strategy by comparing it against traditional random sampling across the entire area. The results indicate the following: (1) Random sampling from the entire area leads to significant disparities in susceptibility assessments, accompanied by a relatively diminished accuracy, rendering it unsuitable for slope unit-based assessments. (2) The coupled GWR-RF model demonstrates spatial variations in landslide susceptibility, predominantly distributing in the Enyang, Bazhou, Pingchang Counties, and the central - southern region of Nanjiang County. The proposed GWR-RF coupled model improves the accuracy of landslide susceptibility assessments by optimizing the negative sample sampling strategy, providing a scientific basis for landslide disaster prevention and mitigation in the Bazhong region.

  • 近年来,呼和浩特市经济发展迅速,主城区人口快速增长,城市建设及工业建设用地等持续增加。2005年之前,地下水水源为呼和浩特市区唯一水源[1]。2006年以后,“引黄入呼”工程引黄河水10×104 m3/d。城市供水可开采量 25. 8×104 m3/d,但是需水量高达49.1×104 m3/ d[2],需水量差额从地下抽取,导致近十多年来地下水位年均下降1.7 m,市城南地面相比于10多年前沉降了约10 cm[3]

    21世纪初至今,PS-InSAR技术在地表沉降监测方面取得许多成果[4]。张剑[5]基于Sentinel-1数据,运用PS-InSAR技术监测得到兰州市中心城区的年均形变速率和时序上的累计沉降量,总结了该地区的沉降规律,并结合兰州市的工程施工项目和黄土湿陷等资料分析了地面沉降原因。廖明生等[6]利用PS-InSAR技术对上海市进行地面沉降监测,得到各时期的沉降速率,并与同时期水准数据对比验证,结果达到毫米级精度。同时基于时间序列高分辨率SAR影像还能够监测大型单体建筑物及地铁等线状地物,说明了PS-InSAR技术的应用潜力与有效性。马秀露[7]利用2015—2018年间的36景Sentinel-1A影像,采用PS-InSAR技术监测了西安高铁北站附近地区,得到郑西高铁西安段及周边区域的沉降速率,并对结果进行详细分析。郑佳兵等[8]基于北京平原区的PS-InSAR时序监测,构建北京平原区沉降数据,道路交通影响区占总沉降区87.81%,定量分析了道路交通对该区沉降的影响,得出道路交通是沉降的主要因素之一,并且是引起北京平原区沉降外因的结论。张勤等[9]通过总结InSAR等技术的特点及应用,总结并展望高精度空间监测技术融合,认为PS-InSAR技术提高了InSAR形变监测的精度。众多研究表明PS-InSAR方法对微小形变有着较高的敏感度,能够提高监测沉降的精度[10]

    呼和浩特市发展迅速,城市建筑工程活动加剧,地下水的进一步开采对地面稳定性造成持续性破坏[11],该市地面沉降需要给予特别关注。林凯[12]对呼和浩特市地铁1号线呼钢东站主体建设工程变形监测数据进行了模型对比分析,研究发现卡尔曼滤波-BP神经网络组合模型相比于单一模型的预测精度提高了30%,稳定性更好,通过对28个地铁墙顶竖向位移点进行30期的观测,其中累计沉降量最大值16.52 mm。胡勇平[13]对呼和浩特市回民区万达广场变形进行了预测分析,通过建立六种模型发现基坑从开挖、浇筑直到回填整体变形处于稳定状态。张凯等[14]对呼和浩特轨道交通2号线某车站基坑开挖进行了沉降监测分析,发现各监测点监测值均在可控范围之内,其中围护结构总体变形较大。杨红樱等[15]研究了降雨对呼和浩特地震台形变观测的影响。

    以上研究仅局限于局部形变监测,未开展呼和浩特城区整体的沉降监测。文章以呼和浩特市城区为研究对象,采用PS-InSAR技术进行地面沉降监测分析,提取呼和浩特市城区地面沉降信息,以期对城市安全提供相关分析。

    (1)地理位置。研究区地处大青山山脉南部,南抵大黑河,西到内蒙古医科大学(金川校区),东至大黑河,面积约694 km2。研究区地理位置如图1所示。

    图  1  研究区遥感影像图
    Figure  1.  Geographical view of Hohhot City

    (2)地形地貌。研究区位于土默川平原,地貌属于大青山山前冲洪积倾斜平原[16],地势北高南低[17]。向东部和北部地势逐渐增高,向西部和南部地势逐渐降低。

    (3)水文条件。该区域河流为黄河水系,是主要饮用水来源,地表水资源多在雨季6—8月,含沙多、峰大量小、时令性强[18]。市区在近20—30年开始大规模开采地下水,开发利用程度较高[19]

    (4)第四系土层性质及分布简述。由中国地质调查局发展研究中心K-49-28呼和浩特市幅1∶20万区域地质图空间数据库(https://geocloud.cgs.gov.cn/#/home)可知,研究区地层以第四系为主,是大青山山前凹陷地带,地表出露大部分为全新统,次为更新统。其中冲积层(${\rm{Q}}{\rm{h}}^{al}$)位于大黑河河床西岸,主要为沙砾淤泥,地表多为腐殖土,砾石少于砂砾,厚度10~30 m。冲积、洪积层(${\rm{Q}}{\rm{h}}^{al+pl}$),位于大青山前缓坡一带,为一些砾石层、砂砾层,砾石成分复杂,大小不等的砾石多于砂质,呈松散岩石。层理不清晰,偶见少许泥岩等,厚约数十米。沼泽沉积泥炭层(${\rm{Q}}{\rm{h}}^{c+h}$),位于台阁牧镇一带,淤泥、砂砾和泥炭,厚约数米至数十米(部分内容引自呼和浩特幅K-49-28 1/20万区域地质测量报告的地质部分)。

    研究区第四纪地层环境特征详见张恒星[20]第二章。地质剖面图参考李潇瀚等[21]图1图2、张泽鹏等[22]图1、赵瑞科等[23]图1、石鸿蕾等[24]图1的呼和浩特城区部分。研究区第四纪地质略图见张翼龙[25]图25

    图  2  PS-InSAR时空基线图
    Figure  2.  Schematic diagram of PS-In SAR spatiotemporal baseline
    图  5  A区平均形变速率特征图
    Figure  5.  Feature map of average subsidence rate in area A

    本次试验时间为2017年3月—2021年4月,选取了覆盖呼和浩特市城区25景Sentinel-1A升轨影像,影像信息详见表1,VV极化方式,IW成像模式。选取2018-10-04期为超级主影像,计算24景影像与超级主影像的时空基线(图2)。时序数据空间基线最大为2019年12月10期的87.43 m,最短为2021年4月3期的5.72 m,满足试验需求[11]

    表  1  研究所采用的Sentinel-1A数据参数
    Table  1.  Summary of the Sentinel-1A data parameters used in the study
    影像编号成像日期空间基线距/m时间基线距/d影像编号成像日期空间基线距/m时间基线距/d
    12017-03-19 −34.87−564142019-04-02−28.33180
    22017-04-12−37.39−540152019-06-01−23.04240
    32017-06-1126.72−480162019-08-12−78.11312
    42017-07-29−40.10−432172019-10-1153.56372
    52017-10-09−33.23−360182019-12-1087.43432
    62017-12-0845.08−300192020-02-0862.98492
    72018-02-06−31.88−240202020-04-0863.07552
    82018-04-0712.50−180212020-05-14−30.41588
    92018-06-06−22.68−120222020-08-0629.23672
    102018-08-05−18.48−60232020-10-05−33.29732
    112018-10-040.000242020-12-0423.03792
    122018-12-0348.1060252021-04-035.72912
    132019-02-0145.28120
    下载: 导出CSV 
    | 显示表格

    PS-InSAR从所有覆盖在同一地区的多景时序InSAR影像,基于时空基线,选择一幅为超级主影像,其余的作为辅影像,与主影像进行配准处理,根据影像在时间序列上的幅度与相位信息的稳定性,获得很多相关性、稳定性高的点;再剔除地形相位与干涉处理,提取带有永久散射体目标信息的差分干涉相位,二次差分相邻目标的差分干涉相位;最后建立起基于两次差分后形变相位模型,求解形变相位、分离大气延迟相位,得出研究区的形变信息与地形残余信息[26]

    Ferretti等 于1999年提出了PS-InSAR技术,通过对同一区域的多时相雷达影像,进行时空基线的综合评估,选出超级主影像,其余作为副影像,配准主副影像,同时生成干涉图[27],则干涉相位由式(1)表示:

    $$ {\varphi _{{\rm{PS}}}} = {\varphi _{{\rm{def}}}} + {\varphi _{{\rm{flat}}}} + {\varphi _{{\rm{topo}}}} + {\varphi _{{\rm{atm}}}} + {\varphi _{{\text{noi}}}} $$ (1)

    式中:$ \varphi_{{\rm{P S}}} $——干涉相位;

    $\varphi_{\text {def }}$——雷达视线向的地表形变相位,包括非线性 形变与线性形变,即${\varphi _{{\rm{def}}}} = {\varphi _{{\rm{no{{n}}linear}}}} + {\varphi _{{\rm{linear}}}}$

    $ \varphi_{\text {flat }} $——轨道误差引起的相位;

    $ \varphi_{\text {topo }} $——地面高程起伏引起的相位;

    $ \varphi_{\text {atm }} $——大气延迟误差相位;

    $ \varphi_{\text {noi }} $——噪声相位;

    $ \varphi_{\text {atm }} $${\varphi _{{\rm{nonlinear}}}}$$ \varphi_{\text {noi }} $由残留相位$\Delta {{{w}}}$来表示。

    $$ \Delta {{w}} = {\varphi _{{\rm{atm}}}} + {\varphi _{{\rm{nonlinear}}}} + {\varphi _{{\text{n}}{\rm{oi}}}} $$ (2)

    将式(2)带入式(1)整理后得式(3):

    $$ {\varphi _{{\rm{PS}}}} = \Delta {{w}} + {\varphi _{{\rm{linear}}}} + {\varphi _{{\rm{flat}}}} + {\varphi _{{\rm{topo}}}} $$ (3)

    式中:$ {\varphi _{{\text{topo}}}} $ = ${\varphi _{{\rm{DEM}}}}$ = $\dfrac{{4\pi }}{{\lambda R \cdot {\text{sin}}\theta }}{B_{\rm{v}}} \cdot \Delta h$$ \Delta h $是两次获取PS点的高程差,$ B_{{\rm{v}}} $是垂直于LOS方向的空间垂直基线;

    $ {\varphi _{{\text{linear}}}} = \dfrac{{4\pi }}{\lambda } \cdot {B_{\rm{T}}} \cdot \Delta v $$ \Delta v $是雷达视线向上的形变速率,$ B_{{\rm{T}}} $是干涉对的时间基线[28]

    则对第N景干涉图PS点的干涉相位整理得式(4):

    $$ {\varphi _{{\rm{PS}}}} = \frac{{4\pi }}{{\lambda R \cdot {\text{sin}}\theta }}{B_{\rm{v}}}(N) \cdot \Delta h + \frac{{4\pi }}{\lambda } \cdot {B_{\rm{T}}}(N) \cdot \Delta v + {\varphi _{{\rm{flat}}}} + {\varphi _{{\rm{noi}}}} $$ (4)

    数据处理使用由美国Exelis Visual Information Solutions公司开发的ENVI(The environment for visualizing images)遥感图像处理平台下的SARscape高级雷达处理模块[29]。对Sentinel-1A影像数据进行数据导入,研究区裁剪,连接图生成(时空基线分布如图2所示),干涉工作流(包括配准、干涉图生成、去平、振幅离差指数计算),PS两次模型反演,地理编码。选用30 m格网间隔的SRTM DEM去除地形相位[30]

    通过InSAR时序处理,分别获得2017年3月—2021年4月呼和浩特市城区累计沉降量和平均沉降速率(软件自动选择和分配)。从研究区整体来看,研究区西部沉降量明显大于东部,沉降较为严重区域集中分布在回民区与玉泉区交界处,金川开发区。呼和浩特市累计沉降量最大沉降为194.80 mm,研究区平均累计沉降值为15.50 mm(图3)。最大平均沉降速率为49.27 mm/a,研究区平均沉降速率的平均值为3.65 mm/a(图45)。

    图  3  呼和浩特市2017—2021年地表累计形变量
    Figure  3.  Cumulative surface settlement of Hohhot City from 2017 to 2021
    图  4  2017—2021年研究区平均形变速率图
    Figure  4.  Average settlement rate of the study area from 2017 to 2021

    结果表明,研究时间段内研究区总体呈现下沉趋势,且有较为严重的沉降区。这与文献[31-33]对该市的沉降研究趋势是相同的,呼和浩特垂直形变速率图详见文献[32]中图6。文献[32]认为漏斗沉降区域的生成是地下水的过度开采所致,其中文献[11729]发现该地区地下水位多年来持续下降。

    图  6  实地调查照片
    Figure  6.  Field photos of concrete building cracks due to ground settlement

    分别用A—E作为标识的5个代表区域,标识位置见图3,并对5个沉降中心进行了实地调研,将造成呼和浩特市城区较大沉降的主要因素分为两类:地下水开采和人工建造两个层面进行分析。

    A沉降区主要包括地铁1号线坝堰(机场)站、白塔西站、什兰岱站和呼和浩特白塔国际机场。该区是研究区东部沉降较为严重的区域,最大沉降速率18.15 mm/a,平均沉降速率3.06 mm/a(图5)。该区沉降原因是由于在地铁等地面建筑物施工过程中,对地下水抽取,同时地下水抽取过多使得地表受力不均衡,因此产生沉降。在工程完期后,由于土体的自固结也会导致沉降的可能,增加地面沉降的不确定因素[33]。A区是研究区重要的交通运输枢纽,该区域人流量大,建筑密集。为保障地铁1号线和机场的运营安全,应持续监测该地区沉降和加强地基的维护,以减缓地表差异形变对地铁和机场运营的影响。

    E区主要以加工场、小区居多,人口数量大。其沉降中心集中在工业区和新建建筑附近,向四周沉降逐渐减小,形成一个漏斗沉降区,道路塌陷情况严重,墙体存在开裂现象(图6)。该区域为五个研究区最大形变区域,最大沉降速率43.72 mm/a,平均沉降速率12.46 mm/a。该地区沉降原因是由于地下水超采。其原因由文献[34-36]佐证:台阁牧镇附近的水头下降速率超过2.0 m/a,属于严重超采区,地下水超采区位置详见文献[34]图2、文献[35]附图1,其评价结果与地下水开采程度及水头的变化情况基本一致,具有可靠性[34]

    B、C、D沉降区分别位于西乌素图回迁小区周围、回民区南部城发绿园小区及广龙苑小区周围、玉泉区北部丽和阳光城及西岸国际小区周围。B区最大沉降量111.70 mm,平均沉降量36.34 mm;C区最大沉降量99.2 mm,平均沉降量41.07mm;D区最大沉降量111.30 mm,平均沉降量50.99 mm,其中D区平均沉降量为最大。3个沉降区分别以各自为最大沉降量中心向四周呈递减趋势,且D区和C区有连片趋势。经过实地考察以及遥感影像分析,相比于周围区域,3个沉降区高层居民楼、学区房等建筑物荷载较多,从而加重地表沉降,且根据中国科学院资源环境科学数据中心提供的中国土壤质地空间分布数据可知,呼和浩特市的土壤质地以砂土为主,占比40%~60%,粉砂土占比20%~40%,表明呼和浩特市土壤质地松散,不利于储水。同时在建筑物等地上设施建设过程中容易导致松散的土壤被压实,发生地面沉降,与文献[37]分析一致。

    此次研究有5个地铁控制网二等精密水准测量数据来验证精度。

    后不塔气站监测日期在2017年4月—2018年7月,期间道路地表竖向位移测点最终累计变形值介于−12.2~13.0 mm,整体呈下沉变化,Sentinel-1A影像InSAR结果显示在后不塔气地铁站形变值介于−12.1~12.9 mm之间。

    将军衙署站在监测日期在2017年3月—2018年6月,共观测27次。地表监测累计量介于−7.36~5 mm。Sentinel-1A影像InSAR结果显示形变值介于−10~6.6 mm。

    其他三个站(内蒙古展览馆站、西龙王庙站、西二环路站)Sentinel-1A影像InSAR形变结果均在地表监测形变范围之内误差最大为24.7 mm,大部分误差保持在5 mm以内。以上结果说明两者结果保持了较好的一致性。

    误差较大的原因主要为水准测量获取的“点”形变信息,PS-InSAR获取的是一个分辨单元的沉降量,属于“面”形变信息。Sentinel-1A影像分辨率是5 m×20 m,PS-InSAR中“面”的形变受其附近5~20 m区域的影响,还受到散射特性强的地面反射物影响,PS-InSAR和水准测量结果的比较是“面”和“点”结果的比较[38],所以二者不能完全对应,存在误差。其次为研究区部分地区地形起伏大,存在地形残差[39-41]

    本文阐述了运用25景覆盖呼和浩特市城区的Sentinel-1A升轨SAR影像和PS-InSAR技术,提取城区整体地表形变情况,并分析了影响因素。研究结果表明:

    (1)Sentinel-1A数据影像数量足,回访周期短,利于InSAR时序分析提取城区地表形变分析结果,服务于城市安全监测。

    (2)在监测时间段内,呼和浩特市地表呈现出整体较大范围的下沉,其中西侧沉降量大于东侧。文中共识别出5个显著沉降漏斗,主要原因为地下水超采和人类活动。总结出的显著沉降区下沉原因,与已有文献结果比较,沉降分布规律以及相对位置基本吻合,对呼和浩特城区整体地表形变作出了监测分析。

    (3)建议出台政策有效地限制地面地下建筑活动,有效管理地下水开采、城市人口、工业活动等。同时,对已存在的严重沉降区应该给予充分的补救措施,加强对该地区的地表形变监测。

  • 图  1   研究区位置及斜坡单元划分图

    注:a为研究区位置;b为斜坡单元划分;c为斜坡单元形态示意图。

    Figure  1.   Location and slope unit division of the research area

    图  2   易发性影响因子图

    Figure  2.   Map of susceptibility conditioning factors

    图  3   因子地理加权回归结果

    Figure  3.   Geographically weighted regression results for factors

    图  4   地理加权空间分类图

    Figure  4.   Spatial classification map from geographically weighted results

    图  5   滑坡易发性分区制图

    Figure  5.   Landslide susceptibility zoning map

    图  6   ROC曲线

    Figure  6.   ROC curve

    表  1   滑坡易发性分区结果

    Table  1   Results of landslide susceptibility zoning

    模型 易发性等级 分区面积/km2 面积占比/% 分区滑坡数量/个 滑坡数量占比/% 滑坡密度/(个每100 km2
    GWR-RF 极低易发 1704.02 13.85 7 0.65 0.41
    低易发 1339.37 10.89 16 1.49 1.19
    中易发 2231.27 18.13 66 6.15 2.96
    高易发 3698.50 30.06 444 41.38 12.00
    极高易发 3331.41 27.07 540 50.33 16.21
    RS2 极低易发 1380.00 11.22 4 0.37 0.29
    低易发 1344.82 10.93 17 1.58 1.26
    中易发 2560.44 20.81 88 8.20 3.44
    高易发 6959.27 56.56 935 87.14 13.44
    极高易发 60.04 0.49 29 2.70 48.30
    RS3 极低易发 1101.49 8.95 1 0.09 0.09
    低易发 1219.89 9.91 13 1.21 1.07
    中易发 1118.98 9.09 23 2.14 2.06
    高易发 5489.84 44.62 522 48.65 9.51
    极高易发 3374.37 27.42 514 47.90 15.23
    RS7 极低易发 1987.32 16.15 8 0.75 0.40
    低易发 1800.17 14.63 17 1.58 0.94
    中易发 4941.03 40.16 234 21.81 4.74
    高易发 3430.03 27.88 733 68.31 21.37
    极高易发 146.07 1.19 81 7.55 55.45
    下载: 导出CSV

    表  2   模型效果对比

    Table  2   Comparative analysis of model performance

    模型 评价指标
    精确率 召回率 F1分数 准确率 AUC
    RS1 0.763 0.798 0.744 0.846 0.873
    RS2 0.649 0.693 0.825 0.801 0.730
    RS3 0.749 0.785 0.669 0.839 0.847
    RS4 0.619 0.643 0.661 0.779 0.698
    RS5 0.595 0.626 0.670 0.778 0.663
    RS6 0.608 0.637 0.671 0.780 0.684
    RS7 0.581 0.623 0.679 0.781 0.624
    RS8 0.613 0.644 0.682 0.782 0.679
    RS9 0.619 0.649 0.785 0.783 0.695
    $\overline {{\text{RS}}} $ 0.644±0.066 0.678±0.068 0.715±0.070 0.796±0.027 0.721±0.084
    GWR-RF 0.700 0.735 0.773 0.814 0.845
    下载: 导出CSV
  • [1] 牛朝阳,高欧阳,刘伟,等. 光学遥感图像滑坡检测研究进展[J]. 航天返回与遥感,2023,44(3):133 − 144. [NIU Chaoyang,GAO Ouyang,LIU Wei,et al. Research progress of landslide detection in optical remote sensing images[J]. Spacecraft Recovery & Remote Sensing,2023,44(3):133 − 144. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1009-8518.2023.03.014

    NIU Chaoyang, GAO Ouyang, LIU Wei, et al. Research progress of landslide detection in optical remote sensing images[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(3): 133 − 144. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-8518.2023.03.014

    [2]

    YALCIN A,REIS S,AYDINOGLU A C,et al. A GIS-based comparative study of frequency ratio,analytical hierarchy process,bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon,NE Turkey[J]. Catena,2011,85(3):274 − 287. DOI: 10.1016/j.catena.2011.01.014

    [3]

    MERGHADI A,YUNUS A P,DOU Jie,et al. Machine learning methods for landslide susceptibility studies:A comparative overview of algorithm performance[J]. Earth-Science Reviews,2020,207:103225. DOI: 10.1016/j.earscirev.2020.103225

    [4] 郭飞,赖鹏,黄发明,等. 基于知识图谱的滑坡易发性评价文献综述及研究进展[J]. 地球科学,2024,49(5):1584 − 1606. [GUO Fei,LAI Peng,HUANG Faming,et al. Literature review and research progress of landslide susceptibility mapping based on knowledge graph[J]. Earth Science,2024,49(5):1584 − 1606. (in Chinese with English abstract)]

    GUO Fei, LAI Peng, HUANG Faming, et al. Literature review and research progress of landslide susceptibility mapping based on knowledge graph[J]. Earth Science, 2024, 49(5): 1584 − 1606. (in Chinese with English abstract)

    [5] 陈航, 刘惠军, 王韬, 等. 基于频率比-深度神经网络耦合模型的滑坡易发性评价——以盐源县为例[J]. 水文地质工程地质,2024,51(5):161 − 171. [CHEN Hang, LIU Huijun, WANG Tao, et al. Landslide susceptibility evaluation based on FR-DNN coupling model: A case study on Yanyuan County[J]. Hydrogeology & Engineering Geology,2024,51(5):161 − 171. (in Chinese with English abstract)]

    CHEN Hang, LIU Huijun, WANG Tao, et al. Landslide susceptibility evaluation based on FR-DNN coupling model: A case study on Yanyuan County[J]. Hydrogeology & Engineering Geology, 2024, 51(5): 161 − 171. (in Chinese with English abstract)

    [6] 吕蓓茹,彭玲,李樵民. 顾及样本敏感性的滑坡易发性评价[J]. 测绘通报,2022(11):20 − 25. [LYU Beiru,PENG Ling,LI Qiaomin. Landslide susceptibility evaluation considering sample sensitivity[J]. Bulletin of Surveying and Mapping,2022(11):20 − 25. (in Chinese with English abstract)]

    LYU Beiru, PENG Ling, LI Qiaomin. Landslide susceptibility evaluation considering sample sensitivity[J]. Bulletin of Surveying and Mapping, 2022(11): 20 − 25. (in Chinese with English abstract)

    [7] 黄发明,陈佳武,唐志鹏,等. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性[J]. 岩石力学与工程学报,2021,40(6):1155 − 1169. [HUANG Faming,CHEN Jiawu,TANG Zhipeng,et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1155 − 1169. (in Chinese with English abstract)]

    HUANG Faming, CHEN Jiawu, TANG Zhipeng, et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1155 − 1169. (in Chinese with English abstract)

    [8] 刘纪平,梁恩婕,徐胜华,等. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价[J]. 测绘学报,2022,51(10):2034 − 2045. [LIU Jiping,LIANG Enjie,XU Shenghua,et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica,2022,51(10):2034 − 2045. (in Chinese with English abstract)] DOI: 10.11947/j.AGCS.2022.20220326

    LIU Jiping, LIANG Enjie, XU Shenghua, et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2034 − 2045. (in Chinese with English abstract) DOI: 10.11947/j.AGCS.2022.20220326

    [9] 魏文豪,贾雨霏,盛逸凡,等. 基于Ⅰ、SVM、Ⅰ-SVM的滑坡灾害易发性评价模型研究[J]. 安全与环境工程,2023,30(3):136 − 144. [WEI Wenhao,JIA Yufei,SHENG Yifan,et al. Research on landslide susceptibility evaluation model based on Ⅰ,SVM and Ⅰ-SVM[J]. Safety and Environmental Engineering,2023,30(3):136 − 144. (in Chinese)]

    WEI Wenhao, JIA Yufei, SHENG Yifan, et al. Research on landslide susceptibility evaluation model based on Ⅰ, SVM and Ⅰ-SVM[J]. Safety and Environmental Engineering, 2023, 30(3): 136 − 144. (in Chinese)

    [10] 何万才,赵俊三,林伊琳,等. 基于证据权和支持向量机模型的威信县滑坡易发性评价[J]. 科学技术与工程,2023,23(15):6350 − 6360. [HE Wancai,ZHAO Junsan,LIN Yilin,et al. Landslide susceptibility assessment in Weixin County based on evidence weight and support vector machine model[J]. Science Technology and Engineering,2023,23(15):6350 − 6360. (in Chinese with English abstract)] DOI: 10.12404/j.issn.1671-1815.2023.23.15.06350

    HE Wancai, ZHAO Junsan, LIN Yilin, et al. Landslide susceptibility assessment in Weixin County based on evidence weight and support vector machine model[J]. Science Technology and Engineering, 2023, 23(15): 6350 − 6360. (in Chinese with English abstract) DOI: 10.12404/j.issn.1671-1815.2023.23.15.06350

    [11] 黄发明,曾诗怡,姚池,等. 滑坡易发性预测建模的不确定性:不同“非滑坡样本”选择方式的影响[J]. 工程科学与技术,2023:1 − 14. [HUANG Faming,ZENG Shiyao,YAO Chi,et al. Uncertainties of landslide susceptibility prediction modeling:Influence of different selection methods of "non-landslide samples[J]. Advanced Engineering Sciences,2023,23(15):6350 − 6360. (in Chinese with English abstract)]

    HUANG Faming, ZENG Shiyao, YAO Chi, et al. Uncertainties of landslide susceptibility prediction modeling: Influence of different selection methods of "non-landslide samples[J]. Advanced Engineering Sciences, 2023, 23(15): 6350 − 6360. (in Chinese with English abstract)

    [12]

    JACOBS L,KERVYN M,REICHENBACH P,et al. Regional susceptibility assessments with heterogeneous landslide information:Slope unit- vs. pixel-based approach[J]. Geomorphology,2020,356:107084. DOI: 10.1016/j.geomorph.2020.107084

    [13] 张勇,温智,程英建. 四川巴中市滑坡灾害与降雨雨型关系探讨[J]. 水文地质工程地质,2020,47(2):178 − 182. [ZHANG Yong,WEN Zhi,CHENG Yingjian. A discussion of the relationship between landslide disaster and rainfall types in Bazhong of Sichuan[J]. Hydrogeology & Engineering Geology,2020,47(2):178 − 182. (in Chinese with English abstract)]

    ZHANG Yong, WEN Zhi, CHENG Yingjian. A discussion of the relationship between landslide disaster and rainfall types in Bazhong of Sichuan[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 178 − 182. (in Chinese with English abstract)

    [14]

    COMBER A,BRUNSDON C,CHARLTON M,et al. A route map for successful applications of geographically weighted regression[J]. Geographical Analysis,2023,55(1):155 − 178. DOI: 10.1111/gean.12316

    [15] 卢宾宾,葛咏,秦昆,等. 地理加权回归分析技术综述[J]. 武汉大学学报(信息科学版),2020,45(9):1356 − 1366. [LU Binbin,GE Yong,QIN Kun,et al. A review on geographically weighted regression[J]. Geomatics and Information Science of Wuhan University,2020,45(9):1356 − 1366. (in Chinese with English abstract)]

    LU Binbin, GE Yong, QIN Kun, et al. A review on geographically weighted regression[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1356 − 1366. (in Chinese with English abstract)

    [16] 于宪煜,熊十力. 基于空间多尺度分析的滑坡易发性评价——以三峡库区秭归-巴东段为例[J]. 大地测量与地球动力学,2020,40(2):187 − 192. [YU Xianyu,XIONG Shili. Landslide susceptibility assessment based on spatial multi-scale analysis:A case study of Zigui to Badong in the Three Gorges Reservoir area[J]. Journal of Geodesy and Geodynamics,2020,40(2):187 − 192. (in Chinese with English abstract)]

    YU Xianyu, XIONG Shili. Landslide susceptibility assessment based on spatial multi-scale analysis: A case study of Zigui to Badong in the Three Gorges Reservoir area[J]. Journal of Geodesy and Geodynamics, 2020, 40(2): 187 − 192. (in Chinese with English abstract)

    [17] 方匡南,吴见彬,朱建平,等. 随机森林方法研究综述[J]. 统计与信息论坛,2011,26(3):32 − 38. [FANG Kuangnan,WU Jianbin,ZHU Jianping,et al. A review of technologies on random forests[J]. Statistics & Information Forum,2011,26(3):32 − 38. (in Chinese with English abstract)]

    FANG Kuangnan, WU Jianbin, ZHU Jianping, et al. A review of technologies on random forests[J]. Statistics & Information Forum, 2011, 26(3): 32 − 38. (in Chinese with English abstract)

    [18] 于新洋,赵庚星,常春艳,等. 随机森林遥感信息提取研究进展及应用展望[J]. 遥感信息,2019,34(2):8 − 14. [YU Xinyang,ZHAO Gengxing,CHANG Chunyan,et al. Random forest classifier in remote sensing information extraction:A review of applications and future development[J]. Remote Sensing Information,2019,34(2):8 − 14. (in Chinese with English abstract)]

    YU Xinyang, ZHAO Gengxing, CHANG Chunyan, et al. Random forest classifier in remote sensing information extraction: A review of applications and future development[J]. Remote Sensing Information, 2019, 34(2): 8 − 14. (in Chinese with English abstract)

    [19] 吴先谭,邓辉,张文江,等. 基于斜坡单元自动划分的滑坡易发性评价[J]. 山地学报,2022,40(4):542 − 556. [WU Xiantan,DENG Hui,ZHANG Wenjiang,et al. Evaluation of landslide susceptibility based on automatic slope unit division[J]. Mountain Research,2022,40(4):542 − 556. (in Chinese with English abstract)]

    WU Xiantan, DENG Hui, ZHANG Wenjiang, et al. Evaluation of landslide susceptibility based on automatic slope unit division[J]. Mountain Research, 2022, 40(4): 542 − 556. (in Chinese with English abstract)

    [20] 李星,杨赛,李远耀,等. 面向区域滑坡易发性精细化评价的改进斜坡单元法[J]. 地质科技通报,2023,42(3):81 − 92. [LI Xing,YANG Sai,LI Yuanyao,et al. Improved slope unit method for fine evaluation of regional landslide susceptibility[J]. Bulletin of Geological Science and Technology,2023,42(3):81 − 92. (in Chinese with English abstract)]

    LI Xing, YANG Sai, LI Yuanyao, et al. Improved slope unit method for fine evaluation of regional landslide susceptibility[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 81 − 92. (in Chinese with English abstract)

    [21] 赵晓燕,谈树成,李永平. 基于斜坡单元与组合赋权法的东川区地质灾害危险性评价[J]. 云南大学学报(自然科学版),2021,43(2):299 − 305. [ZHAO Xiaoyan,TAN Shucheng,LI Yongping. Risk assessment of geological hazards in Dongchuan District based on the methods of slope unit and combination weighting[J]. Journal of Yunnan University (Natural Sciences Edition),2021,43(2):299 − 305. (in Chinese with English abstract)]

    ZHAO Xiaoyan, TAN Shucheng, LI Yongping. Risk assessment of geological hazards in Dongchuan District based on the methods of slope unit and combination weighting[J]. Journal of Yunnan University (Natural Sciences Edition), 2021, 43(2): 299 − 305. (in Chinese with English abstract)

    [22] 刘传正,陈春利. 中国地质灾害成因分析[J]. 地质论评,2020,66(5):1334 − 1348. [LIU Chuanzheng,CHEN Chunli. Research on the origins of geological disasters in China[J]. Geological Review,2020,66(5):1334 − 1348. (in Chinese with English abstract)]

    LIU Chuanzheng, CHEN Chunli. Research on the origins of geological disasters in China[J]. Geological Review, 2020, 66(5): 1334 − 1348. (in Chinese with English abstract)

    [23]

    HONG Haoyuan,POURGHASEMI H R,POURTAGHI Z S. Landslide susceptibility assessment in Lianhua County (China):A comparison between a random forest data mining technique and bivariate and multivariate statistical models[J]. Geomorphology,2016,259:105 − 118. DOI: 10.1016/j.geomorph.2016.02.012

    [24] 蒋文学,李益敏,杨雪,等. 基于斜坡单元的怒江州滑坡易发性研究[J]. 水土保持学报,2023,37(5):160 − 167. [JIANG Wenxue,LI Yimin,YANG Xue,et al. Study on landslide susceptibility in Nujiang prefecture based on slope unit[J]. Journal of Soil and Water Conservation,2023,37(5):160 − 167. (in Chinese with English abstract)]

    JIANG Wenxue, LI Yimin, YANG Xue, et al. Study on landslide susceptibility in Nujiang prefecture based on slope unit[J]. Journal of Soil and Water Conservation, 2023, 37(5): 160 − 167. (in Chinese with English abstract)

    [25] 郭衍昊,窦杰,向子林,等. 基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价[J]. 地质科技通报,2024,43(3):251 − 265. [GUO Yanhao,DOU Jie,XIANG Zilin,et al. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology,2024,43(3):251 − 265. (in Chinese with English abstract)]

    GUO Yanhao, DOU Jie, XIANG Zilin, et al. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 251 − 265. (in Chinese with English abstract)

    [26] 阳清青,余秋兵,张廷斌,等. 基于GDIV模型的大渡河中游地区滑坡危险性评价与区划[J]. 中国地质灾害与防治学报,2023,34(5):130 − 140. [YANG Qingqing,YU Qiubing,ZHANG Tingbin,et al. Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):130 − 140. (in Chinese with English abstract)]

    YANG Qingqing, YU Qiubing, ZHANG Tingbin, et al. Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 130 − 140. (in Chinese with English abstract)

    [27] 于宪煜, 汤礼. 基于SMOTE-Tomek和CNN耦合的滑坡易发性评价模型及其应用——以三峡库区秭归—巴东段为例[J]. 中国地质灾害与防治学报,2024,35(3):141 − 151. [YU Xianyu, TANG Li. Landslide susceptibility mapping model based on a coupled model of SMOTE-Tomek and CNN and its application: A case study in the Zigui-Badong section of the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):141 − 151. (in Chinese with English abstract)]

    YU Xianyu, TANG Li. Landslide susceptibility mapping model based on a coupled model of SMOTE-Tomek and CNN and its application: A case study in the Zigui-Badong section of the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 141 − 151. (in Chinese with English abstract)

    [28]

    PETSCHKO H,BRENNING A,BELL R,et al. Assessing the quality of landslide susceptibility maps:case study Lower Austria[J]. Natural Hazards and Earth System Sciences,2014,14(1):95 − 118. DOI: 10.5194/nhess-14-95-2014

    [29] 王惠,许月卿,刘超,等. 基于地理加权回归的生境质量对土地利用变化的响应 ——以河北省张家口市为例[J]. 北京大学学报(自然科学版),2019,55(3):509 − 518. [WANG Hui,XU Yueqing,LIU Chao,et al. Response of habitat quality to land use change based on geographical weighted regression[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2019,55(3):509 − 518. (in Chinese with English abstract)]

    WANG Hui, XU Yueqing, LIU Chao, et al. Response of habitat quality to land use change based on geographical weighted regression[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(3): 509 − 518. (in Chinese with English abstract)

    [30] 陈强,朱慧敏,何溶,等. 基于地理加权回归模型评估土地利用对地表水质的影响[J]. 环境科学学报,2015,35(5):1571 − 1580. [CHEN Qiang,ZHU Huimin,HE Rong,et al. Evaluating the impacts of land use on surface water quality using geographically weighted regression[J]. Acta Scientiae Circumstantiae,2015,35(5):1571 − 1580. (in Chinese with English abstract)]

    CHEN Qiang, ZHU Huimin, HE Rong, et al. Evaluating the impacts of land use on surface water quality using geographically weighted regression[J]. Acta Scientiae Circumstantiae, 2015, 35(5): 1571 − 1580. (in Chinese with English abstract)

    [31]

    SHIRZADI A,SOLAIMANI K,ROSHAN M H,et al. Uncertainties of prediction accuracy in shallow landslide modeling:Sample size and raster resolution[J]. Catena,2019,178:172 − 188. DOI: 10.1016/j.catena.2019.03.017

  • 期刊类型引用(4)

    1. 王若松,张乐乐,韩文辉,李相磊. 改进YOLOv5s的广域InSAR矿区地表形变检测. 测绘科学. 2024(03): 127-136 . 百度学术
    2. 徐平,杨益新,朱志豪. 运营地铁盾构隧道基底沉降的影响因素分析. 水文地质工程地质. 2024(04): 157-166 . 百度学术
    3. 肖文全,曹依帆,秦涛,赵辉,冯丹禹,罗尚,翟星. 基于PS-InSAR的水库大坝形变监测──以大桥水库为例. 测绘. 2024(03): 124-127+132 . 百度学术
    4. 何清,魏路,肖永红. 基于SBAS-InSAR技术的安徽亳州市地面沉降时空分布特征与影响因素分析. 中国地质灾害与防治学报. 2023(05): 81-90 . 本站查看

    其他类型引用(1)

图(6)  /  表(2)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  16
  • PDF下载量:  36
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2023-11-06
  • 录用日期:  2025-01-05
  • 网络出版日期:  2025-01-10
  • 刊出日期:  2025-02-24

目录

/

返回文章
返回