Formation conditions and susceptibility assessment of karst collapses in the northern hilly area of Guangzhou City
-
摘要:
岩溶塌陷是广州北部丘陵区主要地质灾害之一,对人民群众安全生产、和谐生活造成实际威胁,制约了当地乡村振兴发展。文章在分析广州北部丘陵区岩溶发育程度、覆盖层土体条件、地下水动力条件等岩溶塌陷形成条件的基础上,选择岩溶发育程度、土层厚度、土层结构、地下水水位年变幅、断裂影响范围、塌陷点密度等6个评价指标,利用层次分析法确定各指标权重,运用综合指数法建立岩溶塌陷易发性评价模型,进行广州北部丘陵区岩溶塌陷易发性评价。结果表明:广州北部丘陵区岩溶塌陷高、中等和低易发区面积分别为4.77,14.24,21.71 km,已发生的岩溶塌陷均分布在高易发区(94.29%)和中等易发区(5.71%),易发性分区评价合理。研究成果可为当地岩溶塌陷地质灾害预警和防治区划提供依据。
Abstract:Karst collapse is one of the main geological disasters in the northern hilly area of Guangzhou City, posing practical threats to public safety and affecting harmonious living conditions, thereby constraining local rural revitalization and development. This study analyzes the formation conditions of karst collapses in the northern hilly area of Guangzhou, including karst development degree, conditions of overlying soil layers, and hydrodynamic conditions of groundwater. Based on this analysis, six evaluation factors—karst development degree, soil layer thickness, soil layer structure, annual variation range of groundwater level, extent of fracture influence, and density of collapse points—are selected. The weight of each factor is determined by analytic hierarchy process (AHP), and a comprehensive index method is employed to establish the susceptibility assessment model for karst collapses in the northern hilly area of Guangzhou City. The results show that the areas of high, moderate, and low susceptibility to karst collapses in this region are 4.77, 14.24 , 21.71 km2, respectively. Karst subsidence occurrences are predominantly distributed in high vulnerability areas (94.29%) and moderate vulnerability areas (5.71%), validating the rationality of vulnerability zoning assessment. The research findings provide a basis for geological disaster early warning and prevention zoning for local karst collapse, and also provide geological support for promoting rural revitalization and development.
-
0. 引言
地质灾害易发性评价是以地质环境条件为基础,参考地质灾害现状的静态因素来预测一定区域内发生地质灾害的可能性 [1]。地质灾害易发性评价方法分为定性和定量两类。定性方法主要包括专家评分 [2]、层次分析 [3]等。随着数据获取的便利、计算能力的提升以及评估模型的日趋完善,定量评价方法应用更为广泛,定量方法主要有信息量 [4]、确定性系数 [5]、证据权 [6]、逻辑回归 [7]、支持向量机 [8]、决策树 [9]、随机森林 [10]、神经网络 [11]等。其中确定性系数方法计算严密,可以解决多源数据类型的合并问题和影响因子内部不同特征区间对地质灾害易发性的影响 [12],但单一的确定性系数评价法没有考虑每个评价因素对地质灾害易发性的影响差异。逻辑回归( Logistic Regression,LR) 可以使用简单的线性回归来描述自然现象之间的复杂非线性关系,并根据影响因素与历史灾害点之间的关系确定影响因素的权重。文章基于地理信息系统,将研究区划分为栅格,选取海拔、坡度、坡向、地形曲率、归一化植被指数(Normalized Difference Vegetation Index,NDVI)、工程地质岩组、断层、道路、水系这9个孕灾、诱灾因素作为评价指标因子,采用频率比法(Frequency Ratio,FR)、确定性系数法(Certainty Factor,CF)量化评价指标因子,基于确定性系数法进行逻辑回归运算,计算研究区网格地质灾害发生的概率,得到地质灾害易发性分区图。
1. 研究方法
1.1 频率比(FR)
频率比是建立在假设地质条件、孕育地质灾害的概率相似的地区。频率比重点考虑因子类别与地质灾害发生可能性的空间相关性,定量表示环境因子各属性区间对地质灾害发生的相对影响程度 [13-15],计算方法如式(1)。
(1) 式中:FRi——频率比值;
li——某个评价因子i类属性区间发生地质灾害的 个数;
L——研究区内的总数;
si——某个评价因子i类区间的面积;
S——研究区总面积。
FRi大于 1 表明该环境因子属性区间利于地质灾害发育,值越大表示对地质灾害发育的贡献也越大;反之,FRi小于 1 表明该环境因子属性区间不利于地质灾害发育。
1.2 确定性系数模型(CF)
确定性系数模型假设将来发生地质灾害的条件和过去发生地质灾害的条件相同。CF 计算公式为:
(2) 式中:CF——地质灾害发生的确定性系数;
PPa——地质灾害在因子分类数据a中发生的条件 概率,研究中通常用因子分类a中的地质 灾害个数与因子分类a的面积比值表示;
PPS——地质灾害在整个研究区中发生的先验概率, 以研究区地质灾害总个数与研究区总面 积比值表示。
由式(2)可知,CF的变化区间为[−1,1]。正值表示地质灾害发生的确定性大,越接近1越易于发生地质灾害;负值表示地质灾害发生确定性小,越接近−1越不易于发生地质灾害;值为 0 时表示条件概率和先验概率相同,不确定是否会发生地质灾害 [5]。
1.3 基于确定性系数的逻辑回归模型(CF-LR)
逻辑回归模型是研究二分类因变量常用的多元统计分析方法。自变量Xi 为控制灾害发生的影响因子。因变量Y属于二分类变量,通常 0 代表地质灾害不存在,1 代表地质灾害存在。用线性回归来描述自然现象之间复杂的非线性关系,揭示因变量和多个自变量之间的多元回归关系,将每个评价因子视为自变量,能很好解决滑坡易发性评价中出现的二分类变量问题 [16],逻辑回归函数如式(3):
(3) 式中:P——地质灾害发生的概率;
Z——地质灾害发生概率的目标函数,表达为各因素自变量x1,x2,x3
xn的线性组合; ——逻辑回归系数;β0——常数表示在不受任何有利或不利于地质灾害发生因素影响的条件下,地质灾害发生与不发生概率之比的对数值 [17]。
通过确定性系数模型计算得到各评价因子类别的值,将其结果作为逻辑回归模型中的自变量,建立回归方程,进行逻辑回归运算,得到各评价因子的逻辑回归系数,以此进行确定性系数–逻辑回归模型(CF-LR)进行地质灾害易发性评价。
2. 实例分析
2.1 研究区概况
研究区沿河土家族自治县位于贵州省东北部,隶属铜仁市,南北长98.28 km,东西宽53 km,行政区域总面积2483.51km2,占贵州省总面积的1.4%,占铜仁市总面积的13.7%。沿河县境内有乌江及其支流洪渡河、暗溪河、白泥河、坝坨河等26条河流,河道长548.7 km,河网密度0.23 km/km2。地貌轮廓明显受地质构造控制,全县地貌“轴部成山,翼部成谷”。区内出露地层从老到新有震旦系、寒武系、奥陶系、志留系、二叠系、三叠系及第四系。受乌江切割和地层、岩性、构造的影响,在内外营力综合作用下,形成山峦叠障、沟谷纵横、复杂多样的地形地貌景观。区内历史地质灾害以滑坡、崩塌为主,共计130处,滑坡、崩塌分别占全县地质灾害的55.38%、33.85%。研究区地理位置及地质灾害分布如图1所示。
2.2 评价指标因子选取
结合研究区的地质背景、地质灾害形成条件及发育特征,初步选取海拔、坡度、坡向、地形曲率、归一化植被指数(NDVI)、工程地质岩组、距断层距离、距道路距离、距水系距离9个影响因素作为评价指标因子。数据源为沿河县地质灾害数据库、地理空间数据云平台获取研究区30 m×30 m数字高程模型(Digital Elevation Model,DEM)、1∶50 000的地质图、Google影像地图,利用ArcGIS平台通过DEM数据提取分析得到研究区坡度、坡向、地形曲率、河流网评价因子图层,通过Google影像地图矢量化得到道路数据,利用 landsat8 影像获得该区的归一化植被指数(NDVI)专题图。
2.3 评价因子相关性分析
影响地质灾害发育的因素之间存在一定的关联,当评价因子之间存在多重共线问题时,会降低模型的预测精度,因而需对评价因素进行相关性分析。利用ArcGIS计算相关矩阵如表1所示,相关性系数绝对值最大为0.324,说明本文选取的9个评价指标因子之间相关性较弱,均可纳入研究区评价模型 [18]。
表 1 评价指标因子相关性系数矩阵Table 1. Correlation coefficient matrix of evaluation index factors评价因子 海拔 坡度 坡向 地形曲率 NDVI 工程地质岩组 断层缓冲区 道路缓冲区 河流缓冲区 海拔 1 坡度 −0.009 1 坡向 0.009 0.059 1 地形曲率 0.138 0.045 −0.004 1 NDVI 0.154 0.094 −0.073 0.032 1 工程地质岩组 −0.004 0.004 −0.016 −0.010 −0.006 1 断层缓冲区 0.182 −0.002 0.002 0.004 0.024 0.104 1 道路缓冲区 0.113 0.081 0.004 0.009 0.043 0.007 0.060 1 河流缓冲区 0.324 −0.042 0.006 0.024 0.059 0.075 0.094 0.146 1 2.4 评价指标因子分析
工程地质岩组为离散型因子,根据野外地质调查以及已有分类标准进行分类,连续型指标因子分类根据地质灾害比例进行等距离划分,各指标因子分级如图2所示,利用式(1)进行频率比计算确定性系数计算,利用式(2)进行确定性系数计算,结果见表2。
表 2 评价指标因子分级、频率比、确定性系数Table 2. Evaluation index factor classification, frequency ratio and certainty coefficient评价指
标因子分级 地质灾
害频数分级面积
/km2频率比 CF 评价指
标因子分级 地质灾
害频数分级面积
/km2频率比 CF 工程地
质岩组坚硬岩组 19 908.650 0.399 −0.374 地形
曲率<−0.2 54 842.320 1.225 0.194 较坚硬岩组 12 433.841 0.528 −0.485 −0.2~0.2 41 804.509 0.974 −0.028 较软岩组 24 354.624 1.293 0.239 ≥0.2 35 836.681 0.799 −0.210 软岩组 24 156.908 2.922 0.694 道路缓
冲区/m0~200 10 121.608 1.571 0.384 软硬相间岩组 51 629.487 1.548 0.373 200~400 7 110.030 1.215 0.187 海拔/m 209~400 19 125.528 2.892 0.690 400~600 8 102.096 1.497 0.350 400~600 35 630.016 1.061 0.061 600~800 8 96.148 1.590 0.391 600~800 46 781.436 1.125 0.117 800~1000 4 91.358 0.836 −0.206 800~1000 23 557.591 0.788 −0.221 ≥1000 93 1962.270 0.905 −0.099 1000~1200 5 329.869 0.290 −0.721 河流缓
冲区/m0~200 18 292.050 1.177 0.159 1200~1408 2 59.068 0.647 −0.366 200~400 20 270.762 1.411 0.307 坡度/(°) 0~8 8 360.777 0.424 −0.589 400~600 16 276.547 1.105 0.112 8~16 44 774.534 1.085 0.083 600~800 15 263.664 1.087 0.084 16~24 47 726.415 1.236 0.202 800~1000 13 249.447 0.996 −0.005 24~32 24 407.503 1.125 0.117 ≥1000 48 1131.039 0.811 −0.198 32~40 5 150.886 0.633 −0.380 断层缓
冲区/m0~300 15 263.922 1.086 0.083 ≥40 2 63.395 0.603 −0.410 300~600 13 246.968 1.006 0.006 坡向 平面 0 9.052 0.000 −1.000 600~900 13 230.345 1.078 0.077 北 17 249.994 1.299 0.243 900~1200 10 202.012 0.946 −0.057 东北 19 325.920 1.114 0.108 1200~1500 8 176.901 0.864 −0.143 东 32 390.819 1.564 0.381 ≥1500 71 1363.363 0.995 −0.005 东南 14 338.893 0.789 −0.220 NDVI −0.02~0.1 9 219.331 0.784 −0.225 南 9 253.127 0.679 −0.333 0.1~0.2 25 459.478 1.039 0.040 西南 21 287.807 1.394 0.298 0.2~0.3 61 1008.861 1.155 0.142 西 7 326.164 0.410 −0.603 0.3~0.4 34 757.656 0.857 −0.149 西北 11 301.734 0.696 −0.315 0.4~0.54 1 38.183 0.500 −0.513 海拔高度与降雨量、植被类型、植被覆盖等有着密切的关系,影响着人类工程活动程度,因此海拔间接影响着地质灾害的发育 [19],海拔高度209~1408 m,将其分为6个类别。
坡度定量描述地面的倾斜程度,它的大小对斜坡表面径流量、斜坡表体土层剩余下滑力等都影响巨大,一定程度上影响着地质灾害发育的规模与强度 [20],研究区坡度最高达75°,以8°等间距分为5类,大于40°为1类,共计6个类别。
不同坡向与岩体结构面的组合关系差异导致地质灾害发育的程度不同 [21],将研究区坡向分为9个类别。
地形曲率是局部地形曲面在各个截面方向上形状、凹凸变化的反映,其值为正时表明边坡是凸面坡,为 0 时表明为平面坡,为负时表明边坡为凹面坡 [22],由于研究区平面坡(曲率等于0)面积极小,所以用曲率为−0.2~0.2代表近似平面坡,将其分为凹坡(<−0.2),近似平面坡(−0.2~0.2),凸坡(≥0.2)3类。
归一化植被指数(NDVI)是遥感影像中近红外波段(NIR)的反射值和红光波段(R)的反射值的差与两者之和的比值,NDVI值的范围为 [−1 , 1],负值表示对可见光高反射,地面为江、河、湖泊等水体或有雪覆盖,0表示NIR和R近似相等,为岩石或裸地等,正值表示有植被覆盖,数值越大表示植被覆盖率越高 [23],研究区NDVI在−0.02~0.54之间,将其分为5个类别。
岩土体是地质灾害发生的物质来源基础,岩石类型、坚硬程度决定岩土体的力学强度、抗风化能力和抗侵蚀能力 [19],研究区工程地质岩组分为5类,分别为坚硬岩组、较坚硬岩组、较软岩组、软岩组和软硬相间岩组。
地质构造影响着岩体结构及其组合特征,对山区地质灾害发育起着重要的控制作用 [24],利用ArcGIS领域分析功能将研究区断层以300 m等距离提取缓冲区,得到6个类别。
道路修建开挖坡体改变原有地质环境,破坏岩土体结构 [25],以200 m等距离提取道路缓冲区,得到6个类别。
河流的侵蚀、侧蚀作用影响地质灾害的发育、且河流是控制坡面侵蚀的重要原因 [26],将研究区河流200 m等距离提取缓冲区,得到6个类别。
通过对因子类别进行分类后,利用式(1)对各评价因子类别进行频率比计算,当频率比大于1时,说明该因子类别对地质灾害发育具有促进作用,如表3所示。
表 3 频率比大于1的属性区间Table 3. Attribute intervals with frequency ratio greater than 1评价因子 海拔/m 坡度/(°) 坡向 地形曲率 NDVI 工程地质岩组 断层缓冲区/m 道路缓冲区/m 河流缓冲区/m 频率比大于
1类别209~400 8~16 北 < −0.2 0.1~0.2 较软质岩 0~300 0~200 0~200 400~600 16~24 东北 0.2~0.3 软质岩 300~600 200~400 200~400 600~800 24~32 东 软硬相间质岩 600~900 400~600 400~600 西南 600~800 600~800 2.5 逻辑回归分析
利用ArcGIS以500 m距离制作灾点缓冲区,在500 m以外提取随机点130个非地质灾害点,与灾害训练样本组成训练集共计260个点。将9个评价指标因子的属性提取至训练集样本,导出后替换成评价因子的CF值导入SPSS软件中进行逻辑回归运算,各评价因子分类级别的CF值作为自变量,是否发生滑坡灾害作为因变量(0 表示未发生地质灾害,1值表示已发生地质灾害),LR-CF模型的逻辑回归运算结果如表4所示,其计算得到的所有评价指标因子的逻辑回归系数均为正数,表明所有评价指标因子对模型均起正向作用。在逻辑回归计算过程中,显著性sig ≤ 0. 05 则该回归系数有效,评价指标因子具有统计意义 [22]。
表 4 逻辑回归系数和显著性Table 4. Logistic regression coefficient and significance评价因子 海拔 坡度 坡向 地形曲率 NDVI 工程地质岩组 断层缓冲区 道路缓冲区 河流缓冲区 常量 β 3.844 2.495 3.418 4.085 1.198 4.377 3.218 0.734 2.728 2.604 sig 0.000 0.003 0.000 0.019 0.023 0.000 0.027 0.036 0.130 0.000 3. 易发性分区与评价
3.1 CF、CF-LR分区结果
基于GIS平台,将评价指标因子图层自定义添加属性字段,对应输入计算的确定性系数,利用栅格叠加得到确定性系数模型评价图,利用自然断点法将沿河县地质灾害易发性区划为低易发区、中易发区、高易发区、极高易发区,其面积(频率比)分别为361.265 km2(0.159)、784.269 km2(0.414)、895.197 km2(1.003)、442.779 km2(2.718),如图3(a)和表5所示。利用栅格计算器按照公式(3)计算得到CF-LR模型地质灾害发生概率图,利用自然断点法将其分为低易发区、中易发区、高易发区、极高易发区,其面积(频率比)分别为671.252 km2(0.142)、467.758 km2(0.327)、927.527 km2(0.741)、507.145 km2(3.051),如图3(b)和表5所示。CF模型和CF-LR模型地质灾害易发性等级的频率比值均从极低易发区到极高易发区明显增大,表明有效评价了研究区地质灾害易发性。CF模型和CF-LR模型计算的极高易发区频率比值分别占总频率比值为63.3%和71.6%。说明CF-LR模型比单一CF模型评价精度更高。
表 5 地质灾害易发性评价频率比值Table 5. Frequency ratio of geological hazard susceptibility evaluation评价模型 易发性
等级分级面积
/km2面积
占比灾害点
频数灾害
占比频率比 CF 低易发区 361.265 0.145 3 0.023 0.159 中易发区 784.269 0.316 17 0.131 0.414 高易发区 895.197 0.360 47 0.362 1.003 极高易发区 442.779 0.178 63 0.485 2.718 CF-LR 低易发区 671.252 0.270 5 0.038 0.142 中易发区 467.758 0.188 8 0.062 0.327 高易发区 927.527 0.373 36 0.277 0.741 极高易发区 507.145 0.204 81 0.623 3.051 3.2 精度验证
本文使用ROC曲线来表示拟合数据和实测数据之间的关系,评价成功率或有效性以AUC值来表示(图4)。曲线中纵轴为敏感度,即实际地质灾害数量百分比累加量,横轴为特异性,即易发性面积百分比累积量,ROC曲线下面积AUC值越大表明模型评估效果越好 [27-28]。CF模型和CF-LR模型AUC值分别为0.722和0.818,说明CF和CF-LR评价模型均能够较为客观准确地对沿河县地质灾害易发性进行评价,且CF法进行逻辑回归后的CF-LR模型评价精度更高。
4. 结论
(1)文中从选取的9个地质灾害影响因素的各类别的频率比值可以看出,在海拔209~800 m,坡度8°~32°,坡向朝向北、东北、东、西南,地形曲率小于−0.2,NDVI为0.1~0.3,较软质岩、软质岩、软硬相间质岩,距断层900 m、道路和河流800 m以内对沿河县地质灾害发育具有促进作用。
(2)CF模型评价低易发区、中易发区、高易发区、极高易发区,其面积(频率比)分别为361.265 km2(0.159)、784.269 km2(0.414)、895.197 km2(1.003)、442.779 km2(2.718);CF-LR模型评价低易发区、中易发区、高易发区、极高易发区,其面积(频率比)分别为671.252 km2(0.142)、467.758 km2(0.327)、927.527 km2(0.741)、507.145 km2(3.051)。CF模型和CF-LR模型地质灾害易发性等级的频率比值从极低易发区到极高易发区明显增大,均有效评价了研究区地质灾害易发性。CF模型和CF-LR模型计算的极高易发区频率比值分别占总频率比值为63.3%和71.6%。
(3)CF模型和CF-LR模型AUC值分别为0.722和0.818,均能够较为客观准确地对沿河县地质灾害易发性进行评价。但单一CF法没有考虑评价因素对地质灾害易发性的影响差异,在此基础上,LR法用线性回归来表示评价因子之间复杂非线性关系,考虑了评价因子的权重,使得AUC值提高了0.096,CF-LR模型具有更高的评价精度。
由于研究区的地质灾害研究样本偏少,不为理想研究实验区,将影响评价效果和精度,对地质灾害易发性评价的精度还需进一步探索。
-
表 1 岩溶塌陷易发性评价指标分类
Table 1 Classification of karst collapse susceptibility evaluation indexes
一级评价指标 二级评价指标 对岩溶塌陷的影响 权重 强 中 弱 基岩 岩溶发育程度 强发育 中等 弱发育 0.2717 覆盖层土体 土层厚度/m <15 15~30 >30 0.1960 土层结构 多层结构 双层结构 单层结构 0.1008 地下水 地下水变化幅度/(m·a−1) >1.0 1.0~0.5 <0.5 0.2157 地质构造 断裂影响范围/m <100 100~300 >300 0.0800 已发岩溶塌陷 塌陷点密度(个/10 km2) >10 2~10 <2 0.1359 表 2 岩溶塌陷易发性评价指标判断矩阵表
Table 2 Judgment matrix of karst collapse susceptibility evaluation index
评价指标 B1 B2 B3 B4 B5 B6 岩溶发育程度(B1) 1 2 2 2 2 2 土层厚度(B2) 1/2 1 3 1/2 3 2 土层结构(B3) 1/2 1/3 1 1/2 2 1/2 地下水变化幅度(B4) 1/2 2 2 1 2 2 断层影响范围(B5) 1/2 1/3 1/2 1/2 1 1/2 塌陷点密度(B6) 1/2 1/2 2 1/2 2 1 表 3 岩溶塌陷易发性分级表
Table 3 Susceptibility classification table of karst collapse
等级 高易发性 中等易发性 低易发性 易发性指数 >2.26 1.88~2.26 <1.88 -
[1] 柳柳,王俊. 广花盆地东北部岩溶地质特征及对城际铁路隧道影响分析[J]. 铁道勘察,2022,48(4):72 − 78. [LIU Liu,WANG Jun. Characteristics of karst in the northeast Guanghua basin and analysis of its influence on intercity railway tunnels[J]. Railway Investigation and Surveying,2022,48(4):72 − 78. (in Chinese with English abstract)] LIU Liu, WANG Jun. Characteristics of karst in the northeast Guanghua basin and analysis of its influence on intercity railway tunnels[J]. Railway Investigation and Surveying, 2022, 48(4): 72 − 78. (in Chinese with English abstract)
[2] 蒙彦. 广花盆地岩溶塌陷多参数监测预警与风险防控[D]. 武汉:中国地质大学,2020. [MENG Yan. Multi-parameter monitoring,early warning and risk prevention of karst collapse in Guanghua Basin[D]. Wuhan:China University of Geosciences,2020. (in Chinese with English abstract)] MENG Yan. Multi-parameter monitoring, early warning and risk prevention of karst collapse in Guanghua Basin[D]. Wuhan: China University of Geosciences, 2020. (in Chinese with English abstract)
[3] 蒙彦,郑小战,祁士华,等. 岩溶塌陷易发区地下水安全开采控制——以珠三角广花盆地城市应急水源地为例[J]. 中国岩溶,2019,38(6):924 − 929. [MENG Yan,ZHENG Xiaozhan,QI Shihua,et al. Safe pumping in areas prone to karst collapses:A case study of the urban emergency water source of the Guanghua Basin in the Pearl River Delta[J]. Carsologica Sinica,2019,38(6):924 − 929. (in Chinese with English abstract)] MENG Yan, ZHENG Xiaozhan, QI Shihua, et al. Safe pumping in areas prone to karst collapses: A case study of the urban emergency water source of the Guanghua Basin in the Pearl River Delta[J]. Carsologica Sinica, 2019, 38(6): 924 − 929. (in Chinese with English abstract)
[4] 周心经,郭宇,郑小战,等. 广州市白云区夏茅村岩溶地面塌陷特征及致灾因素和风险分析[J]. 中国地质灾害与防治学报,2021,32(6):63 − 71. [ZHOU Xinjing,GUO Yu,ZHENG Xiaozhan,et al. Karst collapse characteristics,disaster factors and risk analysis in Xiamao Village,Baiyun District,Guangzhou City[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):63 − 71. (in Chinese with English abstract)] ZHOU Xinjing, GUO Yu, ZHENG Xiaozhan, et al. Karst collapse characteristics, disaster factors and risk analysis in Xiamao Village, Baiyun District, Guangzhou City[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 63 − 71. (in Chinese with English abstract)
[5] 易顺民,卢薇,周心经. 广州夏茅村岩溶塌陷灾害特征及防治对策[J]. 热带地理,2021,41(4):801 − 811. [YI Shunmin,LU Wei,ZHOU Xinjing. The formation investigation and remediation of sinkhole in the Xiamao Village,Guangzhou[J]. Tropical Geography,2021,41(4):801 − 811. (in Chinese with English abstract)] YI Shunmin, LU Wei, ZHOU Xinjing. The formation investigation and remediation of sinkhole in the Xiamao Village, Guangzhou[J]. Tropical Geography, 2021, 41(4): 801 − 811. (in Chinese with English abstract)
[6] 贾龙. 城市岩溶地面塌陷隐患识别与评价研究——以金沙洲为例[D]. 武汉:中国地质大学,2021. [JIA Long. Early warning and assessment of cover-collapse sinkhole induced by urban construction in karst area [D]. Wuhan:China University of Geosciences,2021. (in Chinese with English abstract)] JIA Long. Early warning and assessment of cover-collapse sinkhole induced by urban construction in karst area [D]. Wuhan: China University of Geosciences, 2021. (in Chinese with English abstract)
[7] 李卓骏,蒙彦,董志明,等. 土洞型岩溶塌陷发育过程气体示踪试验研究——以广州金沙洲为例[J]. 中国岩溶,2021,40(2):238 − 245. [LI Zhuojun,MENG Yan,DONG Zhiming,et al. Experimental study of gas tracer simulation of karst collapse development process:An example of Jinshazhou,Guangzhou[J]. Carsologica Sinica,2021,40(2):238 − 245. (in Chinese with English abstract)] LI Zhuojun, MENG Yan, DONG Zhiming, et al. Experimental study of gas tracer simulation of karst collapse development process: An example of Jinshazhou, Guangzhou[J]. Carsologica Sinica, 2021, 40(2): 238 − 245. (in Chinese with English abstract)
[8] 卢薇,易顺民. 广州市大坦沙岛岩溶塌陷成因分析及防治对策[J]. 安全与环境工程,2021,28(4):121 − 130. [LU Wei,YI Shunmin. Formation analysis and prevention and remediation measures of karst collapse in datansha island,Guangzhou[J]. Safety and Environmental Engineering,2021,28(4):121 − 130. (in Chinese with English abstract)] LU Wei, YI Shunmin. Formation analysis and prevention and remediation measures of karst collapse in datansha island, Guangzhou[J]. Safety and Environmental Engineering, 2021, 28(4): 121 − 130. (in Chinese with English abstract)
[9] 广州市地质调查院. 广州从化市鳌头镇大氹村岩溶地面塌陷隐患区应急调查物探报告[R]. 2014. [Guangzhou Geological Survey Institute. Geophysical report on emergency investigation of karst ground collapse hidden danger area in Dadang Village,Aotou Town,Conghua City,Guangzhou[R]. 2014. (in Chinese)] Guangzhou Geological Survey Institute. Geophysical report on emergency investigation of karst ground collapse hidden danger area in Dadang Village, Aotou Town, Conghua City, Guangzhou[R]. 2014. (in Chinese)
[10] 广州市综合勘探大队. 广东省从化市良口镇石岭大理石矿突水诱发地面变形地质灾害调查报告[R]. 2004. [Guangzhou Comprehensive Exploration Brigade. Investigation report on ground deformation geological disaster induced by water inrush in Shiling marble mine,Liangkou Town,Conghua City,Guangdong Province[R]. 2004. (in Chinese)] Guangzhou Comprehensive Exploration Brigade. Investigation report on ground deformation geological disaster induced by water inrush in Shiling marble mine, Liangkou Town, Conghua City, Guangdong Province[R]. 2004. (in Chinese)
[11] 王忠忠,黄文龙,庄卓涵,等. 珠三角丘陵山区岩溶塌陷发育特征及地质模式——以广州北部为例[J]. 地质与勘探,2023,59(6):1304 − 1314. [WANG Zhongzhong,HUANG Wenlong,ZHUANG Zhuohan,et al. Development features and geological models of karst collapse in hilly areas of the Pearl River Delta:A case study of northern Guangzhou[J]. Geology and Exploration,2023,59(6):1304 − 1314. (in Chinese with English abstract)] WANG Zhongzhong, HUANG Wenlong, ZHUANG Zhuohan, et al. Development features and geological models of karst collapse in hilly areas of the Pearl River Delta: A case study of northern Guangzhou[J]. Geology and Exploration, 2023, 59(6): 1304 − 1314. (in Chinese with English abstract)
[12] 颜李冰清. 桂林市岩溶塌陷发育特征及发展趋势分析[D]. 桂林:桂林理工大学,2022. [YAN Libingqing. Analysis on development characteristics and development trend of karst collapse in Guilin City[D]. Guilin:Guilin University of Technology,2022. (in Chinese with English abstract)] YAN Libingqing. Analysis on development characteristics and development trend of karst collapse in Guilin City[D]. Guilin: Guilin University of Technology, 2022. (in Chinese with English abstract)
[13] 康晓波,王宇,张华,等. 云南高原岩溶塌陷发育特征及成因机制[J]. 中国地质灾害与防治学报,2022,33(5):50 − 58. [KANG Xiaobo,WANG Yu,ZHANG Hua,et al. Characteristics and formation mechanism of karst collapse in Yunnan Plateau[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):50 − 58. (in Chinese with English abstract)] KANG Xiaobo, WANG Yu, ZHANG Hua, et al. Characteristics and formation mechanism of karst collapse in Yunnan Plateau[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 50 − 58. (in Chinese with English abstract)
[14] 姜巽,曹聪,刘智,等. 歌乐山地区隧道工程诱发的岩溶塌陷发育规律与形成条件[J]. 水文地质工程地质,2023,50(5):181 − 191. [JIANG Xun,CAO Cong,LIU Zhi,et al. Development and formation conditions of karst collapse induced by tunnel engineering in the Gele Mountain Area[J]. Hydrogeology & Engineering Geology,2023,50(5):181 − 191. (in Chinese with English abstract)] JIANG Xun, CAO Cong, LIU Zhi, et al. Development and formation conditions of karst collapse induced by tunnel engineering in the Gele Mountain Area[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 181 − 191. (in Chinese with English abstract)
[15] 孙伟. 广东省英德市城南社区岩溶塌陷发育特征及成因分析[J]. 中国地质灾害与防治学报,2023,34(5):74 − 80. [SUN Wei. Development characteristics and causal analysis of karst collapses in Chengnan community,Yingde City,Guangdong Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):74 − 80. (in Chinese with English abstract)] SUN Wei. Development characteristics and causal analysis of karst collapses in Chengnan community, Yingde City, Guangdong Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 74 − 80. (in Chinese with English abstract)
[16] 张少波,简文彬,洪儒宝,等. 水位波动条件下覆盖型岩溶塌陷试验研究[J]. 工程地质学报,2019,27(3):659 − 667. [ZHANG Shaobo,JIAN Wenbin,HONG Rubao,et al. Experimental study on collapse of covered Karst under water-level fluctuation[J]. Journal of Engineering Geology,2019,27(3):659 − 667. (in Chinese with English abstract)] ZHANG Shaobo, JIAN Wenbin, HONG Rubao, et al. Experimental study on collapse of covered Karst under water-level fluctuation[J]. Journal of Engineering Geology, 2019, 27(3): 659 − 667. (in Chinese with English abstract)
[17] 贾龙,蒙彦,雷明堂,等.粤港澳大湾区岩溶水源地塌陷监测预警与安全开采[J/OL].中国地质. (2024-05-16)[2024-05-26]. [JIA Long, MENG Yan, LEI Mingtang et al. Development characteristics and hazard assessment of the Pangcun landslide, Xizang[J/OL]. Geology in China.(2024-05-16)[2024-05-26]. http://kns.cnki.net/kcms/detail/11.1167.p.20240515.1825.004.html. (in English with Chinese abstract)] JIA Long, MENG Yan, LEI Mingtang et al. Development characteristics and hazard assessment of the Pangcun landslide, Xizang[J/OL]. Geology in China.(2024-05-16)[2024-05-26]. http://kns.cnki.net/kcms/detail/11.1167.p.20240515.1825.004.html. (in English with Chinese abstract)
[18] 涂婧,刘长宪,姜超,等. 湖北武汉岩溶塌陷易发性评价[J]. 中国地质灾害与防治学报,2020,31(4):94 − 99. [TU Jing,LIU Changxian,JIANG Chao,et al. Susceptibility assessment of karst collapse in Wuhan City[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):94 − 99. (in Chinese with English abstract)] TU Jing, LIU Changxian, JIANG Chao, et al. Susceptibility assessment of karst collapse in Wuhan City[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4): 94 − 99. (in Chinese with English abstract)
[19] 毛世榕,管振德,阎春恒. 基于小波包分形和神经网络的地震与岩溶塌陷识别[J]. 地震学报,2018,40(2):195 − 204. [MAO Shirong,GUAN Zhende,YAN Chunheng. A technique for earthquake and Karst collapse recognition based on wavelet packet fractal and neural network[J]. Acta Seismologica Sinica,2018,40(2):195 − 204. (in Chinese with English abstract)] MAO Shirong, GUAN Zhende, YAN Chunheng. A technique for earthquake and Karst collapse recognition based on wavelet packet fractal and neural network[J]. Acta Seismologica Sinica, 2018, 40(2): 195 − 204. (in Chinese with English abstract)
[20] 贺占勇. 基于神经网络评价模型的地质灾害信息系统设计与实现[D]. 成都:电子科技大学,2014. [HE Zhanyong. Design and realization of the geological disaster infomation system based on neural network evaluation model[D]. Chengdu:University of Electronic Science and Technology of China,2014. (in Chinese with English abstract)] HE Zhanyong. Design and realization of the geological disaster infomation system based on neural network evaluation model[D]. Chengdu: University of Electronic Science and Technology of China, 2014. (in Chinese with English abstract)
[21] 吴远斌,刘之葵,殷仁朝,等. 基于AHP和GIS技术的湖南怀化地区岩溶塌陷易发性评价[J]. 中国岩溶,2022,41(1):21 − 33. [WU Yuanbin,LIU Zhikui,YIN Renchao,et al. Evaluation of karst collapse susceptibility in Huaihua Area,Hunan Province based on AHP and GIS[J]. Carsologica Sinica,2022,41(1):21 − 33. (in Chinese with English abstract)] WU Yuanbin, LIU Zhikui, YIN Renchao, et al. Evaluation of karst collapse susceptibility in Huaihua Area, Hunan Province based on AHP and GIS[J]. Carsologica Sinica, 2022, 41(1): 21 − 33. (in Chinese with English abstract)
[22] 曾斌,杨木易,邵长杰,等. 基于层次分析法的杭长高速岩溶塌陷易发性评价[J]. 安全与环境工程,2018,25(1):29 − 38. [ZENG Bin,YANG Muyi,SHAO Changjie,et al. Susceptibility assessment of karst collapse of Hangchang expressway projects based on analytic hierarchy process[J]. Safety and Environmental Engineering,2018,25(1):29 − 38. (in Chinese with English abstract)] ZENG Bin, YANG Muyi, SHAO Changjie, et al. Susceptibility assessment of karst collapse of Hangchang expressway projects based on analytic hierarchy process[J]. Safety and Environmental Engineering, 2018, 25(1): 29 − 38. (in Chinese with English abstract)
[23] 管斌. 基于GIS技术和模糊综合评判法的铜陵市地质灾害易发性评价研究[D]. 合肥:合肥工业大学,2021. [GUAN Bin. Study on geological hazard susceptibility evaluation base on GIS and fuzzy comprehensive evaluation In Tongling City[D]. Hefei:Hefei University of Technology,2021. (in Chinese with English abstract)] GUAN Bin. Study on geological hazard susceptibility evaluation base on GIS and fuzzy comprehensive evaluation In Tongling City[D]. Hefei: Hefei University of Technology, 2021. (in Chinese with English abstract)
[24] 张杰,毕攀,魏爱华,等. 基于模糊综合法的烟台市栖霞中桥岩溶塌陷易发性评价[J]. 中国岩溶,2021,40(2):215 − 220. [ZHANG Jie,BI Pan,WEI Aihua,et al. Assessment of susceptibility to Karst collapse in the Qixia Zhongqiao district of Yantai based on fuzzy comprehensive method[J]. Carsologica Sinica,2021,40(2):215 − 220. (in Chinese with English abstract)] ZHANG Jie, BI Pan, WEI Aihua, et al. Assessment of susceptibility to Karst collapse in the Qixia Zhongqiao district of Yantai based on fuzzy comprehensive method[J]. Carsologica Sinica, 2021, 40(2): 215 − 220. (in Chinese with English abstract)
[25] 吴亚楠,王延岭,周绍智,等. 基于综合指数法的泰莱盆地岩溶塌陷风险性评价[J]. 中国岩溶,2020,39(3):391 − 399. [WU Yanan,WANG Yanling,ZHOU Shaozhi,et al. Risk assessment of karst collapse in the Tailai Basin based on the synthetic index method[J]. Carsologica Sinica,2020,39(3):391 − 399. (in Chinese with English abstract)] WU Yanan, WANG Yanling, ZHOU Shaozhi, et al. Risk assessment of karst collapse in the Tailai Basin based on the synthetic index method[J]. Carsologica Sinica, 2020, 39(3): 391 − 399. (in Chinese with English abstract)
[26] 肖金水. 证据权法在岩溶塌陷风险分析中的应用研究[D]. 广州:华南理工大学,2013. [XIAO Jinshui. A research in the application of the weights of evidence method in the risk analysis of karst collapse[D]. Guangzhou:South China University of Technology,2013. (in Chinese with English abstract)] XIAO Jinshui. A research in the application of the weights of evidence method in the risk analysis of karst collapse[D]. Guangzhou: South China University of Technology, 2013. (in Chinese with English abstract)
[27] 孙琳,任娜娜,李云安,等. 基于证据权法的公路路基岩溶塌陷危险性评价[J]. 中国地质灾害与防治学报,2019,30(3):94 − 100. [SUN Lin,REN Nana,LI Yun’an,et al. Risk assessment on Karst collapse of the highway subgrade based on weights of evidence method[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):94 − 100. (in Chinese with English abstract)] SUN Lin, REN Nana, LI Yun’an, et al. Risk assessment on Karst collapse of the highway subgrade based on weights of evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(3): 94 − 100. (in Chinese with English abstract)
[28] 吴丽清,廖婧,王威,等. 基于AHP-信息量法的武汉地区岩溶地面塌陷危险性评价[J]. 长江科学院院报,2017,34(4):43 − 47. [WU Liqing,LIAO Jing,WANG Wei,et al. Risk assessment of karst surface collapse in Wuhan Region based on AHP-information method[J]. Journal of Yangtze River Scientific Research Institute,2017,34(4):43 − 47. (in Chinese with English abstract)] WU Liqing, LIAO Jing, WANG Wei, et al. Risk assessment of karst surface collapse in Wuhan Region based on AHP-information method[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(4): 43 − 47. (in Chinese with English abstract)
[29] 代领. 基于GIS的信息量法在宁远县地质灾害易发性评价中的应用[D]. 湘潭:湖南科技大学,2016. [DAI Ling. Application of GIS-based information acquisition method on assessment of geohazard susceptibility in Ningyuan County[D]. Xiangtan:Hunan University of Science and Technology,2016. (in Chinese with English abstract)] DAI Ling. Application of GIS-based information acquisition method on assessment of geohazard susceptibility in Ningyuan County[D]. Xiangtan: Hunan University of Science and Technology, 2016. (in Chinese with English abstract)
[30] 任涛,田国亮,宁志杰,等. 基于地理探测器和随机森林的岩溶塌陷易发性评价[J]. 灾害学,2023,38(3):227 − 234. [REN Tao,TIAN Guoliang,NING Zhijie,et al. Evaluation of karst collapse susceptibility based on geodetector and random forests[J]. Journal of Catastrophology,2023,38(3):227 − 234. (in Chinese with English abstract)] REN Tao, TIAN Guoliang, NING Zhijie, et al. Evaluation of karst collapse susceptibility based on geodetector and random forests[J]. Journal of Catastrophology, 2023, 38(3): 227 − 234. (in Chinese with English abstract)
[31] 孙剑锋,马超,胡金树,等. 基于灰色关联度与层次分析法耦合的地质灾害易发性评价——以浙江省云和县崇头镇为例[J]. 工程地质学报,2023,31(2):538 − 551. [SUN Jianfeng,MA Chao,HU Jinshu,et al. Susceptibility evaluation of geological hazard by coupling grey relational degree and analytic hierarchy process:A case of Chongtou town,Yunhe County,Zhejiang Province[J]. Journal of Engineering Geology,2023,31(2):538 − 551. (in Chinese with English abstract)] SUN Jianfeng, MA Chao, HU Jinshu, et al. Susceptibility evaluation of geological hazard by coupling grey relational degree and analytic hierarchy process: A case of Chongtou town, Yunhe County, Zhejiang Province[J]. Journal of Engineering Geology, 2023, 31(2): 538 − 551. (in Chinese with English abstract)
[32] 曾伟,谢韶宜,王观石,等. 基于AHP层次分析法的离子型稀土矿原地浸出边坡稳定评价研究[J]. 中国矿业,2023,32(4):72 − 80. [ZENG Wei,XIE Shaoyi,WANG Guanshi,et al. Study on slope stability evaluation system for ionic rare earth ore in situ leaching process based on AHP[J]. China Mining Magazine,2023,32(4):72 − 80. (in Chinese with English abstract)] ZENG Wei, XIE Shaoyi, WANG Guanshi, et al. Study on slope stability evaluation system for ionic rare earth ore in situ leaching process based on AHP[J]. China Mining Magazine, 2023, 32(4): 72 − 80. (in Chinese with English abstract)
[33] 郑小战. 广花盆地岩溶地面塌陷灾害形成机理及风险评估研究[D]. 长沙:中南大学,2010. [ZHENG Xiaozhan. Research on genetic mechanism and risk evaluation of the karst collapse in Guanghua Basin[D]. Changsha:Central South University,2010. (in Chinese with English abstract)] ZHENG Xiaozhan. Research on genetic mechanism and risk evaluation of the karst collapse in Guanghua Basin[D]. Changsha: Central South University, 2010. (in Chinese with English abstract)
[34] 陈菊艳,朱斌,彭三曦,等. 基于AHP和GIS的矿区岩溶塌陷易发性评估——以贵州林歹岩溶矿区为例[J]. 自然灾害学报,2021,30(5):226 − 236. [CHEN Juyan,ZHU Bin,PENG Sanxi,et al. Assessment of susceptibility to karst collapse in mining area based on AHP and GIS:A case study in Lindai karst mining area in Guizhou[J]. Journal of Natural Disasters,2021,30(5):226 − 236. (in Chinese with English abstract)] CHEN Juyan, ZHU Bin, PENG Sanxi, et al. Assessment of susceptibility to karst collapse in mining area based on AHP and GIS: A case study in Lindai karst mining area in Guizhou[J]. Journal of Natural Disasters, 2021, 30(5): 226 − 236. (in Chinese with English abstract)