Formation conditions and susceptibility assessment of karst collapses in the northern hilly area of Guangzhou City
-
摘要:
岩溶塌陷是广州北部丘陵区主要地质灾害之一,对人民群众安全生产、和谐生活造成实际威胁,制约了当地乡村振兴发展。文章在分析广州北部丘陵区岩溶发育程度、覆盖层土体条件、地下水动力条件等岩溶塌陷形成条件的基础上,选择岩溶发育程度、土层厚度、土层结构、地下水水位年变幅、断裂影响范围、塌陷点密度等6个评价指标,利用层次分析法确定各指标权重,运用综合指数法建立岩溶塌陷易发性评价模型,进行广州北部丘陵区岩溶塌陷易发性评价。结果表明:广州北部丘陵区岩溶塌陷高、中等和低易发区面积分别为4.77,14.24,21.71 km,已发生的岩溶塌陷均分布在高易发区(94.29%)和中等易发区(5.71%),易发性分区评价合理。研究成果可为当地岩溶塌陷地质灾害预警和防治区划提供依据。
Abstract:Karst collapse is one of the main geological disasters in the northern hilly area of Guangzhou City, posing practical threats to public safety and affecting harmonious living conditions, thereby constraining local rural revitalization and development. This study analyzes the formation conditions of karst collapses in the northern hilly area of Guangzhou, including karst development degree, conditions of overlying soil layers, and hydrodynamic conditions of groundwater. Based on this analysis, six evaluation factors—karst development degree, soil layer thickness, soil layer structure, annual variation range of groundwater level, extent of fracture influence, and density of collapse points—are selected. The weight of each factor is determined by analytic hierarchy process (AHP), and a comprehensive index method is employed to establish the susceptibility assessment model for karst collapses in the northern hilly area of Guangzhou City. The results show that the areas of high, moderate, and low susceptibility to karst collapses in this region are 4.77, 14.24 , 21.71 km2, respectively. Karst subsidence occurrences are predominantly distributed in high vulnerability areas (94.29%) and moderate vulnerability areas (5.71%), validating the rationality of vulnerability zoning assessment. The research findings provide a basis for geological disaster early warning and prevention zoning for local karst collapse, and also provide geological support for promoting rural revitalization and development.
-
0. 引 言
高液限土是广西地区基建活动中最常遇见的一种特殊土。由于高液限土天然含水率、孔隙比和液塑限高,碾压时不易降到最佳含水率范围内,因而很难达到路基规范要求的压实度且未经处理的高液限土的强度通常较低,不适宜直接作为路基填料。此外,高液限土水稳性较差[1-2],当含水率改变时,路基强度急剧降低,发生沉降和边坡溜塌等灾害。
为了得到符合规范要求的路基填料,广大学者对高液限土的物理力学性质[3]及改良特性进行研究。相较于在高液限土中掺入砂[4]、碎石[5]、纤维[6]等材料改变颗粒组成的物理改良方式,石灰改良不仅可以改变高液限土的含水率和结构[7],而且能降低膨胀势[8-9]、提高水稳性[10-11]。因其改良效果好,成本低廉益于推广使用,引起了广大国内外学者关注。BELL[12]研究了养护龄期、温度对石灰改良黏土的强度、线缩率的影响,达到最佳强度的石灰掺量为4.5%~8%。KHEMISSA等[13]研究表明掺入4%的石灰对粘土液塑限指数、CBR以及剪切强度的改良效果最佳,得到高塑性、高膨胀黏土的工程特性最好。SHARMA等[14]研究表明石灰的加入会导致黏土塑性指数降低,处理后的土黏聚力提高5%,内摩擦角增加。PAULA等[15]通过直剪试验研究石灰改良沉积物样品并进行了元素分析,表明Al、Si、Ca、K元素与黏聚力有很强的相关性。刘鑫等[16]采用石灰对广梧高速沿线高液限粉土进行改良,建议掺用5%的石灰。
以上学者研究了不同地区、不同石灰掺量对高液限土无侧限抗压强度、抗剪强度、水稳性以及加州承载比的影响,给出了石灰改良高液限土掺量的范围为4%~8%,但定量研究石灰掺量对高液限土压缩特性和抗剪强度的文献相对较少。何群等[17]分析了固结度对软土抗剪强度的影响,给出抗剪强度指标的函数模型。闫小庆等[18]认为深圳软土的压缩模量随孔隙体积含量、尺度大小和孔隙连通量呈负幂函数变化。因而本文针对广西蒙山荔玉高速沿线的高液限土,通过现场取样、室内直剪和侧限压缩试验,结合初等数学函数模型分析了不同初始含水率下石灰掺量对高液限抗剪强度和压缩特性的影响,确定不同初始含水率下最优石灰掺量,为实际工程提高经济效益。
1. 研究内容
1.1 高液限土性质
根据广西荔玉高速公路第四标段《工程地质勘察报告》以及《施工图设计》显示,该段路基沿线高液限土分布如图1所示,标段全长14.545 km,桥隧比为 21.57%,沿线高液限土段占路基全线 27.25%。
地勘资料显示该标段高液限土物理力学性质几乎相同,尤以K52+790—K53+660段文圩镇内最长,达960 m,占沿线高液限土方量的30%左右,取该段高液限土作为试验材料具有很好的代表性。依据《公路土工试验规程》,对弃土场高液限土进行比重、液塑限以及击实试验。最佳含水率为20.84%,最大干密度为1.60 g/cm3。高液限土物理力学性质指标见表1。
表 1 弃方段高液限土参数指标Table 1. Parameters of high liquid limit soil of spoil样品状态 取样深度/m 天然含水率/% 液限/% 塑限/% 土粒比重 原状土 2.1~2.3 31.30 53.30 28.50 2.76 原状土 6.5~6.7 36.30 52.10 33.70 2.74 扰动土 1.3~1.5 33.43 51.93 22.46 2.79 1.2 研究方法
改良广西荔玉高速沿线弃土场的高液限土初含水率为21%~36%,石灰掺量为高液限土质量的2%~8%,且以2%的变化量递增。按照击实试验确定的最大干密度,采用静压法制样。对不同饱和状态、不同初始含水率以及不同石灰掺量的试件进行侧限压缩和直剪试验。在不同饱和状态下,试样有6种不同初始含水率、5种不同石灰掺量,共30个样本,符合统计学中大样本的要求[19],其含水率变化范围从最佳含水率到天然最大含水率,石灰掺量覆盖推荐最佳掺量4%~8%,可以代表该改良土的变化规律,在合理抽样的前提下,可以由样本推测出总体情况。根据试件压缩特性和抗剪强度随石灰掺量的变化趋势,选择基本初等数学函数模型拟合,确定石灰掺量对试件压缩特性和抗剪强度的函数模型。在已知初始含水率和石灰掺量的条件下,准确预测改良土的压缩系数和抗剪强度,确定最经济合理的石灰掺量,指导路基施工。
2. 改良土的压缩特性
压缩系数是评价路基填料的重要指标之一,采用南京土壤仪器厂GZQ-1型全自动气压固结仪对试件进行压缩试验,试件尺寸为61.8 mm×20 mm,加压盖板周围用湿棉围住,保持试件含水率,在平衡自重后即开始试验。试件加压稳定标准采用0.01 mm的变形量进行控制,加荷顺序为25 kPa,50 kPa,100 kPa,200 kPa,400 kPa,800 kPa。随着石灰掺量的增加试件的压缩系数如图2所示。
在不同初始含水率下,随着上负荷载增加,试件逐渐压密,压缩系数随石灰掺量的增加逐渐减小,最终趋于稳定,符合指数函数形式变化,数学函数模型如式(1)所示:
(1) 式中:
−试件上负荷载在100~200 kPa间的压缩 系数; ——石灰掺量;A、B、C——拟合参数。
试件压缩系数随石灰掺量关系的拟合结果见表2。在相同石灰掺量下,不同初始含水率试件压缩系数改变率(掺灰试件相较素土试件压缩系数的改变量/素土试件压缩系数)相差较小,低掺量(2%)压缩系数改变率为40%,压缩系数降低到60%;当石灰掺量超过4%时,压缩系数减小很少,压缩系数改变率为60%;高掺量(8%)下,压缩系数降低到30%。由图2可知:所有试件的压缩系数均小于0.5 MPa−1,表明试样为中等压缩性土,可作为公路路基设计规范6 m以下路基填料。如若路基填筑高度达15 m,则路基填料的压缩系数不大于0.1 MPa−1,当含水率不高于26.73%时,石灰掺量不低于4%,否则石灰掺量不低于8%,可达到高填方路基填料对压缩性的要求。
表 2 试件压缩系数与石灰掺量的指数模型拟合结果Table 2. Fitting results of exponential model between compression coefficient and lime content数学模型 初始含水率 20.84% 23.68% 26.73% 29.71% 33.75% 34.93% A 0.04±0.00 0.05±0.00 0.05±0.00 0.05±0.00 0.08±0.00 0.07±0.00 B 0.10±0.00 0.13±0.00 0.16±0.00 0.20±0.00 0.25±0.00 0.29±0.00 C 2.26±0.07 2.59±0.11 2.67±0.20 2.88±0.14 2.46±0.07 3.24±0.05 R2 0.9998 0.9996 0.9989 0.9996 0.9998 1.0000 Adj.R2 0.9996 0.9992 0.9977 0.9991 0.9997 0.9999 注:R2 为相关系数平方;Adj.R2为调整后相关系数平方。 3. 改良土的抗剪强度
为研究初始含水率和石灰掺量对高液限土抗剪强度的影响,采用6种不同初始含水率,5种不同石灰掺量共30×2组试样进行快剪试验。其中一组试件进行抽真空饱和。采用南京土壤仪器厂生产的ZJ型应变控制式直剪仪,试样尺寸为61.8 mm×20 mm,剪切速率为0.8 mm/min,荷载加载序列分别为100 kPa,200 kPa,300 kPa,400 kPa,剪切量为6 mm。
3.1 不同饱和状态试件黏聚力结果分析
根据直剪试验结果,绘制不同初始含水率下,黏聚力随石灰掺量变化情况。试件黏聚力随石灰掺量的模型拟合效果分别如图3(a)、3(b)所示。
在图3(a)中,对于不饱和试件,初始含水率越高,相同掺量的石灰对高液限土黏聚力提升越明显。相较素土试件,少量石灰掺量(2%)对高液限土黏聚力改良效果明显,黏聚力提升达28%~170%;加入大量石灰(8%)改良后,黏聚力可提高80%~450%。在图3(b)中,对于饱和试件,石灰可以增加高液限土的水稳性。相较于未经饱和试件的黏聚力,饱和后的素土试件黏聚力降低80% ~90%,而改良试件随着石灰掺量增加,黏聚力降低率(饱和前后黏聚力的变化量/不饱和试件的黏聚力)由72%~81%减小到66%~77%;掺入石灰改良的试件,黏聚力降低率减小6%~18%;初始含水率23.68%和26.73%的素土试件较最佳含水率(20.84%)素土试件的黏聚力高,表明高液限土具有水敏性,遇水后不同初始含水率的素土试件强度衰减不同。由于高液限土具有水敏性,高于最佳含水率3%~6%的高液限土在遇水后强度衰减更小,具有较好的水稳性[20-21]。
SHARMA等[14]研究表明,石灰的掺入会使黏聚力增加,进一步添加石灰时,黏聚力有降低的趋势。由于石灰本身没有黏性,因而改良高液限土黏聚力存在最佳的石灰掺量。当初始含水率不高于26.73%且石灰掺量为6%时,黏聚力增长幅度趋缓;而当初始含水率高于26.73%时,由于初始含水率较高,达到最大黏聚力消耗的石灰增多,石灰掺量为8%时,黏聚力仍有上升趋势,建议改良石灰掺量不低于8%。对于不同状态和初始含水率的试件,随着石灰掺量增加,黏聚力呈幂函数形式变化,且数学函数模型如式(2)所示:
(2) 式中:
−试件黏聚力; −不同饱和状态素土试件黏聚力; −石灰掺量;A、B−拟合参数。
拟合结果见表3。
表 3 不同状态试件黏聚力幂函数模型拟合结果Table 3. Fitting results of power function model for cohesion of specimens in different states试件状态 数学模型 初始含水率 20.84% 23.68% 26.73% 29.71% 33.75% 34.93% 未饱和 139.62±4.55 126.32±6.07 98.34±3.01 54.77±1.94 28.24±1.05 22.19±2.48 A 24.06±2.69 21.46±3.59 22.70±1.78 19.02±1.15 18.65±0.62 17.65±1.74 B −1.19±0.32 −0.92±0.43 −1.04±0.21 −0.89±0.14 −0.87±0.07 −0.76±0.18 R2 0.9947 0.9899 0.9976 0.9986 0.9996 0.9975 Adj.R2 0.9894 0.9798 0.9952 0.9971 0.9991 0.9949 饱和 12.89±2.05 22.30±2.76 15.94±1.47 10.58±1.32 4.14±1.17 3.08±0.71 A 11.56±1.21 15.26±1.63 13.36±0.87 8.20±0.78 5.57±0.69 4.57±0.42 B −0.62±0.15 −0.99±0.20 −0.77±0.10 −0.44±0.09 −0.29±0.08 −0.21±0.05 R2 0.9948 0.9929 0.9978 0.9958 0.9932 0.9968 Adj.R2 0.9896 0.9857 0.9956 0.9916 0.9863 0.9936 3.2 不同状态试件内摩擦角结果分析
绘制不同初始含水率下,未经饱和试件内摩擦角随石灰掺量变化情况,模型拟合结果如图4所示。
在图4中,不同初始含水率的高液限土试件,随着石灰掺量的增加,内摩擦角呈上升趋势。相较于素土试件,少量石灰掺量(2%)对高液限土内摩擦角改良效果不明显,内摩擦角仅提高6%~10%;加入大量石灰(8%)改良后,内摩擦角可提高19%~36%;对于不同初始含水率的高液限土,相同石灰掺量对初始含水率高的试件内摩擦角改良效果更好;由于石灰土发生絮凝与团聚反应,导致黏土粒径颗粒团化,因而土的内摩擦角增加。而石灰本身没有明显的摩擦力,过量的石灰会导致内摩擦角降低,当石灰掺量为6%时,初始含水率不高于26.73%的试件内摩擦角增长趋于平缓;当初始含水率高于26.73%时,石灰掺量高于6%时,内摩擦角仍小幅增长,满足幂函数的变化规律,采用二次函数模型进行拟合如式(3)所示:
(3) 式中:
−试件内摩擦角; −素土试件内摩擦角; −石灰掺量;A、B−拟合参数。
拟合结果如表4所示。
表 4 未经饱和试件内摩擦角的幂函数模型拟合结果Table 4. Fitting results of power function model for internal friction angle of unsaturated specimen函数模型 初始含水率 20.84% 23.68% 26.73% 29.71% 33.75% 34.93% 30.79±0.32 29.17±0.45 26.75±0.43 24.83±0.49 24.39±0.28 24.21±0.35 A 1.49±0.19 1.43±0.27 1.69±0.26 1.77±0.26 1.43±0.17 1.40±0.21 B −0.09±0.02 −0.06±0.03 −0.07±0.03 −0.07±0.03 −0.04±0.02 −0.04±0.02 R2 0.9913 0.9872 0.9915 0.9910 0.9966 0.9943 Adj.R2 0.9827 0.9745 0.9830 0.9821 0.9932 0.9887 根据直剪试验结果,分别采用幂函数、指数函数、对数函数模型对饱和试件的内摩擦角与石灰掺量的关系进行研究,三种初等函数模型均能拟合成功。将不同拟合结果进行模型效果比较,无论采用AIC(赤池信息准则,衡量模量拟合优良性标准,AIC越小,模型拟合效果越好)或是BIC(贝叶斯信息准则,BIC越小,模型拟合效果越好)比较法,幂函数和指数函数模型较对数函数模型能达到更好的拟合效果。其中图5(a)为采用幂函数模型拟合,图5(b)为采用指数函数模型进行拟合。
对于饱和素土试件,初始含水率越低,内摩擦角减小率(不同状态试件内摩擦角变化量/不饱和试件的内摩擦角)越大。相较于素土试件,不同初始含水率的改良试件内摩擦角提高约14%~30%。掺灰后,试件的内摩擦角增加率((掺灰试件与素土试件内摩擦角的增量/素土试件内摩擦角)为12%~32%。初始含水率在20.84%~26.73%范围内,随着石灰掺量的增加,内摩擦角趋于稳定;而初始含水率在29.71% ~34.93%范围内,当石灰掺量高于8%时,内摩擦角有减小的趋势。因而采用AIC、BIC以及F检验法比较幂函数和指数函数模型的拟合效果时,却没有得到推荐模型。当石灰掺量大于8%时,饱和试件内摩擦角是趋于稳定还是减小还有待试验验证。由于高掺量的石灰在改良低含水率的高液限土中是不经济的,因此,增加部分高初始含水率、高石灰掺量的饱和试件抗剪强度试验进行验证是很有必要的。试验设计方案见表5。
表 5 试验设计方案Table 5. Experimental design scheme初始含水率/% 石灰掺量/% 黏聚力 内摩擦角 R Adj. R2 29.71 10 51.85 31.10 1.000 0.999 12 47.45 31.78 0.998 0.996 33.75 10 32.20 29.87 0.998 0.996 12 33.5 29.89 0.998 0.995 34.93 10 26.5 29.56 0.999 0.997 12 30.25 30.29 0.994 0.989 根据表5结果,采用赤池信息准则以及贝叶斯信息准则对幂函数和指数模型进行拟合结果进行分析:幂函数模型的AIC值为20.60<指数函数AIC值为58.61;幂函数模型的BIC值为0.39<指数函数BIC值为38.39,由于AIC值、BIC值较小能更好反应模型拟合的优良性,因而对于饱和试件的黏聚力随掺石灰掺量的增加呈幂幂函数形式变化,模型拟合结果见表6。
表 6 饱和试件内摩擦角拟合结果Table 6. Fitting results of internal friction angle of saturated specimen函数模型 方程 初始含水率 20.84% 23.68% 26.73% 29.71% 33.75% 34.93% 幂函数 23.14±0.14 24.12±0.72 24.36±0.95 23.92±0.76 23.79±0.23 23.58±0.12 A 2.00±0.08 2.51±0.43 2.74±0.56 2.53±0.45 1.98±0.14 1.97±0.07 B −0.15±0.01 −0.21±0.05 −0.23±0.07 −0.21±0.05 −0.16±0.02 −0.16±0.01 R2 0.9984 0.9702 0.9539 0.9672 0.9954 0.9988 Adj.R2 0.9968 0.9404 0.9078 0.9345 0.9908 0.9975 3.3 试件抗剪强度包线变化分析
绘制不同饱和状态、不同初始含水率下石灰掺量对高液限土抗剪强度的影响如图6,图7所示。图例A-B,A、B分别为初始含水率和石灰掺量。如20.84-0代表初始含水率20.84%,石灰掺量0%的试件对应的抗剪强度包线,将最佳含水率的素土试件(20.84-0)对应的强度包线,称为标准强度包线。
在图6中,对于未经饱和试件,试件抗剪强度随含水率升高而降低。根据标准强度包线在图中位置,随着初始含水率的升高,高液限土需消耗更多的石灰才能达到标准强度。当初始含水率不高于26.73%,石灰掺量在6%范围内时,试件抗剪强度增加明显;当含水率高于26.73%时,建议石灰掺量不低于8%,此时改良土的抗剪强度仍有明显增加。根据标准强度包线在不同石灰掺量强度包线中的位置结合石灰掺量对抗剪强度增长变化率的影响,建议初始含水率不高于26.73%时,石灰掺量为总质量分数的6%;当含水率高于26.73%时,石灰掺量不低于为总质量分数的8%,此时改良试件抗剪强度不仅能达到标准强度,且不会造成石灰的浪费。
在图7中,相同初始含水率下,饱和试样的抗剪强度随石灰掺量增加而增大,且相邻两强度包线间增加幅度逐渐减小;当石灰掺量高于6%时,随着石灰掺量增加,试件抗剪强度增长较小。
由于高液限土具有水敏性,吸水后不同初始含水率试件的强度衰减不同。初始含水率为23.68%和26.73%的饱和素土试件的抗剪强度均较最佳含水率20.84%对应的标准抗剪强度高,表明浸水后的高液限土水稳性最佳时对应的含水率较击实试验对应的最佳含水率高3%~6%,因此在进行高液限土路基填筑时,建议路基填料含水率比最佳含水率高3%~6%。由于高液限土的击实曲线与CBR曲线是不重合的双驼峰曲线[22-23],即最大CBR值对应的含水率比最大干密度对应的含水率高,这对于高液限土抗剪强度也适用。若采用饱和素土试件中的最大抗剪强度作为标准强度包线(23.68-0),则很少掺量的石灰(2%)会对试件的抗剪强度有很大提升,可以达到标准抗剪强度。
4. 结论
对于广西荔玉高速沿线高液限土,分析了饱和状态、初始含水率、石灰掺量对试件侧限压缩特性和抗剪强度的影响,并采用基本初等数学函数模型进行拟合。通过测初始含水率、石灰掺量,确定改良土的压缩特性和抗剪强度。
(1)初始含水率越高的高液限土,改良所需的石灰越多。随着石灰掺量的增加,压缩系数呈指数函数形式减小直至稳定。当石灰掺量为2%时,压缩系数减小幅度高达40%,即较少的石灰掺量可以明显改善高液限土的压缩特性。
(2)初始含水率越高,试件抗剪强度越小。对于不同饱和试件黏聚力和内摩擦角随石灰掺量的增加呈二次函数形式增加,过量的石灰会造成试件抗剪强度的下降。
(3)高液限土具有水敏性,浸水后不同初始含水率的素土试件强度衰减不同。对于饱和素土试件,最大抗剪强度对应的含水率较击实试验获得最大干密度对应的含水率高3%~6%,而掺加石灰可以增加高液限土水稳性。在路基填筑中,填料的含水率要高于最佳含水率3%~6%,此时即具有较高的水稳性,又能达到路基压实度。
(4)改良不同初始含水率的广西荔玉高速沿线高液限土,存在最经济的石灰掺量。石灰的掺入主要提高试件的黏聚力而对内摩擦角影响较小。当含水率不高于26.73%时,建议石灰掺量不低于6%,否则石灰掺量不低于8%。
-
表 1 岩溶塌陷易发性评价指标分类
Table 1 Classification of karst collapse susceptibility evaluation indexes
一级评价指标 二级评价指标 对岩溶塌陷的影响 权重 强 中 弱 基岩 岩溶发育程度 强发育 中等 弱发育 0.2717 覆盖层土体 土层厚度/m <15 15~30 >30 0.1960 土层结构 多层结构 双层结构 单层结构 0.1008 地下水 地下水变化幅度/(m·a−1) >1.0 1.0~0.5 <0.5 0.2157 地质构造 断裂影响范围/m <100 100~300 >300 0.0800 已发岩溶塌陷 塌陷点密度(个/10 km2) >10 2~10 <2 0.1359 表 2 岩溶塌陷易发性评价指标判断矩阵表
Table 2 Judgment matrix of karst collapse susceptibility evaluation index
评价指标 B1 B2 B3 B4 B5 B6 岩溶发育程度(B1) 1 2 2 2 2 2 土层厚度(B2) 1/2 1 3 1/2 3 2 土层结构(B3) 1/2 1/3 1 1/2 2 1/2 地下水变化幅度(B4) 1/2 2 2 1 2 2 断层影响范围(B5) 1/2 1/3 1/2 1/2 1 1/2 塌陷点密度(B6) 1/2 1/2 2 1/2 2 1 表 3 岩溶塌陷易发性分级表
Table 3 Susceptibility classification table of karst collapse
等级 高易发性 中等易发性 低易发性 易发性指数 >2.26 1.88~2.26 <1.88 -
[1] 柳柳,王俊. 广花盆地东北部岩溶地质特征及对城际铁路隧道影响分析[J]. 铁道勘察,2022,48(4):72 − 78. [LIU Liu,WANG Jun. Characteristics of karst in the northeast Guanghua basin and analysis of its influence on intercity railway tunnels[J]. Railway Investigation and Surveying,2022,48(4):72 − 78. (in Chinese with English abstract)] LIU Liu, WANG Jun. Characteristics of karst in the northeast Guanghua basin and analysis of its influence on intercity railway tunnels[J]. Railway Investigation and Surveying, 2022, 48(4): 72 − 78. (in Chinese with English abstract)
[2] 蒙彦. 广花盆地岩溶塌陷多参数监测预警与风险防控[D]. 武汉:中国地质大学,2020. [MENG Yan. Multi-parameter monitoring,early warning and risk prevention of karst collapse in Guanghua Basin[D]. Wuhan:China University of Geosciences,2020. (in Chinese with English abstract)] MENG Yan. Multi-parameter monitoring, early warning and risk prevention of karst collapse in Guanghua Basin[D]. Wuhan: China University of Geosciences, 2020. (in Chinese with English abstract)
[3] 蒙彦,郑小战,祁士华,等. 岩溶塌陷易发区地下水安全开采控制——以珠三角广花盆地城市应急水源地为例[J]. 中国岩溶,2019,38(6):924 − 929. [MENG Yan,ZHENG Xiaozhan,QI Shihua,et al. Safe pumping in areas prone to karst collapses:A case study of the urban emergency water source of the Guanghua Basin in the Pearl River Delta[J]. Carsologica Sinica,2019,38(6):924 − 929. (in Chinese with English abstract)] MENG Yan, ZHENG Xiaozhan, QI Shihua, et al. Safe pumping in areas prone to karst collapses: A case study of the urban emergency water source of the Guanghua Basin in the Pearl River Delta[J]. Carsologica Sinica, 2019, 38(6): 924 − 929. (in Chinese with English abstract)
[4] 周心经,郭宇,郑小战,等. 广州市白云区夏茅村岩溶地面塌陷特征及致灾因素和风险分析[J]. 中国地质灾害与防治学报,2021,32(6):63 − 71. [ZHOU Xinjing,GUO Yu,ZHENG Xiaozhan,et al. Karst collapse characteristics,disaster factors and risk analysis in Xiamao Village,Baiyun District,Guangzhou City[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):63 − 71. (in Chinese with English abstract)] ZHOU Xinjing, GUO Yu, ZHENG Xiaozhan, et al. Karst collapse characteristics, disaster factors and risk analysis in Xiamao Village, Baiyun District, Guangzhou City[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 63 − 71. (in Chinese with English abstract)
[5] 易顺民,卢薇,周心经. 广州夏茅村岩溶塌陷灾害特征及防治对策[J]. 热带地理,2021,41(4):801 − 811. [YI Shunmin,LU Wei,ZHOU Xinjing. The formation investigation and remediation of sinkhole in the Xiamao Village,Guangzhou[J]. Tropical Geography,2021,41(4):801 − 811. (in Chinese with English abstract)] YI Shunmin, LU Wei, ZHOU Xinjing. The formation investigation and remediation of sinkhole in the Xiamao Village, Guangzhou[J]. Tropical Geography, 2021, 41(4): 801 − 811. (in Chinese with English abstract)
[6] 贾龙. 城市岩溶地面塌陷隐患识别与评价研究——以金沙洲为例[D]. 武汉:中国地质大学,2021. [JIA Long. Early warning and assessment of cover-collapse sinkhole induced by urban construction in karst area [D]. Wuhan:China University of Geosciences,2021. (in Chinese with English abstract)] JIA Long. Early warning and assessment of cover-collapse sinkhole induced by urban construction in karst area [D]. Wuhan: China University of Geosciences, 2021. (in Chinese with English abstract)
[7] 李卓骏,蒙彦,董志明,等. 土洞型岩溶塌陷发育过程气体示踪试验研究——以广州金沙洲为例[J]. 中国岩溶,2021,40(2):238 − 245. [LI Zhuojun,MENG Yan,DONG Zhiming,et al. Experimental study of gas tracer simulation of karst collapse development process:An example of Jinshazhou,Guangzhou[J]. Carsologica Sinica,2021,40(2):238 − 245. (in Chinese with English abstract)] LI Zhuojun, MENG Yan, DONG Zhiming, et al. Experimental study of gas tracer simulation of karst collapse development process: An example of Jinshazhou, Guangzhou[J]. Carsologica Sinica, 2021, 40(2): 238 − 245. (in Chinese with English abstract)
[8] 卢薇,易顺民. 广州市大坦沙岛岩溶塌陷成因分析及防治对策[J]. 安全与环境工程,2021,28(4):121 − 130. [LU Wei,YI Shunmin. Formation analysis and prevention and remediation measures of karst collapse in datansha island,Guangzhou[J]. Safety and Environmental Engineering,2021,28(4):121 − 130. (in Chinese with English abstract)] LU Wei, YI Shunmin. Formation analysis and prevention and remediation measures of karst collapse in datansha island, Guangzhou[J]. Safety and Environmental Engineering, 2021, 28(4): 121 − 130. (in Chinese with English abstract)
[9] 广州市地质调查院. 广州从化市鳌头镇大氹村岩溶地面塌陷隐患区应急调查物探报告[R]. 2014. [Guangzhou Geological Survey Institute. Geophysical report on emergency investigation of karst ground collapse hidden danger area in Dadang Village,Aotou Town,Conghua City,Guangzhou[R]. 2014. (in Chinese)] Guangzhou Geological Survey Institute. Geophysical report on emergency investigation of karst ground collapse hidden danger area in Dadang Village, Aotou Town, Conghua City, Guangzhou[R]. 2014. (in Chinese)
[10] 广州市综合勘探大队. 广东省从化市良口镇石岭大理石矿突水诱发地面变形地质灾害调查报告[R]. 2004. [Guangzhou Comprehensive Exploration Brigade. Investigation report on ground deformation geological disaster induced by water inrush in Shiling marble mine,Liangkou Town,Conghua City,Guangdong Province[R]. 2004. (in Chinese)] Guangzhou Comprehensive Exploration Brigade. Investigation report on ground deformation geological disaster induced by water inrush in Shiling marble mine, Liangkou Town, Conghua City, Guangdong Province[R]. 2004. (in Chinese)
[11] 王忠忠,黄文龙,庄卓涵,等. 珠三角丘陵山区岩溶塌陷发育特征及地质模式——以广州北部为例[J]. 地质与勘探,2023,59(6):1304 − 1314. [WANG Zhongzhong,HUANG Wenlong,ZHUANG Zhuohan,et al. Development features and geological models of karst collapse in hilly areas of the Pearl River Delta:A case study of northern Guangzhou[J]. Geology and Exploration,2023,59(6):1304 − 1314. (in Chinese with English abstract)] WANG Zhongzhong, HUANG Wenlong, ZHUANG Zhuohan, et al. Development features and geological models of karst collapse in hilly areas of the Pearl River Delta: A case study of northern Guangzhou[J]. Geology and Exploration, 2023, 59(6): 1304 − 1314. (in Chinese with English abstract)
[12] 颜李冰清. 桂林市岩溶塌陷发育特征及发展趋势分析[D]. 桂林:桂林理工大学,2022. [YAN Libingqing. Analysis on development characteristics and development trend of karst collapse in Guilin City[D]. Guilin:Guilin University of Technology,2022. (in Chinese with English abstract)] YAN Libingqing. Analysis on development characteristics and development trend of karst collapse in Guilin City[D]. Guilin: Guilin University of Technology, 2022. (in Chinese with English abstract)
[13] 康晓波,王宇,张华,等. 云南高原岩溶塌陷发育特征及成因机制[J]. 中国地质灾害与防治学报,2022,33(5):50 − 58. [KANG Xiaobo,WANG Yu,ZHANG Hua,et al. Characteristics and formation mechanism of karst collapse in Yunnan Plateau[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):50 − 58. (in Chinese with English abstract)] KANG Xiaobo, WANG Yu, ZHANG Hua, et al. Characteristics and formation mechanism of karst collapse in Yunnan Plateau[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 50 − 58. (in Chinese with English abstract)
[14] 姜巽,曹聪,刘智,等. 歌乐山地区隧道工程诱发的岩溶塌陷发育规律与形成条件[J]. 水文地质工程地质,2023,50(5):181 − 191. [JIANG Xun,CAO Cong,LIU Zhi,et al. Development and formation conditions of karst collapse induced by tunnel engineering in the Gele Mountain Area[J]. Hydrogeology & Engineering Geology,2023,50(5):181 − 191. (in Chinese with English abstract)] JIANG Xun, CAO Cong, LIU Zhi, et al. Development and formation conditions of karst collapse induced by tunnel engineering in the Gele Mountain Area[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 181 − 191. (in Chinese with English abstract)
[15] 孙伟. 广东省英德市城南社区岩溶塌陷发育特征及成因分析[J]. 中国地质灾害与防治学报,2023,34(5):74 − 80. [SUN Wei. Development characteristics and causal analysis of karst collapses in Chengnan community,Yingde City,Guangdong Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):74 − 80. (in Chinese with English abstract)] SUN Wei. Development characteristics and causal analysis of karst collapses in Chengnan community, Yingde City, Guangdong Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 74 − 80. (in Chinese with English abstract)
[16] 张少波,简文彬,洪儒宝,等. 水位波动条件下覆盖型岩溶塌陷试验研究[J]. 工程地质学报,2019,27(3):659 − 667. [ZHANG Shaobo,JIAN Wenbin,HONG Rubao,et al. Experimental study on collapse of covered Karst under water-level fluctuation[J]. Journal of Engineering Geology,2019,27(3):659 − 667. (in Chinese with English abstract)] ZHANG Shaobo, JIAN Wenbin, HONG Rubao, et al. Experimental study on collapse of covered Karst under water-level fluctuation[J]. Journal of Engineering Geology, 2019, 27(3): 659 − 667. (in Chinese with English abstract)
[17] 贾龙,蒙彦,雷明堂,等.粤港澳大湾区岩溶水源地塌陷监测预警与安全开采[J/OL].中国地质. (2024-05-16)[2024-05-26]. [JIA Long, MENG Yan, LEI Mingtang et al. Development characteristics and hazard assessment of the Pangcun landslide, Xizang[J/OL]. Geology in China.(2024-05-16)[2024-05-26]. http://kns.cnki.net/kcms/detail/11.1167.p.20240515.1825.004.html. (in English with Chinese abstract)] JIA Long, MENG Yan, LEI Mingtang et al. Development characteristics and hazard assessment of the Pangcun landslide, Xizang[J/OL]. Geology in China.(2024-05-16)[2024-05-26]. http://kns.cnki.net/kcms/detail/11.1167.p.20240515.1825.004.html. (in English with Chinese abstract)
[18] 涂婧,刘长宪,姜超,等. 湖北武汉岩溶塌陷易发性评价[J]. 中国地质灾害与防治学报,2020,31(4):94 − 99. [TU Jing,LIU Changxian,JIANG Chao,et al. Susceptibility assessment of karst collapse in Wuhan City[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):94 − 99. (in Chinese with English abstract)] TU Jing, LIU Changxian, JIANG Chao, et al. Susceptibility assessment of karst collapse in Wuhan City[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4): 94 − 99. (in Chinese with English abstract)
[19] 毛世榕,管振德,阎春恒. 基于小波包分形和神经网络的地震与岩溶塌陷识别[J]. 地震学报,2018,40(2):195 − 204. [MAO Shirong,GUAN Zhende,YAN Chunheng. A technique for earthquake and Karst collapse recognition based on wavelet packet fractal and neural network[J]. Acta Seismologica Sinica,2018,40(2):195 − 204. (in Chinese with English abstract)] MAO Shirong, GUAN Zhende, YAN Chunheng. A technique for earthquake and Karst collapse recognition based on wavelet packet fractal and neural network[J]. Acta Seismologica Sinica, 2018, 40(2): 195 − 204. (in Chinese with English abstract)
[20] 贺占勇. 基于神经网络评价模型的地质灾害信息系统设计与实现[D]. 成都:电子科技大学,2014. [HE Zhanyong. Design and realization of the geological disaster infomation system based on neural network evaluation model[D]. Chengdu:University of Electronic Science and Technology of China,2014. (in Chinese with English abstract)] HE Zhanyong. Design and realization of the geological disaster infomation system based on neural network evaluation model[D]. Chengdu: University of Electronic Science and Technology of China, 2014. (in Chinese with English abstract)
[21] 吴远斌,刘之葵,殷仁朝,等. 基于AHP和GIS技术的湖南怀化地区岩溶塌陷易发性评价[J]. 中国岩溶,2022,41(1):21 − 33. [WU Yuanbin,LIU Zhikui,YIN Renchao,et al. Evaluation of karst collapse susceptibility in Huaihua Area,Hunan Province based on AHP and GIS[J]. Carsologica Sinica,2022,41(1):21 − 33. (in Chinese with English abstract)] WU Yuanbin, LIU Zhikui, YIN Renchao, et al. Evaluation of karst collapse susceptibility in Huaihua Area, Hunan Province based on AHP and GIS[J]. Carsologica Sinica, 2022, 41(1): 21 − 33. (in Chinese with English abstract)
[22] 曾斌,杨木易,邵长杰,等. 基于层次分析法的杭长高速岩溶塌陷易发性评价[J]. 安全与环境工程,2018,25(1):29 − 38. [ZENG Bin,YANG Muyi,SHAO Changjie,et al. Susceptibility assessment of karst collapse of Hangchang expressway projects based on analytic hierarchy process[J]. Safety and Environmental Engineering,2018,25(1):29 − 38. (in Chinese with English abstract)] ZENG Bin, YANG Muyi, SHAO Changjie, et al. Susceptibility assessment of karst collapse of Hangchang expressway projects based on analytic hierarchy process[J]. Safety and Environmental Engineering, 2018, 25(1): 29 − 38. (in Chinese with English abstract)
[23] 管斌. 基于GIS技术和模糊综合评判法的铜陵市地质灾害易发性评价研究[D]. 合肥:合肥工业大学,2021. [GUAN Bin. Study on geological hazard susceptibility evaluation base on GIS and fuzzy comprehensive evaluation In Tongling City[D]. Hefei:Hefei University of Technology,2021. (in Chinese with English abstract)] GUAN Bin. Study on geological hazard susceptibility evaluation base on GIS and fuzzy comprehensive evaluation In Tongling City[D]. Hefei: Hefei University of Technology, 2021. (in Chinese with English abstract)
[24] 张杰,毕攀,魏爱华,等. 基于模糊综合法的烟台市栖霞中桥岩溶塌陷易发性评价[J]. 中国岩溶,2021,40(2):215 − 220. [ZHANG Jie,BI Pan,WEI Aihua,et al. Assessment of susceptibility to Karst collapse in the Qixia Zhongqiao district of Yantai based on fuzzy comprehensive method[J]. Carsologica Sinica,2021,40(2):215 − 220. (in Chinese with English abstract)] ZHANG Jie, BI Pan, WEI Aihua, et al. Assessment of susceptibility to Karst collapse in the Qixia Zhongqiao district of Yantai based on fuzzy comprehensive method[J]. Carsologica Sinica, 2021, 40(2): 215 − 220. (in Chinese with English abstract)
[25] 吴亚楠,王延岭,周绍智,等. 基于综合指数法的泰莱盆地岩溶塌陷风险性评价[J]. 中国岩溶,2020,39(3):391 − 399. [WU Yanan,WANG Yanling,ZHOU Shaozhi,et al. Risk assessment of karst collapse in the Tailai Basin based on the synthetic index method[J]. Carsologica Sinica,2020,39(3):391 − 399. (in Chinese with English abstract)] WU Yanan, WANG Yanling, ZHOU Shaozhi, et al. Risk assessment of karst collapse in the Tailai Basin based on the synthetic index method[J]. Carsologica Sinica, 2020, 39(3): 391 − 399. (in Chinese with English abstract)
[26] 肖金水. 证据权法在岩溶塌陷风险分析中的应用研究[D]. 广州:华南理工大学,2013. [XIAO Jinshui. A research in the application of the weights of evidence method in the risk analysis of karst collapse[D]. Guangzhou:South China University of Technology,2013. (in Chinese with English abstract)] XIAO Jinshui. A research in the application of the weights of evidence method in the risk analysis of karst collapse[D]. Guangzhou: South China University of Technology, 2013. (in Chinese with English abstract)
[27] 孙琳,任娜娜,李云安,等. 基于证据权法的公路路基岩溶塌陷危险性评价[J]. 中国地质灾害与防治学报,2019,30(3):94 − 100. [SUN Lin,REN Nana,LI Yun’an,et al. Risk assessment on Karst collapse of the highway subgrade based on weights of evidence method[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):94 − 100. (in Chinese with English abstract)] SUN Lin, REN Nana, LI Yun’an, et al. Risk assessment on Karst collapse of the highway subgrade based on weights of evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(3): 94 − 100. (in Chinese with English abstract)
[28] 吴丽清,廖婧,王威,等. 基于AHP-信息量法的武汉地区岩溶地面塌陷危险性评价[J]. 长江科学院院报,2017,34(4):43 − 47. [WU Liqing,LIAO Jing,WANG Wei,et al. Risk assessment of karst surface collapse in Wuhan Region based on AHP-information method[J]. Journal of Yangtze River Scientific Research Institute,2017,34(4):43 − 47. (in Chinese with English abstract)] WU Liqing, LIAO Jing, WANG Wei, et al. Risk assessment of karst surface collapse in Wuhan Region based on AHP-information method[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(4): 43 − 47. (in Chinese with English abstract)
[29] 代领. 基于GIS的信息量法在宁远县地质灾害易发性评价中的应用[D]. 湘潭:湖南科技大学,2016. [DAI Ling. Application of GIS-based information acquisition method on assessment of geohazard susceptibility in Ningyuan County[D]. Xiangtan:Hunan University of Science and Technology,2016. (in Chinese with English abstract)] DAI Ling. Application of GIS-based information acquisition method on assessment of geohazard susceptibility in Ningyuan County[D]. Xiangtan: Hunan University of Science and Technology, 2016. (in Chinese with English abstract)
[30] 任涛,田国亮,宁志杰,等. 基于地理探测器和随机森林的岩溶塌陷易发性评价[J]. 灾害学,2023,38(3):227 − 234. [REN Tao,TIAN Guoliang,NING Zhijie,et al. Evaluation of karst collapse susceptibility based on geodetector and random forests[J]. Journal of Catastrophology,2023,38(3):227 − 234. (in Chinese with English abstract)] REN Tao, TIAN Guoliang, NING Zhijie, et al. Evaluation of karst collapse susceptibility based on geodetector and random forests[J]. Journal of Catastrophology, 2023, 38(3): 227 − 234. (in Chinese with English abstract)
[31] 孙剑锋,马超,胡金树,等. 基于灰色关联度与层次分析法耦合的地质灾害易发性评价——以浙江省云和县崇头镇为例[J]. 工程地质学报,2023,31(2):538 − 551. [SUN Jianfeng,MA Chao,HU Jinshu,et al. Susceptibility evaluation of geological hazard by coupling grey relational degree and analytic hierarchy process:A case of Chongtou town,Yunhe County,Zhejiang Province[J]. Journal of Engineering Geology,2023,31(2):538 − 551. (in Chinese with English abstract)] SUN Jianfeng, MA Chao, HU Jinshu, et al. Susceptibility evaluation of geological hazard by coupling grey relational degree and analytic hierarchy process: A case of Chongtou town, Yunhe County, Zhejiang Province[J]. Journal of Engineering Geology, 2023, 31(2): 538 − 551. (in Chinese with English abstract)
[32] 曾伟,谢韶宜,王观石,等. 基于AHP层次分析法的离子型稀土矿原地浸出边坡稳定评价研究[J]. 中国矿业,2023,32(4):72 − 80. [ZENG Wei,XIE Shaoyi,WANG Guanshi,et al. Study on slope stability evaluation system for ionic rare earth ore in situ leaching process based on AHP[J]. China Mining Magazine,2023,32(4):72 − 80. (in Chinese with English abstract)] ZENG Wei, XIE Shaoyi, WANG Guanshi, et al. Study on slope stability evaluation system for ionic rare earth ore in situ leaching process based on AHP[J]. China Mining Magazine, 2023, 32(4): 72 − 80. (in Chinese with English abstract)
[33] 郑小战. 广花盆地岩溶地面塌陷灾害形成机理及风险评估研究[D]. 长沙:中南大学,2010. [ZHENG Xiaozhan. Research on genetic mechanism and risk evaluation of the karst collapse in Guanghua Basin[D]. Changsha:Central South University,2010. (in Chinese with English abstract)] ZHENG Xiaozhan. Research on genetic mechanism and risk evaluation of the karst collapse in Guanghua Basin[D]. Changsha: Central South University, 2010. (in Chinese with English abstract)
[34] 陈菊艳,朱斌,彭三曦,等. 基于AHP和GIS的矿区岩溶塌陷易发性评估——以贵州林歹岩溶矿区为例[J]. 自然灾害学报,2021,30(5):226 − 236. [CHEN Juyan,ZHU Bin,PENG Sanxi,et al. Assessment of susceptibility to karst collapse in mining area based on AHP and GIS:A case study in Lindai karst mining area in Guizhou[J]. Journal of Natural Disasters,2021,30(5):226 − 236. (in Chinese with English abstract)] CHEN Juyan, ZHU Bin, PENG Sanxi, et al. Assessment of susceptibility to karst collapse in mining area based on AHP and GIS: A case study in Lindai karst mining area in Guizhou[J]. Journal of Natural Disasters, 2021, 30(5): 226 − 236. (in Chinese with English abstract)