ISSN 1003-8035 CN 11-2852/P

    RF-BP神经网络耦合模型的城市地面塌陷易发性评价以杭州市典型区为例

    Assessment of urban ground collapse susceptibility based on rf-bp neural network coupling model: A case study of typical areas in Hangzhou City

    • 摘要: 为了改变地面塌陷易发性评价主要通过知识驱动模型实现的现状,文章探讨了将数据驱动模型引入城市地面塌陷评价的可能性,选取杭州市填土-粉砂土典型区域为研究区,进行了研究区地面塌陷指标因子的选择以及相关性检验,筛选出了排水管线密度、社会活动密度、地下承压水位埋深、表层填土层厚度、与暗河暗浜距离、饱和砂土顶板埋深、软土层厚度7个评价因子对研究区地面塌陷易发性进行了评价,通过对比随机森林模型、RF-I集成模型、RF-BP神经网络集成模型,得到了在该研究区背景下集成模型相对单模型对地面塌陷易发性评价结果精确度更高,最后选取了效果最好的RF-BP神经网络集成模型进行了易发性评价。评价结果显示:易发性分区与地面塌陷隐患区高度吻合,预测效果较好,证明了数据驱动模型在城市地面塌陷易发性评价方面应用的可能性。

       

      Abstract: To improve the current situation where ground subsidence susceptibility assessment mainly relies on knowledge-driven models, this study explores the feasibility of incorporating data-driven models into the evaluation of urban ground subsidence. The study focused on a typical area in Hangzhou characterized by fill and silty soil. The selection of ground collapse indicators was conducted, followed by a correlation test. Seven evaluation factors, including drainage pipeline density, social activity density, depth of underground confined water level, thickness of surface fill layer, distance from hidden rivers and beaches, depth of the saturated sand top plate, and thickness of the soft soil layer, were selected for assessing the susceptibility to ground subsidence in the study area. By comparing the Random Forest (RF) model, RF-I integrated model, and RF-BP neural network integrated model, it was found that the integrated model had higher accuracy in assessing the susceptibility of ground collapses subsidence in this study area compared to single models. Ultimately, the RF-BP neural network integrated model, which showed the best performance, was chosen for susceptibility assessment. The assessment results indicated a high correlation between the susceptibility zones and areas prone to ground subsidence, indicating good prediction performance and proving the potential application of data-driven models in evaluating the susceptibility of urban ground collapses.

       

    /

    返回文章
    返回