Characteristics and Risk assessment of debris flows in the Zheduotang Section of the G4218 Highway
-
摘要:
拟建G4218康定至新都桥高速公路途经折多塘段,该区地质条件复杂,泥石流沟发育,共分布有23条泥石流沟,拟建线路在此段有K线和N线两个方案。本文通过野外地质调查、现场试验分析23条泥石流沟发育特征,选取主沟平均纵坡降、流域切割密度、断层线密度、汛期月均降水量等8个影响因子,采用层次分析法-熵值法构建评价模型,对研究区各泥石流沟进行危险性划分,根据评价结果提出选线建议。结果表明:研究区内泥石流高危险、极危险区主要集中分布在折多河下游右岸以及榆林河上游两侧流域,根据线路通过各级危险区间的路程占比以及综合体选址等情况综合考量,K线相比N线明线段经过高危险、极危险区的路程更短,且综合体部位危险性更低,因此K线方案优于N线。研究结果为西部山区交通工程地质选线提供了科学依据与技术支撑。
Abstract:The planned G4218 Kangding-Xinduqiao Highway traverses the Zheduotang Section characterized by complex geological conditions and prevalent debris flow activity. This section includes 23 debris flow gullies. 2 routing options, K-line and N-line, have been proposed. Through extensive field investigations and analysis of these gullies, eight influencing factors were selected, including the average longitudinal gradient of the main channel, the incising density of watershed, the density of fault line, and the average monthly precipitation during the rainy season. An assessment model was constructed using the Analytic Hierarchy Process-Entropy method to classify the hazard levels of each gully and propose route selection recommendations based on the evaluation results. The results indicate that high and extreme risk areas for debris flows in the research area were mainly concentrated on the right bank of the lower Zheduo River and both sides of the upper reaches of the Yulin River. The K-line scheme is more advantageous than the N-line due to its shorter route through high-risk and extreme-risk areas, as well as a lower level of complexity at the site location, based on comprehensive proportional analysis. The research provides a scientific basis and technical support for traffic engineering geological route selection in western mountainous areas.
-
Keywords:
- debris flow /
- characteristics /
- risk /
- highway route selection /
- AHP-Entropy method
-
0. 引言
泥石流作为我国西南山区最常见的地质灾害之一,其来势凶、速度快、搬运能力强、破坏性大的特点常对附近建筑、线路及居民的生命财产安全造成严重危害[1 − 3]。尤其在线路工程中,沿线泥石流灾害不仅会造成路面掩埋、路基和桥墩损毁等直接危害,还可能引发泥石流-堵江-堰塞湖-溃决-洪流冲毁链式灾害造成间接破坏[4 − 5]。
面对如此复杂且严重的线路泥石流灾害问题,众多学者积极开展了研究。四川平武县碟子沟历史上曾多次暴发泥石流,罗恒等[6]通过对碟子沟泥石流进行危险性分析和危险范围预测,提出针对性防治建议,有效保障了沟口堆积扇上方的服务区及该段线路的安全运营。何坤[7]通过对藏东南冻错曲沟谷内泥石流群孕灾环境、发育特征和发展趋势的研究,分析了泥石流暴发可能对铁路线路及车站造成危害的方式,并提出线路设计建议。张明等[8]采用层次分析法(AHP法)构建泥石流危险性评价体系,划分研究区泥石流危险性区划图,为“三高”地区高速公路勘察和选线提供参考。可见,准确对线路一定范围内所发育的泥石流沟进行危险性分析,对于前期选线及采取针对性防治措施起到重要作用。
目前针对泥石流危险性的研究,主要有主观经验法、统计学模型、机器学习及多种算法耦合等方法[9]。主观经验法操作简便[8, 10],其准确性依赖个人对研究对象的判断是否准确;统计学模型基于研究灾害样本与非灾害样本数据间的内在规律,可客观反映某一因子在泥石流形成中的贡献程度[11 − 13],但其评价结果的准确性易受到数据精度的影响;机器学习算法速度快,准确性高,在范围广、数量多的泥石流危险性研究中具有明显优势[14 − 16],但在建立模型时通常需要有足够多的正负样本数据以支撑模型的准确性,故不适用于分析小样本数据。
拟建G4218康定至新都桥高速公路在折多塘段主要以隧道和高架桥的形式通过,该区地质条件复杂、泥石流沟发育,泥石流灾害是影响该段选线的重要因素。折多塘泥石流群分布较为集中,孕灾环境相似,具有样本量少、数据差异性小的特点,因此,综合考虑各方法的优劣和适用性,统计学模型更适用于该区泥石流危险性研究。熵值法作为典型的统计学方法,众多学者将其运用于泥石流危险性研究取得了较好效果[11 − 12],通过结合AHP法可弥补熵值法“非专业性”和数据精度不足所带来的影响,进一步提高评价结果准确性[17]。
本文通过对区内泥石流沟发育规律进行研究,选取8个影响泥石流形成的评价因子,采用AHP-熵值法评价模型对该区泥石流危险性进行划分和评价,为该区公路选线和防灾减灾工作提供依据。
1. 区域概况
1.1 线路位置
G4218线折多塘段高速公路位于四川省甘孜藏族自治州康定市境内,路线走向与过境段G318国道处同一走廊带内,线路主要以桥隧方式通过该区,并有2个比选方案(图1)。其中,K线长42.7 km,明线段路程4.6 km,综合体布设于毛家沟沟口右侧山体斜坡;N线长43.6 km,明线段路程3.8 km,综合体以填方路基形式布设于折多河下游右岸N8、N9老泥石流沟堆积扇上方。
1.2 地质环境条件
研究区属青藏高原亚湿润气候区,具高原气候特征,冬春季多风少雨,降雨主要集中在5~9月,多年平均降雨量约985 mm,雨季降雨量占比可达75 %。发源于折多山的折多河流经此域,与榆林河交汇后流入瓦斯河,最终汇入大渡河,属大渡河水系。区内地形起伏大,地势由西向东倾斜,沟谷岸坡高陡,相对高差达
3000 m,属高山峡谷地貌。该区主要出露的基岩为燕山晚期黑云母花岗岩,覆盖层包括第四系冲洪积层(${\mathrm{Q}}_4^{{\mathrm{al+pl}}} $)、残坡积层(${\mathrm{Q}}_4^{{\mathrm{el+dl}}} $)、泥石流堆积层(${\mathrm{Q}}_4^{{\mathrm{sef}}} $)、崩坡积层(${\mathrm{Q}}_4^{{\mathrm{col+dl}}} $)等松散堆积层。由于鲜水河断裂系走向在折多山花岗岩地区发生转折[18 − 19],受此影响,区内断裂构造发育,包括折多塘断层、毛家沟断层、榆林宫断层等(图1),总体呈NW~SE向,沿断裂带附近岩体常出现碎裂、滑塌现象,产生大量松散固体物质。
2. 泥石流分布及发育特征
2.1 泥石流空间分布
区内早期泥石流作用显著,根据现场泥石流痕迹调查和对当地居民进行走访,折多河流域附近共存在23处泥石流灾害点,主要分布于毛家沟中下游、折多河下游及榆林河两侧流域(图1),在沟口普遍可见老泥石流堆积扇,厚度大,并有不同程度挤占河道、迫使河流发生弯曲或分流的现象(图2)。
据当地村民介绍,近三十年最严重的灾害为1995年康定大洪水期间,毛家沟发生大型山洪,沟口公路被淹没,而折多河下游右岸的海子沟暴发大规模泥石流,造成折多河堵塞,并且掩埋了对岸G318国道,导致交通严重受阻。
2.2 泥石流发育特征
2.2.1 流域基本特征
研究区内所发育的泥石流沟流域形态主要为沟谷型,少数为坡面型,并以粘性泥石流居多。沟道总体较为顺直,但由于地形高差大,沟道纵坡普遍较陡,据统计(表1),在23条泥石流沟中,平均纵坡降大于250‰的沟道占比60.8 %,沟谷型泥石流沟平均纵坡降总体介于169~397‰。利用ArcGIS对泥石流沟流域岸坡坡度进行提取,结果显示大部分坡度介于10°~40°,面积占比达90.29 %,其中20°~30°的斜坡占比最大(图3)。沟床陡急、岸坡陡峻是该区泥石流沟的显著特点,这为形成塌滑、松散物质向沟内堆积、流水汇聚、促使物质运移提供有利条件。
表 1 泥石流沟特征参数Table 1. Basic characteristic parameters of the debris flow gullies编号 泥石流沟 类型 流体性质 A/km2 L/km i/‰ Hmax/m Hmin/m ΔH/m 线路通过形式 K线 N线 N1 干沟 沟谷型 粘性 6.6 3.6 248 4430 3177 1253 \ \ N2 — 坡面型 稀性 0.4 0.9 478 3690 3115 575 \ \ N3 — 坡面型 稀性 0.6 1.3 466 3977 3109 868 \ \ N4 解放沟 沟谷型 粘性 5.5 3.6 294 4378 2959 1419 隧道 \ N5 四伏厂沟 15.5 7.5 204 4922 3034 1888 隧道、桥梁 \ N6 海子沟 0.4 0.8 350 3555 3067 488 \ \ N7 关沟 6.3 5.4 249 4836 3110 1726 隧道 桥梁 N8 — 沟谷型 稀性 0.9 1.5 348 3932 3149 783 \ 综合体 N9 李家沟 沟谷型 粘性 4.1 3.4 287 4570 3175 1395 隧道 综合体 N10 干海子沟 6.0 3.9 349 5022 3110 1912 \ \ N11 石灰窑沟 11.7 6.5 289 5400 3070 2330 \ \ N12 龙头沟 23.9 7.0 248 5297 3094 2203 \ \ N13 — 3.1 2.7 337 4220 2990 1230 \ \ N14 — 沟谷型 稀性 2.9 2.0 397 3956 2720 1236 \ \ N15 道子坝沟 沟谷型 粘性 5.9 4 250 4031 2710 1321 \ 隧道、桥梁 N16 — 5.5 3.9 194 4169 3091 1078 \ 隧道 N17 板沧沟 9.6 4.4 199 4500 3163 1337 \ \ N18 磨子沟 21.0 5.0 210 4716 3390 1326 隧道、桥梁 隧道 N19 — 4.1 2.8 282 4721 3722 999 \ \ N20 — 2.0 1.6 343 4660 3783 877 \ \ N21 — 4.8 3.7 236 4738 3712 1026 \ \ N22 — 4.4 3.4 251 4844 3785 1059 \ \ N23 — 6.9 4.1 169 4787 3837 950 \ \ 注:表中A为流域面积;L为主沟长度;i为主沟平均纵坡降;Hmax、Hmin为流域最大、最小高程;ΔH为流域最大高差;“—”表示沟道无名称;“\”表示线路未经过此流域。 2.2.2 降雨条件
康定市地处四川盆地西缘山地和青藏高原的过渡地带,干湿季分明,雨季可贡献全年80%降雨量,降雨是该区泥石流形成的主要水源条件。
根据康定市气象站统计数据,降雨主要集中在5~9月,多年平均月降雨量最大约194 mm,单日最大降雨量可达30 mm(图4)。由于区内地形复杂,立体气候鲜明,具明显垂直差异性,在高山峡谷区易出现短时强降雨。此外,李家沟、关沟、磨子沟、龙关沟等最大高程超过
3900 m的流域,在流域上游区高海拔部位存在大面积冰雪覆盖,夏季气温升高,冰雪融化,融雪水沿坡面向下流动也可为泥石流提供水源。2.2.3 物源特征
根据野外调查,研究区泥石流沟流域内所存物源主要包括沟床堆积、侵蚀物源,崩滑物源和坡面物源,坡面型冲沟以坡面侵蚀物源为主,部分流域上游高海拔区受冰川运动和常年积雪影响,发育有冰碛物源。
该区断裂构造发育、地震活动强烈,诱发大量崩塌、滑坡灾害,尤其在断裂带所经过的流域内,山体破碎,可见大量崩滑物源。如海子沟上游分水岭部位出现大规模塌滑,解放沟、关沟内存在大量崩滑堆积体等现象(图5)。对于早期崩滑堆积体,因植被丛生,结构较为稳定,不易参与泥石流形成,而新近崩滑堆积体,结构松散,稳定性差,当堆积体坡脚受到沟道强烈侧蚀作用后易发生坍塌进入沟道,参与泥石流运动。
龙头沟、关沟、磨子沟等高海拔流域上游近分水岭部位存在冰碛物,储量大,现状总体较为稳定,受流水冲蚀可启动的物源量小,但在极端降雨或地震条件下依然可能发生大规模失稳崩落,参与泥石流形成。
3. 泥石流危险性评价
3.1 评价方法
根据研究区地质环境特点及23条泥石流沟发育特征,结合前人相关研究所采用较为普遍、有效的评价因子基础上,选取反映流域地形特征因子:主沟平均纵坡降(为流域主沟道高差与长度之比,其值越大表示沟道越陡)、流域切割密度(流域内沟道长度总和与流域面积之比,其值越大表明地表越破碎)、坡度(地表任一点切面与水平面夹角,其值越大表示斜坡越陡峭)、melton比率[16](为流域相对高差与流域面积开平方之比,其值越大表示流域整体地势越陡,搬运能力越强)、主沟弯曲系数(为主沟长度与主沟始末点直线距离之比,其值越大表示沟道越曲折,越易形成堵塞);水源条件特征因子:汛期(5~9月)月均降水量;物源发育特征因子:断层线密度(为流域内断裂构造长度总和与流域面积之比,其值越大流域内断裂构造越发育,岩土体稳定性越差)、植被归一化指数(表示植被覆盖度,其值越大表明流域内植被越发育),所用基础数据见表2。
表 2 基础数据来源Table 2. Basic data sources基础数据 数据来源 12.5 m分辨率
DEM栅格数据Earth Science Data Systems (ESDS) Program:
https://search.asf.alaska.edu/1∶20万区域
地质矢量数据全国地质资料馆:
https://www.ngac.cn/1 km精度降水量
nc数据国家地球系统科学数据中心:
https://www.geodata.cn/Landsat8多波段
GeoTIFF数据地理空间数据云:
https://www.gscloud.cn/利用ArcGIS、ENVI软件对基础数据进行处理、提取和计算(图6),获取上述8个因子栅格数据。考虑泥石流的形成是由整个流域面内所有因素共同作用结果,因此,将ArcGIS软件提取出的62个子流域作为最小评价单元(图7a),主沟平均纵坡降、流域切割密度、主沟弯曲系数、断层线密度为单元内的唯一值,直接作为评价单元值,而坡度、melton比率、汛期月均降水量、植被归一化指数在单元中为范围值,以出现频次最高的值作为评价单元值(图7)。
通过构建AHP-熵值法组合赋权模型求取各评价因子权重(图8),结果如表3所示。将各指标综合权重与对应评价单元值进行多因子叠加计算即可获得评价单元综合系数。在叠加计算中,为消除各指标数据间不同量纲的影响,根据评价因子与泥石流的相关性对数据进行正向指标、负向指标归一化处理。
表 3 权重计算结果Table 3. Result of weight calculations评价因子 Wx Wy Wz 主沟平均纵坡降S1 0.1888 0.2050 0.1963 流域切割密度S2 0.0750 0.2004 0.1328 坡度S3 0.0422 0.1305 0.0828 melton比率S4 0.1131 0.1254 0.1188 主沟弯曲系数S5 0.0324 0.0085 0.0214 断层线密度S6 0.1601 0.0627 0.1152 汛期月均降水量S7 0.3038 0.0331 0.1792 植被归一化指数S8 0.0847 0.2345 0.1537 3.2 危险性划分结果
经计算,AHP-熵值法评价模型所得到研究区流域的综合系数为[
0.1891 ,0.5606 ],该系数反映了各流域单元发生泥石流的危险程度,系数值越大,表明该单元泥石流发生的趋势越大、危害性越强。利用自然间断点分级法将计算结果分为4个等级,分别为低危险、中危险、高危险和极危险,最终获得研究区泥石流危险性评价图(图9)。评价结果显示,区内共有10处泥石流沟流域属极度危险,现场判定易发性较高的解放沟、海子沟、李家沟等泥石流沟在评价模型中均处于极危险区,与现场调查结论较为吻合,且灾害出现频率(区间内的灾害面积占总灾害面积之比与区间面积占比的比值)随危险等级上升而增加(表4),说明评价结果合理可信。
表 4 泥石流危险性评价结果Table 4. Debris flow hazard assessment results危险程度分级 面积占比A/% 灾害数量/个 灾害面积占比B/% B/A 低危险 23.54 0 0.00 0.00 中危险 39.59 5 37.65 0.95 高危险 25.55 8 37.91 1.48 极危险 11.32 10 24.43 2.16 评价结果表明研究区内高危险和极危险性泥石流流域主要集中分布在折多河下游段右岸和榆林河上游段两岸流域,这些流域沟道平均纵坡降通常在200‰以上,流域内岸坡陡峻,地形起伏大,流域形态呈现出窄而陡的特点,且由于这些部位的断裂构造发育密集,使得岩土体结构破碎,易形成大量的的松散固体物质,加之流域内植被覆盖差,降水量充足,更利于泥石流的形成。而危险性较低的区域集中分布于折多河上游,其流域地形起伏、沟道纵坡降相对平缓,同时,折多河上游部位降水条件明显弱于中下游右岸区域,相较于高危险、极危险区,这些流域暴发泥石流的可能性和形成规模较小。
3.3 选线建议
根据前人涉及线路面临泥石流灾害问题的研究[20 − 22],在无法绕避的情况下,通常建议尽量以隧道、高墩大跨桥梁形式穿越泥石流流域,隧洞口和桥位还应与泥石流堵河影响河段保持有足够距离,即可最大程度规避或减少泥石流的危害。
因此,可根据线路在不同危险程度泥石流沟的路程长度、通过形式和通过部位,对两条线路进行比选。各级危险区线路长度统计结果如图10所示,K线在高危险、极危险区路程共15.3 km,占总线路36 %,在高危险、极危险性泥石流沟流域中,线路皆以地下隧道形式通过其上游形成区,最大程度规避了泥石流灾害的影响。K线综合体布设于毛家沟沟口右侧斜坡,处低危险区,受泥石流灾害的影响小。N线在高危险、极危险区的路程共14.5 km,占总线路33 %,其中明线段长3.2 km。由于N线以桥梁、填方路基形式从极危险性N8、N9流域沟口通过,且综合体布设于N8、N9老泥石流堆积扇上,一旦N8、N9沟暴发泥石流,将直接冲击综合体并冲刷、掏蚀基础,造成综合体不均匀沉降、结构变形而损坏。此外,当下游N6、N7沟暴发泥石流堵断折多河,引发河水回淤,也会使综合体基础和桥墩的稳定性受影响。
综上,相较N线,K线在高危险、极危险区内无以明线形式通过,通过形式和通过部位更合理,且综合体所在部位危险性更低,线路整体受泥石流灾害的影响更小,故K线方案优于N线方案。
4. 结论
本文对研究区内23条泥石流沟发育特征进行研究,选取主沟纵比降、断层线密度、汛期月均降水量等8个影响因子,建立AHP-熵值法危险性评价模型,对研究区泥石流沟危险性进行划分,为拟建高速公路线路选择及防灾减灾工作提供参考。主要结论如下:
(1)区内23条泥石流沟沟道平均纵坡降普遍较陡,流域高差大,岸坡陡峻。流域内物源丰富,主要为沟道物源、崩塌滑坡物源和坡面物源,部分流域的高海拔区域还发育有大量冰碛物源。降雨是该区泥石流形成的主要水源条件。
(2)评价结果显示极危险性泥石流沟共10条,主要分布于折多河下游右岸及榆林河上游两岸流域,这些流域呈现出地形起伏大、沟道纵坡陡、与断裂构造距离近的特点。
(3)根据两条线路在泥石流高危险、极危险区域的路程长度、通过方式以及综合体布设位置综合考量,K线在泥石流高危险、极危险区以隧道方式通过,遭受泥石流危害的风险小,且综合体选址处于低危险区,整体安全性高于N线。故K线方案要优于N线。
-
表 1 泥石流沟特征参数
Table 1 Basic characteristic parameters of the debris flow gullies
编号 泥石流沟 类型 流体性质 A/km2 L/km i/‰ Hmax/m Hmin/m ΔH/m 线路通过形式 K线 N线 N1 干沟 沟谷型 粘性 6.6 3.6 248 4430 3177 1253 \ \ N2 — 坡面型 稀性 0.4 0.9 478 3690 3115 575 \ \ N3 — 坡面型 稀性 0.6 1.3 466 3977 3109 868 \ \ N4 解放沟 沟谷型 粘性 5.5 3.6 294 4378 2959 1419 隧道 \ N5 四伏厂沟 15.5 7.5 204 4922 3034 1888 隧道、桥梁 \ N6 海子沟 0.4 0.8 350 3555 3067 488 \ \ N7 关沟 6.3 5.4 249 4836 3110 1726 隧道 桥梁 N8 — 沟谷型 稀性 0.9 1.5 348 3932 3149 783 \ 综合体 N9 李家沟 沟谷型 粘性 4.1 3.4 287 4570 3175 1395 隧道 综合体 N10 干海子沟 6.0 3.9 349 5022 3110 1912 \ \ N11 石灰窑沟 11.7 6.5 289 5400 3070 2330 \ \ N12 龙头沟 23.9 7.0 248 5297 3094 2203 \ \ N13 — 3.1 2.7 337 4220 2990 1230 \ \ N14 — 沟谷型 稀性 2.9 2.0 397 3956 2720 1236 \ \ N15 道子坝沟 沟谷型 粘性 5.9 4 250 4031 2710 1321 \ 隧道、桥梁 N16 — 5.5 3.9 194 4169 3091 1078 \ 隧道 N17 板沧沟 9.6 4.4 199 4500 3163 1337 \ \ N18 磨子沟 21.0 5.0 210 4716 3390 1326 隧道、桥梁 隧道 N19 — 4.1 2.8 282 4721 3722 999 \ \ N20 — 2.0 1.6 343 4660 3783 877 \ \ N21 — 4.8 3.7 236 4738 3712 1026 \ \ N22 — 4.4 3.4 251 4844 3785 1059 \ \ N23 — 6.9 4.1 169 4787 3837 950 \ \ 注:表中A为流域面积;L为主沟长度;i为主沟平均纵坡降;Hmax、Hmin为流域最大、最小高程;ΔH为流域最大高差;“—”表示沟道无名称;“\”表示线路未经过此流域。 表 2 基础数据来源
Table 2 Basic data sources
基础数据 数据来源 12.5 m分辨率
DEM栅格数据Earth Science Data Systems (ESDS) Program:
https://search.asf.alaska.edu/1∶20万区域
地质矢量数据全国地质资料馆:
https://www.ngac.cn/1 km精度降水量
nc数据国家地球系统科学数据中心:
https://www.geodata.cn/Landsat8多波段
GeoTIFF数据地理空间数据云:
https://www.gscloud.cn/表 3 权重计算结果
Table 3 Result of weight calculations
评价因子 Wx Wy Wz 主沟平均纵坡降S1 0.1888 0.2050 0.1963 流域切割密度S2 0.0750 0.2004 0.1328 坡度S3 0.0422 0.1305 0.0828 melton比率S4 0.1131 0.1254 0.1188 主沟弯曲系数S5 0.0324 0.0085 0.0214 断层线密度S6 0.1601 0.0627 0.1152 汛期月均降水量S7 0.3038 0.0331 0.1792 植被归一化指数S8 0.0847 0.2345 0.1537 表 4 泥石流危险性评价结果
Table 4 Debris flow hazard assessment results
危险程度分级 面积占比A/% 灾害数量/个 灾害面积占比B/% B/A 低危险 23.54 0 0.00 0.00 中危险 39.59 5 37.65 0.95 高危险 25.55 8 37.91 1.48 极危险 11.32 10 24.43 2.16 -
[1] 王玲,刘珍,杨林,等. 云南省梁河县章巴小沙河“8.5” 泥石流成灾机制分析[J]. 地质灾害与环境保护,2017,28(4):22 − 25. [WANG Ling,LIU Zhen,YANG Lin,et al. Analysis for the disaster menchanism of Zhangba river 8.5 mudslide in Lianghe county,Yunnan province[J]. Journal of Geological Hazards and Environment Preservation,2017,28(4):22 − 25. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-4362.2017.04.005 WANG Ling, LIU Zhen, YANG Lin, et al. Analysis for the disaster menchanism of Zhangba river 8.5 mudslide in Lianghe county, Yunnan province[J]. Journal of Geological Hazards and Environment Preservation, 2017, 28(4): 22 − 25. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-4362.2017.04.005
[2] 高会会,裴向军,崔圣华,等. 汶川震区震后地质灾害发育分布及演化特征统计分析[J]. 长江科学院院报,2019,36(8):73 − 80. [GAO Huihui,PEI Xiangjun,CUI Shenghua,et al. Geological hazards after earthquake in Wenchuan earthquake area:Distribution and evolvement features[J]. Journal of Yangtze River Scientific Research Institute,2019,36(8):73 − 80. (in Chinese with English abstract)] DOI: 10.11988/ckyyb.20180109 GAO Huihui, PEI Xiangjun, CUI Shenghua, et al. Geological hazards after earthquake in Wenchuan earthquake area: Distribution and evolvement features[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 73 − 80. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20180109
[3] 杨柳青,陈容,贺拿,等. 四川凉山州冕宁县彝海镇“6•26” 大型泥石流成因分析[J]. 中国地质灾害与防治学报,2023,34(1):94 − 101. [YANG Liuqing,CHEN Rong,HE Na,et al. Analysis of the cause of the “6•26” large debris flow in Yihai Town,Mianning County,Liangshan Prefecture,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):94 − 101. (in Chinese with English abstract)] YANG Liuqing, CHEN Rong, HE Na, et al. Analysis of the cause of the “6•26” large debris flow in Yihai Town, Mianning County, Liangshan Prefecture, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 94 − 101. (in Chinese with English abstract)
[4] 杜翠. 高寒、强震山区沟谷灾害链判据与线路工程减灾对策[D]. 成都:西南交通大学,2015. [DU Cui. Criterion of valley disaster chain in alpine and strong earthquake mountainous areas and disaster reduction countermeasures of line engineering[D]. Chengdu:Southwest Jiaotong University,2015. (in Chinese with English abstract)] DU Cui. Criterion of valley disaster chain in alpine and strong earthquake mountainous areas and disaster reduction countermeasures of line engineering[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese with English abstract)
[5] 宋章,魏永幸,王朋,等. 复杂艰险山区地质灾害特征及减灾选线研究[J]. 高速铁路技术,2020,11(5):8 − 12. [SONG Zhang,WEI Yongxing,WANG Peng,et al. Research on geological disaster characteristics and location for disaster reduction in complex and dangerous mountainous areas[J]. High Speed Railway Technology,2020,11(5):8 − 12. (in Chinese with English abstract)] SONG Zhang, WEI Yongxing, WANG Peng, et al. Research on geological disaster characteristics and location for disaster reduction in complex and dangerous mountainous areas[J]. High Speed Railway Technology, 2020, 11(5): 8 − 12. (in Chinese with English abstract)
[6] 罗恒,沈军辉,李本松,等. 蝶子沟泥石流对九绵高速公路的危害分析[J]. 中国水利水电科学研究院学报,2018,16(4):307 − 313. [LUO Heng,SHEN Junhui,LI Bensong,et al. Analysis on the damage of diezi gully debris flow to Jiumian expressway[J]. Journal of China Institute of Water Resources and Hydropower Research,2018,16(4):307 − 313. (in Chinese with English abstract)] LUO Heng, SHEN Junhui, LI Bensong, et al. Analysis on the damage of diezi gully debris flow to Jiumian expressway[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(4): 307 − 313. (in Chinese with English abstract)
[7] 何坤,胡卸文,刘波,周瑞宸,席传杰,韩玫,张晓宇. 川藏铁路某车站泥石流群发育特征及对线路的影响[J]. 水文地质工程地质,2021(05);0137-13. [HE Kun,HU Xiewen,LIU Bo,ZHOU Ruichen,XI Chuanjie,HAN Mei,ZHANG Xiaoyu. Characteristics and potential engineering perniciousness of thedebris flow group in one station of the Sichuan-Tibet Railway[J]. HYDROGEOLOGY & ENGINEERING GEOLOGY,2010,18(5):596-608. (in Chinese with English abstract)] HE Kun, HU Xiewen, LIU Bo, ZHOU Ruichen, XI Chuanjie, HAN Mei, ZHANG Xiaoyu. Characteristics and potential engineering perniciousness of thedebris flow group in one station of the Sichuan-Tibet Railway[J]. HYDROGEOLOGY & ENGINEERING GEOLOGY, 2010, 18(5): 596-608. (in Chinese with English abstract)
[8] 张明,王章琼,白俊龙,等. 基于ArcGIS的“三高” 地区高速公路泥石流危险性评价[J]. 中国地质灾害与防治学报,2020,31(2):24 − 32. [ZHANG Ming,WANG Zhangqiong,BAI Junlong,et al. Hazard assessment of debris flow along highway of high altitude cold and intensity regions with aid of ArcGIS[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):24 − 32. (in Chinese with English abstract)] ZHANG Ming, WANG Zhangqiong, BAI Junlong, et al. Hazard assessment of debris flow along highway of high altitude cold and intensity regions with aid of ArcGIS[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(2): 24 − 32. (in Chinese with English abstract)
[9] 陈飞飞,姚磊华,赵宏亮,等. 泥石流危险性评价问题的探讨[J]. 科学技术与工程,2018,18(32):114 − 123. [CHEN Feifei,YAO Leihua,ZHAO Hongliang,et al. Discussion on the risk assessment of debris flow[J]. Science Technology and Engineering,2018,18(32):114 − 123. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2018.32.018 CHEN Feifei, YAO Leihua, ZHAO Hongliang, et al. Discussion on the risk assessment of debris flow[J]. Science Technology and Engineering, 2018, 18(32): 114 − 123. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2018.32.018
[10] 冯培华,向灵芝,罗亮,等. 基于灾害熵与层次分析法的泥石流危险性评价对比分析:以甘肃省迭部县为例[J]. 科学技术与工程,2023,23(29):12416 − 12426. [FENG Peihua,XIANG Lingzhi,LUO Liang,et al. Comparative analysis of debris flow risk assessment based on disaster entropy and analytic hierarchy process:A case study of Diebu County,Gansu Province[J]. Science Technology and Engineering,2023,23(29):12416 − 12426. (in Chinese with English abstract)] DOI: 10.12404/j.issn.1671-1815.2023.23.29.12416 FENG Peihua, XIANG Lingzhi, LUO Liang, et al. Comparative analysis of debris flow risk assessment based on disaster entropy and analytic hierarchy process: A case study of Diebu County, Gansu Province[J]. Science Technology and Engineering, 2023, 23(29): 12416 − 12426. (in Chinese with English abstract) DOI: 10.12404/j.issn.1671-1815.2023.23.29.12416
[11] 宇岩,欧国强,王钧,等. 信息熵在震后深溪沟流域泥石流危险度评价中的应用[J]. 防灾减灾工程学报,2017,37(2):264 − 272. [YU Yan,OU Guoqiang,WANG Jun,et al. Application to information entropy in post-earthquake Shenxi gully basin hazard assessment[J]. Journal of Disaster Prevention and Mitigation Engineering,2017,37(2):264 − 272. (in Chinese with English abstract)] YU Yan, OU Guoqiang, WANG Jun, et al. Application to information entropy in post-earthquake Shenxi gully basin hazard assessment[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(2): 264 − 272. (in Chinese with English abstract)
[12] 王峰,杨帆,江忠荣,等. 基于沟域单元的康定市泥石流易发性评价[J]. 中国地质灾害与防治学报,2023,34(3):145 − 156. [WANG Feng,YANG Fan,JIANG Zhongrong,et al. Susceptibility assessment of debris flow based on watershed units in Kangding City,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):145 − 156. (in Chinese with English abstract)] WANG Feng, YANG Fan, JIANG Zhongrong, et al. Susceptibility assessment of debris flow based on watershed units in Kangding City, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 145 − 156. (in Chinese with English abstract)
[13] 孙滨,祝传兵,康晓波,等. 基于信息量模型的云南东川泥石流易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):119 − 127. [SUN Bin,ZHU Chuanbing,KANG Xiaobo,et al. Susceptibility assessment of debris flows based on information model in Dongchuan,Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):119 − 127. (in Chinese)] SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 119 − 127. (in Chinese)
[14] 曹禄来,徐林荣,陈舒阳,等. 基于模糊神经网络的泥石流危险性评价[J]. 水文地质工程地质. 2014.41(2):143-147. [CAO Lu-lai,XU Lin-rong,CHEN Shu-yang et al. Assessment of debris flow hazard based on Fuzzy Neutral Network[J]. HYDROGEOLOGY& ENGINEERING GEOLOGY. 2014.41(2):143-147. (in Chinese with English abstract)] CAO Lu-lai, XU Lin-rong, CHEN Shu-yang et al. Assessment of debris flow hazard based on Fuzzy Neutral Network[J]. HYDROGEOLOGY& ENGINEERING GEOLOGY. 2014.41(2): 143-147. (in Chinese with English abstract)
[15] 赵源,刘希林. 人工神经网络在泥石流风险评价中的应用[J]. 地质灾害与环境保护,2005,16(2):135 − 138. [ZHAO Yuan,LIU Xilin. Application of ann to risk assessment on debris flow[J]. Journal of Geological Hazards and Environment Preservation,2005,16(2):135 − 138. (in Chinese)] DOI: 10.3969/j.issn.1006-4362.2005.02.005 ZHAO Yuan, LIU Xilin. Application of ann to risk assessment on debris flow[J]. Journal of Geological Hazards and Environment Preservation, 2005, 16(2): 135 − 138. (in Chinese) DOI: 10.3969/j.issn.1006-4362.2005.02.005
[16] 刘府生,席传杰,胡卸文,等. 帕隆藏布流域冰川泥石流易发性研究[J]. 灾害学,2023,38(2):47 − 52. [LIU Fusheng,XI Chuanjie,HU Xiewen,et al. Glacial debris flow susceptibility assessment in palongzangbu basin[J]. Journal of Catastrophology,2023,38(2):47 − 52. (in Chinese)] DOI: 10.3969/j.issn.1000-811X.2023.02.008 LIU Fusheng, XI Chuanjie, HU Xiewen, et al. Glacial debris flow susceptibility assessment in palongzangbu basin[J]. Journal of Catastrophology, 2023, 38(2): 47 − 52. (in Chinese) DOI: 10.3969/j.issn.1000-811X.2023.02.008
[17] 张晨,王清,陈剑平,等. 金沙江流域泥石流的组合赋权法危险度评价[J]. 岩土力学,2011,32(3):831 − 836. [ZHANG Chen,WANG Qing,CHEN Jianping,et al. Evaluation of debris flow risk in Jinsha River based on combined weight process[J]. Rock and Soil Mechanics,2011,32(3):831 − 836. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2011.03.032 ZHANG Chen, WANG Qing, CHEN Jianping, et al. Evaluation of debris flow risk in Jinsha River based on combined weight process[J]. Rock and Soil Mechanics, 2011, 32(3): 831 − 836. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2011.03.032
[18] 潘家伟,李海兵,Marie-Luce CHEVALIER,等. 鲜水河断裂带色拉哈—康定段新发现的活动断层:木格措南断裂[J]. 地质学报,2020,94(11):3178 − 3188. [PAN Jiawei,LI Haibing,CHEVALIER M,et al. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault:The South Mugecuo fault[J]. Acta Geologica Sinica,2020,94(11):3178 − 3188. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0001-5717.2020.11.002 PAN Jiawei, LI Haibing, CHEVALIER M, et al. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault: The South Mugecuo fault[J]. Acta Geologica Sinica, 2020, 94(11): 3178 − 3188. (in Chinese with English abstract) DOI: 10.3969/j.issn.0001-5717.2020.11.002
[19] 四川省地震局地震地质队鲜水河活动断裂带填图组. 2013. 鲜水河活动断裂带地质图(1:50000)说明书. 北京:地震出版社. [20] 袁东,张广泽,王栋,等. 西部山区交通廊道泥石流发育特征及选线对策[J]. 地质通报,2023,42(5):743 − 752. [YUAN Dong,ZHANG Guangze,WANG Dong,et al. Analysis on development characteristics of debris flow and route selection countermeasures along the traffic lines in mountain areas of Western China[J]. Geological Bulletin of China,2023,42(5):743 − 752. (in Chinese with English abstract)] DOI: 10.12097/j.issn.1671-2552.2023.05.007 YUAN Dong, ZHANG Guangze, WANG Dong, et al. Analysis on development characteristics of debris flow and route selection countermeasures along the traffic lines in mountain areas of Western China[J]. Geological Bulletin of China, 2023, 42(5): 743 − 752. (in Chinese with English abstract) DOI: 10.12097/j.issn.1671-2552.2023.05.007
[21] 李波. 滇藏铁路波密至然乌段典型泥石流沟选线原则研究[C]//中国铁道学会工程分会第七届线路专业委员会. 复杂艰险山区铁路勘察设计创新与应用. 2020:7. [LI Bo. Research on Route Selecyion Principles of Typical Debris Flow Gully in Bomi-Ranwu Section of Yunnan-Tibet Railway [C] The fourth meeting of the 7th Line Professional Committee of the Engineering Branch of China Railway Society,2020:7. (in Chinese with English abstract)] LI Bo. Research on Route Selecyion Principles of Typical Debris Flow Gully in Bomi-Ranwu Section of Yunnan-Tibet Railway [C] The fourth meeting of the 7th Line Professional Committee of the Engineering Branch of China Railway Society, 2020: 7. (in Chinese with English abstract)
[22] 苏玥,邓桃,韩笑. 基于GIS以及中巴公路线路廊道的冰川泥石流严重区段铁路减灾选线策略[J]. 四川建筑,2019,39(3):99 − 101. [SU Yue,DENG Tao,HAN Xiao. Route selection strategy for railway disaster reduction in severe glacier debris flow section based on GIS and China-Pakistan highway corridor[J]. Sichuan Architecture,2019,39(3):99 − 101. (in Chinese)] DOI: 10.3969/j.issn.1007-8983.2019.03.036 SU Yue, DENG Tao, HAN Xiao. Route selection strategy for railway disaster reduction in severe glacier debris flow section based on GIS and China-Pakistan highway corridor[J]. Sichuan Architecture, 2019, 39(3): 99 − 101. (in Chinese) DOI: 10.3969/j.issn.1007-8983.2019.03.036